Pascale Lherminier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1919933/publications.pdf

Version: 2024-02-01

54 papers 1,958 citations

279798 23 h-index 42 g-index

84 all docs 84 docs citations 84 times ranked 2343 citing authors

#	Article	IF	Citations
1	The GEOTRACES Intermediate Data Product 2017. Chemical Geology, 2018, 493, 210-223.	3.3	257
2	The northern North Atlantic Ocean mean circulation in the early 21st century. Progress in Oceanography, 2016, 146, 142-158.	3.2	124
3	The Irminger Gyre: Circulation, convection, and interannual variability. Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58, 590-614.	1.4	113
4	Variability of the meridional overturning circulation at the Greenland–Portugal OVIDE section from 1993 to 2010. Progress in Oceanography, 2015, 132, 250-261.	3.2	112
5	Transports across the 2002 Greenlandâ€Portugal Ovide section and comparison with 1997. Journal of Geophysical Research, 2007, 112, .	3.3	110
6	Atlantic Ocean CO2 uptake reduced by weakening of the meridional overturning circulation. Nature Geoscience, 2013, 6, 146-152.	12.9	101
7	Mean fullâ€depth summer circulation and transports at the northern periphery of the Atlantic Ocean in the 2000s. Journal of Geophysical Research, 2012, 117, .	3.3	95
8	The Atlantic Meridional Overturning Circulation and the subpolar gyre observed at the A25-OVIDE section in June 2002 and 2004. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57, 1374-1391.	1.4	73
9	Structure, transports and transformations of the water masses in the Atlantic Subpolar Gyre. Progress in Oceanography, 2015, 135, 18-36.	3.2	69
10	Meridional overturning circulation conveys fast acidification to the deep Atlantic Ocean. Nature, 2018, 554, 515-518.	27.8	64
11	Subpolar North Atlantic western boundary density anomalies and the Meridional Overturning Circulation. Nature Communications, 2021, 12, 3002.	12.8	47
12	Trends of anthropogenic CO ₂ storage in North Atlantic water masses. Biogeosciences, 2010, 7, 1789-1807.	3.3	46
13	Water mass distributions and transports for the 2014 GEOVIDE cruise in the North Atlantic. Biogeosciences, 2018, 15, 2075-2090.	3.3	41
14	Sustainable Observations of the AMOC: Methodology and Technology. Reviews of Geophysics, 2020, 58, e2019RG000654.	23.0	39
15	Altimetry Combined with Hydrography for Ocean Transport Estimation. Journal of Atmospheric and Oceanic Technology, 2011, 28, 1324-1337.	1.3	38
16	Observations of Irminger Sea Anticyclonic Eddies. Journal of Physical Oceanography, 2013, 43, 805-823.	1.7	34
17	On the Cascading of Dense Shelf Waters in the Irminger Sea. Journal of Physical Oceanography, 2012, 42, 2254-2267.	1.7	33
18	Diagnosing Surface Mixed Layer Dynamics from High-Resolution Satellite Observations: Numerical Insights. Journal of Physical Oceanography, 2013, 43, 1345-1355.	1.7	32

#	Article	IF	CITATIONS
19	The GEOVIDE cruise in May–JuneÂ2014 reveals an intense Meridional Overturning Circulation over a cold and fresh subpolar North Atlantic. Biogeosciences, 2017, 14, 5323-5342.	3.3	29
20	Mercury distribution and transport in the North Atlantic Ocean along the GEOTRACES-GA01 transect. Biogeosciences, 2018, 15, 2309-2323.	3.3	29
21	Cessation and partial reversal of deep water freshening in the northern North Atlantic: observation-based estimates and attribution. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 62, 80.	1.7	28
22	Circulation and Transport at the Southeast Tip of Greenland. Journal of Physical Oceanography, 2011, 41, 437-457.	1.7	26
23	The 1992-2009 transport variability of the East Greenland-Irminger Current at 60°N. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	25
24	Dissolved iron in the North Atlantic Ocean and Labrador Sea along the GEOVIDE section (GEOTRACES) Tj ETQq0	0 g.gBT /	Overlock 10
25	The Greenland Sea in Water 1993 and 1994: preconditioning for deep convection. Deep-Sea Research Part II: Topical Studies in Oceanography, 1999, 46, 1199-1235.	1.4	23
26	XBT Temperature Errors during French Research Cruises (1999–2007). Journal of Atmospheric and Oceanic Technology, 2009, 26, 2462-2473.	1.3	23
27	Recent changes in the Greenland–Scotland overflowâ€derived water transport inferred from hydrographic observations in the southern Irminger Sea. Geophysical Research Letters, 2009, 36, .	4.0	22
28	Tracing water masses with ¹²⁹ l and ²³⁶ U in the subpolar North Atlantic along the GEOTRACES GA01 section. Biogeosciences, 2018, 15, 5545-5564.	3.3	22
29	Sources, cycling and transfer of mercury in the Labrador Sea (Geotraces-Geovide cruise). Marine Chemistry, 2018, 198, 64-69.	2.3	21
30	Aluminium in the North Atlantic Ocean and the Labrador Sea (GEOTRACES GA01 section): roles of continental inputs and biogenic particle removal. Biogeosciences, 2018, 15, 5271-5286.	3.3	19
31	Assessing decadal changes in the Deep Western Boundary Current absolute transport southeast of Cape Farewell, Greenland, from hydrography and altimetry. Journal of Geophysical Research, 2010, 115,	3.3	18
32	Dissipation Rate Estimates from Microstructure and Finescale Internal Wave Observations along the A25 Greenland–Portugal OVIDE Line. Journal of Atmospheric and Oceanic Technology, 2014, 31, 2530-2543.	1.3	17
33	Internal and forced variability along a section between Greenland and Portugal in the CLIPPER Atlantic model. Ocean Dynamics, 2006, 56, 568-580.	2.2	16
34	Inputs and processes affecting the distribution of particulate iron in the North Atlantic along the GEOVIDE (GEOTRACES GA01) section. Biogeosciences, 2019, 16, 1563-1582.	3.3	14
35	Composition of freshwater in the spring of 2014 on the southern Labrador shelf and slope. Journal of Geophysical Research: Oceans, 2017, 122, 1102-1121.	2.6	13
36	Evidence of strong inertia-gravity wave activity during the POMME experiment. Journal of Geophysical Research, 2005, 110, .	3.3	12

