Pascale Lherminier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1919933/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cessation and partial reversal of deep water freshening in the northern North Atlantic: observation-based estimates and attribution. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 62, 80.	1.7	28
2	Rapidly Increasing Artificial Iodine Highlights Pathways of Iceland-Scotland Overflow Water and Labrador Sea Water. Frontiers in Marine Science, 2022, 9, .	2.5	2
3	Warmingâ€toâ€Cooling Reversal of Overflowâ€Derived Water Masses in the Irminger Sea During 2002–2021. Geophysical Research Letters, 2022, 49, .	4.0	1
4	The CISE-LOCEAN seawater isotopic database (1998–2021). Earth System Science Data, 2022, 14, 2721-2735.	9.9	6
5	Tidal and Near-Inertial Internal Waves over the Reykjanes Ridge. Journal of Physical Oceanography, 2021, 51, 419-437.	1.7	11
6	Subpolar North Atlantic western boundary density anomalies and the Meridional Overturning Circulation. Nature Communications, 2021, 12, 3002.	12.8	47
7	Counteracting Contributions of the Upper and Lower Meridional Overturning Limbs to the North Atlantic Nutrient Budgets: Enhanced Imbalance in 2010. Global Biogeochemical Cycles, 2021, 35, e2020GB006898.	4.9	4
8	Sustainable Observations of the AMOC: Methodology and Technology. Reviews of Geophysics, 2020, 58, e2019RG000654.	23.0	39
9	The Northeast Atlantic is running out of excess carbonate in the horizon of cold-water corals communities. Scientific Reports, 2020, 10, 14714.	3.3	6
10	North Atlantic Western Boundary Currents Are Intense Dissolved Organic Carbon Streams. Frontiers in Marine Science, 2020, 7, .	2.5	2
11	Dissolved iron in the North Atlantic Ocean and Labrador Sea along the GEOVIDE section (GEOTRACES) Tj ETQq1 1	9.384314	1 rgBT /Ovei
12	Particulate rare earth element behavior in the North Atlantic (GEOVIDE cruise). Biogeosciences, 2020, 17, 5539-5561.	3.3	8
13	Inputs and processes affecting the distribution of particulate iron in the North Atlantic along the GEOVIDE (GEOTRACES GA01) section. Biogeosciences, 2019, 16, 1563-1582.	3.3	14
14	Sources and Distribution of Fresh Water Around Cape Farewell in 2014. Journal of Geophysical Research: Oceans, 2019, 124, 9404-9416.	2.6	5
15	Meridional overturning circulation conveys fast acidification to the deep Atlantic Ocean. Nature, 2018, 554, 515-518.	27.8	64
16	Sources, cycling and transfer of mercury in the Labrador Sea (Geotraces-Geovide cruise). Marine Chemistry, 2018, 198, 64-69.	2.3	21
17	Introduction to the French GEOTRACES North Atlantic Transect (GA01): GEOVIDE cruise. Biogeosciences, 2018, 15, 7097-7109.	3.3	10
18	Water mass distributions and transports for the 2014 GEOVIDE cruise in the North Atlantic. Biogeosciences, 2018, 15, 2075-2090.	3.3	41

