
Muriel Lansalot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1921614/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Controlled/Living Radical Polymerization in Dispersed Systems: An Update. Chemical Reviews, 2015, 115, 9745-9800.	47.7	393
2	RAFTâ€Mediated Polymerizationâ€Induced Selfâ€Assembly. Angewandte Chemie - International Edition, 2020, 59, 8368-8392.	13.8	374
3	Effect of the pH on the RAFT Polymerization of Acrylic Acid in Water. Application to the Synthesis of Poly(acrylic acid)-Stabilized Polystyrene Particles by RAFT Emulsion Polymerization. Macromolecules, 2013, 46, 6013-6023.	4.8	155
4	RAFT Miniemulsion Polymerization:  Influence of the Structure of the RAFT Agent. Macromolecules, 2002, 35, 7582-7591.	4.8	151
5	Batch Emulsion Polymerization Mediated by Poly(methacrylic acid) MacroRAFT Agents: One-Pot Synthesis of Self-Stabilized Particles. Macromolecules, 2012, 45, 5881-5893.	4.8	139
6	Synthesis of Quantum Dot-Tagged Submicrometer Polystyrene Particles by Miniemulsion Polymerization. Langmuir, 2006, 22, 1810-1816.	3.5	132
7	Synthesis of room temperature self-curable waterborne hybrid polyurethanes functionalized with (3-aminopropyl)triethoxysilane (APTES). Polymer, 2010, 51, 5051-5057.	3.8	132
8	The Effect of Hydrophile Topology in RAFTâ€Mediated Polymerizationâ€Induced Selfâ€Assembly. Angewandte Chemie - International Edition, 2016, 55, 3739-3743.	13.8	126
9	Organic/Inorganic Composite Latexes: The Marriage of Emulsion Polymerization and Inorganic Chemistry. Advances in Polymer Science, 2010, , 53-123.	0.8	120
10	Mechanistic Aspects of Nitroxide-Mediated Controlled Radical Polymerization of Styrene in Miniemulsion, Using a Water-Soluble Radical Initiator. Macromolecules, 2000, 33, 8559-8570.	4.8	116
11	Amphiphilic Block Copolymers from a Direct and Oneâ€pot RAFT Synthesis in Water. Macromolecular Rapid Communications, 2011, 32, 1270-1276.	3.9	113
12	Controlled Free-Radical Miniemulsion Polymerization of Styrene Using Degenerative Transfer. Macromolecules, 1999, 32, 7354-7360.	4.8	109
13	Dynamic Stratification in Drying Films of Colloidal Mixtures. Physical Review Letters, 2016, 116, 118301.	7.8	105
14	Controlled radical polymerization of styrene in miniemulsion mediated by PEO-based trithiocarbonate macromolecular RAFT agents. Polymer Chemistry, 2011, 2, 355-362.	3.9	94
15	Nitroxide-Mediated Polymerization-Induced Self-Assembly of Poly(poly(ethylene oxide) methyl ether) Tj ETQq1 1 (0.784314 r 4.8	gBT /Over <mark>lo</mark> 90
	Amphiphilic Block Copolymers. Macromolecules, 2013, 46, 4285-4295.		