#	Article	IF	CITATIONS
37	Variability of the transport of anthropogenic CO ₂ at the Greenland–Portugal OVIDE section: controlling mechanisms. Biogeosciences, 2014, 11, 2375-2389.	3.3	12
38	Tidal and Near-Inertial Internal Waves over the Reykjanes Ridge. Journal of Physical Oceanography, 2021, 51, 419-437.	1.7	11
39	Introduction to the French GEOTRACES North Atlantic Transect (GA01): GEOVIDE cruise. Biogeosciences, 2018, 15, 7097-7109.	3.3	10
40	Dissolved inorganic carbon budgets in the eastern subpolar North Atlantic in the 2000s from in situ data. Geophysical Research Letters, 2015, 42, 9853-9861.	4.0	9
41	Particulate rare earth element behavior in the North Atlantic (GEOVIDE cruise). Biogeosciences, 2020, 17, 5539-5561.	3.3	8
42	Interpretation of mean vertical velocity measured by isobaric floats during deep convective events. Journal of Marine Systems, 2001, 29, 221-237.	2.1	7
43	A Long-Lasting Mode Water Vortex in the Northeast Atlantic Ocean. Journal of Physical Oceanography, 2009, 39, 536-558.	1.7	7
44	Variability of the Turbulent Kinetic Energy Dissipation along the A25 Greenland–Portugal Transect Repeated from 2002 to 2012. Journal of Physical Oceanography, 2016, 46, 1989-2003.	1.7	7
45	Transport and storage of anthropogenic C in the North Atlantic Subpolar Ocean. Biogeosciences, 2018, 15, 4661-4682.	3.3	7
46	The Northeast Atlantic is running out of excess carbonate in the horizon of cold-water corals communities. Scientific Reports, 2020, 10, 14714.	3.3	6
47	The CISE-LOCEAN seawater isotopic database (1998–2021). Earth System Science Data, 2022, 14, 2721-2735.	9.9	6
48	Sources and Distribution of Fresh Water Around Cape Farewell in 2014. Journal of Geophysical Research: Oceans, 2019, 124, 9404-9416.	2.6	5
49	Counteracting Contributions of the Upper and Lower Meridional Overturning Limbs to the North Atlantic Nutrient Budgets: Enhanced Imbalance in 2010. Global Biogeochemical Cycles, 2021, 35, e2020GB006898.	4.9	4
50	North Atlantic Western Boundary Currents Are Intense Dissolved Organic Carbon Streams. Frontiers in Marine Science, 2020, 7, .	2.5	2
51	Rapidly Increasing Artificial Iodine Highlights Pathways of Iceland-Scotland Overflow Water and Labrador Sea Water. Frontiers in Marine Science, 2022, 9, .	2.5	2
52	Warmingâ€toâ€Cooling Reversal of Overflowâ€Derived Water Masses in the Irminger Sea During 2002–2021. Geophysical Research Letters, 2022, 49, .	4.0	1
53	Les courants de l'Atlantique Nord – le projet OVIDE. Houille Blanche, 2008, 94, 30-32.	0.3	O
54	Cessation and partial reversal of deep water freshening in the northern North Atlantic: observation-based estimates and attribution. Tellus, Series A: Dynamic Meteorology and Oceanography, 2010, , .	1.7	0