#	Article	IF	CITATIONS
19	Transport and storage of anthropogenic C in the North Atlantic Subpolar Ocean. Biogeosciences, 2018, 15, 4661-4682.	3.3	7
20	Aluminium in the North Atlantic Ocean and the Labrador Sea (GEOTRACES GA01 section): roles of continental inputs and biogenic particle removal. Biogeosciences, 2018, 15, 5271-5286.	3.3	19
21	Tracing water masses with ¹²⁹ I and ²³⁶ U in the subpolar North Atlantic along the GEOTRACES GA01 section. Biogeosciences, 2018, 15, 5545-5564.	3.3	22
22	Mercury distribution and transport in the North Atlantic Ocean along the GEOTRACES-GA01 transect. Biogeosciences, 2018, 15, 2309-2323.	3.3	29
23	The GEOTRACES Intermediate Data Product 2017. Chemical Geology, 2018, 493, 210-223.	3.3	257
24	Composition of freshwater in the spring of 2014 on the southern Labrador shelf and slope. Journal of Geophysical Research: Oceans, 2017, 122, 1102-1121.	2.6	13
25	The GEOVIDE cruise in May–JuneÂ2014 reveals an intense Meridional Overturning Circulation over a cold and fresh subpolar North Atlantic. Biogeosciences, 2017, 14, 5323-5342.	3.3	29
26	Variability of the Turbulent Kinetic Energy Dissipation along the A25 Greenland–Portugal Transect Repeated from 2002 to 2012. Journal of Physical Oceanography, 2016, 46, 1989-2003.	1.7	7
27	The northern North Atlantic Ocean mean circulation in the early 21st century. Progress in Oceanography, 2016, 146, 142-158.	3.2	124
28	Dissolved inorganic carbon budgets in the eastern subpolar North Atlantic in the 2000s from in situ data. Geophysical Research Letters, 2015, 42, 9853-9861.	4.0	9
29	Structure, transports and transformations of the water masses in the Atlantic Subpolar Gyre. Progress in Oceanography, 2015, 135, 18-36.	3.2	69
30	Variability of the meridional overturning circulation at the Greenland–Portugal OVIDE section from 1993 to 2010. Progress in Oceanography, 2015, 132, 250-261.	3.2	112
31	Variability of the transport of anthropogenic CO ₂ at the Greenland–Portugal OVIDE section: controlling mechanisms. Biogeosciences, 2014, 11, 2375-2389.	3.3	12
32	Dissipation Rate Estimates from Microstructure and Finescale Internal Wave Observations along the A25 Greenland–Portugal OVIDE Line. Journal of Atmospheric and Oceanic Technology, 2014, 31, 2530-2543.	1.3	17
33	Observations of Irminger Sea Anticyclonic Eddies. Journal of Physical Oceanography, 2013, 43, 805-823.	1.7	34
34	Atlantic Ocean CO2 uptake reduced by weakening of the meridional overturning circulation. Nature Geoscience, 2013, 6, 146-152.	12.9	101
35	Diagnosing Surface Mixed Layer Dynamics from High-Resolution Satellite Observations: Numerical Insights. Journal of Physical Oceanography, 2013, 43, 1345-1355.	1.7	32
36	On the Cascading of Dense Shelf Waters in the Irminger Sea. Journal of Physical Oceanography, 2012, 42, 2254-2267.	1.7	33

PASCALE LHERMINIER

#	Article	IF	CITATIONS
37	Mean fullâ€depth summer circulation and transports at the northern periphery of the Atlantic Ocean in the 2000s. Journal of Geophysical Research, 2012, 117, .	3.3	95
38	The 1992-2009 transport variability of the East Greenland-Irminger Current at 60°N. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	25
39	The Irminger Gyre: Circulation, convection, and interannual variability. Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58, 590-614.	1.4	113
40	Altimetry Combined with Hydrography for Ocean Transport Estimation. Journal of Atmospheric and Oceanic Technology, 2011, 28, 1324-1337.	1.3	38
41	Circulation and Transport at the Southeast Tip of Greenland. Journal of Physical Oceanography, 2011, 41, 437-457.	1.7	26
42	Trends of anthropogenic CO ₂ storage in North Atlantic water masses. Biogeosciences, 2010, 7, 1789-1807.	3.3	46
43	Assessing decadal changes in the Deep Western Boundary Current absolute transport southeast of Cape Farewell, Greenland, from hydrography and altimetry. Journal of Geophysical Research, 2010, 115,	3.3	18
44	The Atlantic Meridional Overturning Circulation and the subpolar gyre observed at the A25-OVIDE section in June 2002 and 2004. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57, 1374-1391.	1.4	73
45	Cessation and partial reversal of deep water freshening in the northern North Atlantic: observation-based estimates and attribution. Tellus, Series A: Dynamic Meteorology and Oceanography, 2010, , .	1.7	Ο
46	A Long-Lasting Mode Water Vortex in the Northeast Atlantic Ocean. Journal of Physical Oceanography, 2009, 39, 536-558.	1.7	7
47	Recent changes in the Greenland–Scotland overflowâ€derived water transport inferred from hydrographic observations in the southern Irminger Sea. Geophysical Research Letters, 2009, 36, .	4.0	22
48	XBT Temperature Errors during French Research Cruises (1999–2007). Journal of Atmospheric and Oceanic Technology, 2009, 26, 2462-2473.	1.3	23
49	Les courants de l'Atlantique Nord – le projet OVIDE. Houille Blanche, 2008, 94, 30-32.	0.3	0
50	Transports across the 2002 Greenlandâ€Portugal Ovide section and comparison with 1997. Journal of Geophysical Research, 2007, 112, .	3.3	110
51	Internal and forced variability along a section between Greenland and Portugal in the CLIPPER Atlantic model. Ocean Dynamics, 2006, 56, 568-580.	2.2	16
52	Evidence of strong inertia-gravity wave activity during the POMME experiment. Journal of Geophysical Research, 2005, 110, .	3.3	12
53	Interpretation of mean vertical velocity measured by isobaric floats during deep convective events. Journal of Marine Systems, 2001, 29, 221-237.	2.1	7
54	The Greenland Sea in Water 1993 and 1994: preconditioning for deep convection. Deep-Sea Research Part II: Topical Studies in Oceanography, 1999, 46, 1199-1235.	1.4	23