16	Combining Steric and Electrostatic Stabilization Using Hydrophilic MacroRAFT Agents in anAb Initio Emulsion Polymerization of Styrene. Macromolecular Rapid Communications, 2007, 28, 1325-1332.	3.9	78
17	High-yield preparation of polystyrene/silica clusters of controlled morphology. Polymer Chemistry, 2012, 3, 1130.	3.9	72
18	RAFT Polymerization of Methacrylic Acid in Water. Macromolecules, 2012, 45, 1241-1247.	4.8	72

#	Article	IF	CITATIONS
19	Core–Shell Nanoreactors for Efficient Aqueous Biphasic Catalysis. Chemistry - A European Journal, 2014, 20, 15505-15517.	3.3	68
20	Use of a Poly(ethylene oxide) MacroRAFT Agent as Both a Stabilizer and a Control Agent in Styrene Polymerization in Aqueous Dispersed System. Macromolecules, 2009, 42, 946-956.	4.8	66
21	Design and use ofβ-phosphorus nitroxides and alkoxyamines in controlled/"living―free radical polymerizations. Macromolecular Symposia, 2002, 182, 225-247.	0.7	65
22	Synthesis of Multipod-like Silica/Polymer Latex Particles via Nitroxide-Mediated Polymerization-Induced Self-Assembly of Amphiphilic Block Copolymers. Macromolecules, 2015, 48, 545-556.	4.8	65
23	Synthesis and Siteâ€Specific Functionalization of Tetravalent, Hexavalent, and Dodecavalent Silica Particles. Angewandte Chemie - International Edition, 2013, 52, 11068-11072.	13.8	64
24	Cerium oxide encapsulation by emulsion polymerization using hydrophilic macroRAFT agents. Polymer Chemistry, 2013, 4, 607-614.	3.9	62
25	Modification of cellulose model surfaces by cationic polymer latexes prepared by RAFT-mediated surfactant-free emulsion polymerization. Polymer Chemistry, 2014, 5, 6076-6086.	3.9	62
26	Emulsion Polymerization of Vinyl Acetate in the Presence of Different Hydrophilic Polymers Obtained by RAFT/MADIX. Macromolecules, 2014, 47, 3461-3472.	4.8	61
27	Waterborne polyurethane dispersions obtained by the acetone process: A study of colloidal features. Journal of Applied Polymer Science, 2011, 120, 2054-2062.	2.6	60
28	Surface modification of iron oxide nanoparticles by a phosphateâ€based macromonomer and further encapsulation into submicrometer polystyrene particles by miniemulsion polymerization. Journal of Polymer Science Part A, 2008, 46, 327-340.	2.3	53
29	Hydrophilic MacroRAFT-Mediated Emulsion Polymerization: Synthesis of Latexes for Cross-Linked and Surfactant-Free Films. Macromolecules, 2017, 50, 9315-9328.	4.8	52
30	Charge Detection Mass Spectrometry for the Characterization of Mass and Surface Area of Composite Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 10844-10849.	3.1	51
31	Polystyrene-block-poly(butyl acrylate) and polystyrene-block-poly[(butyl acrylate)-co-styrene] block copolymers prepared via controlled free-radical miniemulsion polymerization using degenerative iodine transfer. Macromolecular Rapid Communications, 2000, 21, 921-926.	3.9	50
32	Aqueous phase homogeneous catalysis using core–shell nanoreactors: Application to rhodium-catalyzed hydroformylation of 1-octene. Journal of Catalysis, 2015, 324, 1-8.	6.2	48
33	Enhanced Water Barrier Properties of Surfactant-Free Polymer Films Obtained by MacroRAFT-Mediated Emulsion Polymerization. ACS Applied Materials & amp; Interfaces, 2018, 10, 11221-11232.	8.0	48
34	SEC Analysis of Poly(Acrylic Acid) and Poly(Methacrylic Acid). Macromolecular Chemistry and Physics, 2015, 216, 23-37.	2.2	46
35	RAFTâ€vermittelte polymerisationsinduzierte Selbstorganisation (PISA). Angewandte Chemie, 2020, 132, 8444-8470.	2.0	45
36	Stabilization of Miniemulsion Droplets by Cerium Oxide Nanoparticles: A Step toward the Elaboration of Armored Composite Latexes. Langmuir, 2012, 28, 6163-6174.	3.5	44

#	Article	IF	CITATIONS
37	Xyloglucan-Functional Latex Particles via RAFT-Mediated Emulsion Polymerization for the Biomimetic Modification of Cellulose. Biomacromolecules, 2016, 17, 1414-1424.	5.4	43
38	One‣tep Synthesis of Degradable Vinylic Polymerâ€Based Latexes via Aqueous Radical Emulsion Polymerization. Angewandte Chemie - International Edition, 2022, 61, .	13.8	42
39	pH-Switchable Stratification of Colloidal Coatings: Surfaces "On Demand― ACS Applied Materials & Interfaces, 2016, 8, 34755-34761.	8.0	40
40	Polymerization&;#x02010;Induced Self&;#x02010;Assembly: The Contribution of Controlled Radical Polymerization to The Formation of Self&;#x02010;Stabilized Polymer Particles of Various Morphologies. , 0, , 33-82.		40
41	Synthesis of clay-armored poly(vinylidene chloride-co-methyl acrylate) latexes by Pickering emulsion polymerization and their film-forming properties. Polymer Chemistry, 2017, 8, 6217-6232.	3.9	40
42	Amphiphilic core-cross-linked micelles functionalized with bis(4-methoxyphenyl)phenylphosphine as catalytic nanoreactors forAbiphasic hydroformylation. Polymer, 2015, 72, 327-335.	3.8	39
43	From well-defined poly(N -acryloylmorpholine)-stabilized nanospheres to uniform mannuronan- and guluronan-decorated nanoparticles by RAFT polymerization-induced self-assembly. Polymer, 2016, 106, 218-228.	3.8	39
44	Efficient Synthesis of Snowman- and Dumbbell-like Silica/Polymer Anisotropic Heterodimers through Emulsion Polymerization Using a Surface-Anchored Cationic Initiator. Macromolecules, 2012, 45, 7009-7018.	4.8	38
45	Nitroxide-Mediated Polymerization-Induced Self-Assembly of Block Copolymers at the Surface of Silica Particles: Toward New Hybrid Morphologies. Macromolecules, 2017, 50, 3796-3806.	4.8	38
46	Nanocomposite latexes containing layered double hydroxides via RAFT-assisted encapsulating emulsion polymerization. Polymer Chemistry, 2017, 8, 1233-1243.	3.9	37
47	Polymerizationâ€Induced Selfâ€Assembly. Macromolecular Rapid Communications, 2019, 40, e1800885.	3.9	37
48	Visibleâ€Light Emulsion Photopolymerization of Styrene. Angewandte Chemie - International Edition, 2018, 57, 957-961.	13.8	37
49	Soft and rigid core latex nanoparticles prepared by RAFT-mediated surfactant-free emulsion polymerization for cellulose modification – a comparative study. Polymer Chemistry, 2017, 8, 1061-1073.	3.9	36
50	Synthesis of multi-hollow clay-armored latexes by surfactant-free emulsion polymerization of styrene mediated by poly(ethylene oxide)-based macroRAFT/Laponite complexes. Polymer Chemistry, 2014, 5, 6611-6622.	3.9	33
51	Elaboration of fluorescent and highly magnetic submicronic polymer particles via a stepwise heterocoagulation process. Colloid and Polymer Science, 2005, 283, 1267-1277.	2.1	32
52	Surfactant-free poly(vinylidene chloride) latexes via one-pot RAFT-mediated aqueous polymerization. Polymer, 2016, 106, 275-284.	3.8	30
53	Multipod-like silica/polystyrene clusters. Nanoscale, 2016, 8, 5454-5469.	5.6	30
54	Nitroxide-mediated polymerization-induced self-assembly of amphiphilic block copolymers with a pH/temperature dual sensitive stabilizer block. Polymer Chemistry, 2017, 8, 4014-4029.	3.9	30

#	Article	IF	CITATIONS
55	Core phosphine-functionalized amphiphilic nanogels as catalytic nanoreactors for aqueous biphasic hydroformylation. Journal of Catalysis, 2016, 342, 164-172.	6.2	28
56	RAFT/MADIX copolymerization of vinyl acetate and 5,6â€benzoâ€2â€methyleneâ€1,3â€dioxepane. Journal of Poly Science Part A, 2014, 52, 104-111.	mer 2.3	27
57	Polymer-encapsulated \hat{I}^3 -Fe 2 O 3 nanoparticles prepared via RAFT-mediated emulsion polymerization. Polymer, 2016, 106, 249-260.	3.8	26
58	Poly(ethylene glycol)- <i>b</i> -poly(vinyl acetate) block copolymer particles with various morphologies <i>via</i> RAFT/MADIX aqueous emulsion PISA. Polymer Chemistry, 2020, 11, 3922-3930.	3.9	25
59	New Insight into Cluster Aggregation Mechanism during Polymerization-Induced Self-Assembly by Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2019, 123, 6609-6617.	2.6	24
60	Ethylene Polymerizationâ€Induced Selfâ€Assembly (PISA) of Poly(ethylene oxide)â€ <i>block</i> â€polyethyle Copolymers via RAFT. Angewandte Chemie - International Edition, 2020, 59, 10385-10390.	ne 13.8	24
61	Free Radical Emulsion Polymerization of Ethylene. Macromolecules, 2014, 47, 6591-6600.	4.8	23
62	Controlling the Morphology of Film-Forming, Nanocomposite Latexes Containing Layered Double Hydroxide by RAFT-Mediated Emulsion Polymerization. Macromolecules, 2018, 51, 3953-3966.	4.8	23
63	The Effect of Hydrophile Topology in RAFTâ€Mediated Polymerizationâ€Induced Selfâ€Assembly. Angewandte Chemie, 2016, 128, 3803-3807.	2.0	22
64	Surfactant-Free Emulsion Polymerization Stabilized by Ultrasmall Superparamagnetic Iron Oxide Particles Using Acrylic Acid or Methacrylic Acid as Auxiliary Comonomers. Macromolecules, 2016, 49, 7609-7624.	4.8	22
65	Tailoring adhesion of anionic surfaces using cationic PISA-latexes – towards tough nanocellulose materials in the wet state. Nanoscale, 2019, 11, 4287-4302.	5.6	22
66	Design of Waterborne Nanoceria/Polymer Nanocomposite UV-Absorbing Coatings: Pickering versus Blended Particles. ACS Applied Nano Materials, 2018, 1, 3956-3968.	5.0	20
67	Tailoring the Morphology of Polymer/Montmorillonite Hybrid Latexes by Surfactant-Free Emulsion Polymerization Mediated by Amphipathic MacroRAFT Agents. Macromolecules, 2019, 52, 4979-4988.	4.8	19
68	In Situ Monitoring of Latex Film Formation by Small-Angle Neutron Scattering: Evolving Distributions of Hydrophilic Stabilizers in Drying Colloidal Films. Langmuir, 2019, 35, 3822-3831.	3.5	18
69	The Charging of Micellar Nanoparticles in Electrospray Ionization. ChemPhysChem, 2013, 14, 603-609.	2.1	17
70	Polymer-encapsulation of iron oxide clusters using macroRAFT block copolymers as stabilizers: tuning of the particle morphology and surface functionalization. Journal of Materials Chemistry B, 2020, 8, 4917-4929.	5.8	17
71	Poly(vinylidene chloride)-Based Amphiphilic Block Copolymers. Macromolecules, 2013, 46, 664-673.	4.8	16
72	Coordination Chemistry Inside Polymeric Nanoreactors: Interparticle Metal Exchange and Ionic Compound Vectorization in Phosphineâ€Functionalized Amphiphilic Polymer Latexes. Chemistry - A European Journal, 2016, 22, 6302-6313.	3.3	16

#	Article	IF	CITATIONS
73	A Step Towards Highâ€Molecularâ€Weight Living/Controlled Polystyrene Using SG1â€Mediated Polymerization. Macromolecular Reaction Engineering, 2010, 4, 403-414.	1.5	15
74	Automated Oligonucleotide Solid-Phase Synthesis on Nanosized Silica Particles Using Nano-on-Micro Assembled Particle Supports. Langmuir, 2010, 26, 4941-4950.	3.5	15
75	A Second-Generation Chameleon N-Heterocyclic Carbene–Borane Coinitiator for the Visible-Light Oxygen-Resistant Photopolymerization of Both Organic and Water-Compatible Resins. Macromolecules, 2018, 51, 9730-9739.	4.8	15
76	Study of the solution and aqueous emulsion copolymerization of vinylidene chloride with methyl acrylate in the presence a poly(ethylene oxide) macromolecular RAFT agent. Polymer, 2013, 54, 6547-6554.	3.8	14
77	Spheres Growing on a Sphere: A Model to Predict the Morphology Yields of Colloidal Molecules Obtained through a Heterogeneous Nucleation Route. Langmuir, 2012, 28, 11575-11583.	3.5	13
78	High-performance water-based barrier coatings for the corrosion protection of structural steel. Steel Construction, 2017, 10, 254-259.	0.8	13
79	Synthesis of nanoscaled poly(styrene-co-n-butyl acrylate)/silica particles with dumbbell- and snowman-like morphologies by emulsion polymerization. Polymer Chemistry, 2014, 5, 5609-5616.	3.9	12
80	Synthesis of Nanocapsules and Polymer/Inorganic Nanoparticles Through Controlled Radical Polymerization At and Near Interfaces in Heterogeneous Media. Advances in Polymer Science, 2015, , 123-161.	0.8	12
81	Towards a one-step method for preparing silica/polymer heterodimers and dimpled polymer particles. Polymer, 2015, 70, 118-126.	3.8	12
82	Polymer Nanospheres with Hydrophobic Surface Groups as Supramolecular Building Blocks Produced by Aqueous PISA. Macromolecular Rapid Communications, 2019, 40, e1800455.	3.9	12
83	One-Pot RAFT Synthesis of Triphenylphosphine-Functionalized Amphiphilic Core-Shell Polymers and Application as Catalytic Nanoreactors in Aqueous Biphasic Hydroformylation. ACS Symposium Series, 2015, , 203-220.	0.5	11
84	Visible‣ight Emulsion Photopolymerization of Styrene. Angewandte Chemie, 2018, 130, 969-973.	2.0	11
85	Synthesis of double-responsive magnetic latex particles <i>via</i> seeded emulsion polymerization using macroRAFT block copolymers as stabilizers. Polymer Chemistry, 2020, 11, 648-652.	3.9	11
86	Synergetic Effect of Water-Soluble PEG-Based Macromonomers and Cellulose Nanocrystals for the Stabilization of PMMA Latexes by Surfactant-Free Emulsion Polymerization. Biomacromolecules, 2020, 21, 4479-4491.	5.4	11
87	Core-Cross-Linked Micelles Made by RAFT Polymerization with a Polycationic Outer Shell Based on Poly(1-methyl-4-vinylpyridinium). Macromolecules, 2020, 53, 2198-2208.	4.8	10
88	Ethylene Polymerizationâ€Induced Selfâ€Assembly (PISA) of Poly(ethylene oxide)―block â€polyethylene Copolymers via RAFT. Angewandte Chemie, 2020, 132, 10471-10476.	2.0	10
89	Laponite®-based colloidal nanocomposites prepared by RAFT-mediated surfactant-free emulsion polymerization: the role of non-ionic and anionic macroRAFT polymers in stability and morphology control. Polymer Chemistry, 2021, 12, 69-81.	3.9	10
90	New ethyl cellulose/acrylic hybrid latexes and coatings via miniemulsion polymerization. Journal of Polymer Science Part A, 2010, 48, 2329-2339.	2.3	9

#	Article	IF	CITATIONS
91	Intercalation and structural aspects of macroRAFT agents into MgAl layered double hydroxides. Beilstein Journal of Nanotechnology, 2016, 7, 2000-2012.	2.8	9
92	Bis-N,N-aminophosphine (PNP) crosslinked poly(p-tert-butyl styrene) particles: A new support for heterogeneous palladium catalysts for Suzuki coupling reactions. Catalysis Communications, 2019, 129, 105715.	3.3	9
93	Crystallization of Nanodomains in Polyethylene Latexes. Macromolecules, 2017, 50, 9742-9749.	4.8	8
94	Synthesis of HCN-like poly(methyl methacrylate)/polystyrene/silica colloidal molecules. Polymer Chemistry, 2012, 3, 3232.	3.9	7
95	Nitroxide-mediated polymerization of methacrylates in the presence of 4-vinyl pyridine as controlling comonomer. Polymer, 2019, 172, 330-338.	3.8	7
96	Triphenylphosphineâ€Functionalized Coreâ€Crossâ€Linked Micelles and Nanogels with a Polycationic Outer Shell: Synthesis and Application in Rhodiumâ€Catalyzed Biphasic Hydrogenations. Chemistry - A European Journal, 2021, 27, 5205-5214.	3.3	7
97	Surfactant-free emulsion polymerization of vinylidene fluoride mediated by RAFT/MADIX reactive poly(ethylene glycol) polymer chains. Polymer Chemistry, 2021, 12, 5640-5649.	3.9	7
98	Development of a Borane–(Meth)acrylate Photo lick Reaction. Angewandte Chemie - International Edition, 2021, 60, 17037-17044.	13.8	7
99	Visible-Light Emulsion Photopolymerization of Acrylates and Methacrylates: Mechanistic Insights and Introduction of a Simplified Sulfur-Based Photoinitiating System. Macromolecules, 2021, 54, 2124-2133.	4.8	6
100	Synthesis and characterization of biomimetic nanogels for immunorecognition. Colloids and Surfaces B: Biointerfaces, 2013, 112, 264-271.	5.0	5
101	Novel technologies and chemistries for waterborne coatings. Journal of Coatings Technology Research, 2014, 11, 131-141.	2.5	5
102	Core-Cross-Linked Micelles and Amphiphilic Nanogels as Unimolecular Nanoreactors for Micellar-Type, Metal-Based Aqueous Biphasic Catalysis. Fundamental and Applied Catalysis, 2017, , 147-172.	0.9	5
103	Encapsulation with the Use of Controlled Radical Polymerization. , 2015, , 718-729.		4
104	Hydrocarbon based stabilisers for the synthesis of cross-linked poly(2-hydroxyethyl methacrylate) particles in supercritical carbon dioxide. Polymer Chemistry, 2019, 10, 5760-5770.	3.9	4
105	Innovative Method for Laponite Encapsulation into Polymer Latex Particles by Clay Cluster-Seeded Emulsion Polymerization. Macromolecules, 2020, 53, 39-50.	4.8	4
106	Influence of structure and solubility of chain transfer agents on the RAFT control of dispersion polymerisation in scCO ₂ . Chemical Science, 2021, 12, 1016-1030.	7.4	4
107	Polymer/Laponite Nanocomposite Films Produced from Surfactant-Free Latexes using Cationic Macromolecular Reversible Addition-Fragmentation Chain Transfer Copolymers. Macromolecules, 2021, 54, 7480-7491.	4.8	4
108	One‧tep Synthesis of Degradable Vinylic Polymerâ€Based Latexes via Aqueous Radical Emulsion Polymerization. Angewandte Chemie, 2022, 134, .	2.0	4

#	Article	IF	CITATIONS
109	Regioselective Coating of Tetrapod-like Clusters with Silica. Molecular Crystals and Liquid Crystals, 2014, 604, 27-32.	0.9	3
110	Poly(vinyl acetate- <i>co</i> -ethylene) particles prepared by surfactant-free emulsion polymerization in the presence of a hydrophilic RAFT/MADIX macromolecular chain transfer agent. Polymer Chemistry, 2020, 11, 7410-7420.	3.9	3
111	Telechelic polyethylene, poly(ethylene- <i>co</i> -vinyl acetate) and triblock copolymers based on ethylene and vinyl acetate by iodine transfer polymerization. Polymer Chemistry, 2022, 13, 2469-2476.	3.9	3
112	Development of Water-Soluble Type I Photoinitiators for Hydrogel Synthesis. Macromol, 2022, 2, 131-140.	4.4	3
113	Encapsulation with the Use of Controlled Radical Polymerization. , 2014, , 1-13.		2
114	Synthesis of Iron Oxide-Armored Latex Particles by Pickering Emulsion Polymerization Using 2-Acrylamido-2-methyl-1-propane Sulfonic Acid as an Auxiliary Comonomer. Macromolecules, 2022, 55, 4284-4296.	4.8	2
115	Syntheses of Ethyl Cellulose Acrylate Hybrid Latex via Mini-Polymerization. Advanced Materials Research, 2011, 250-253, 804-808.	0.3	0
116	Development of a Borane–(Meth)acrylate Photo lick Reaction. Angewandte Chemie, 2021, 133, 17174-17181.	2.0	0