
Darren J Baker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1919449/publications.pdf Version: 2024-02-01

NADDENI I RAKED

#	Article	IF	CITATIONS
1	Untangling senescent and damageâ€associated microglia in the aging and diseased brain. FEBS Journal, 2023, 290, 1326-1339.	4.7	20
2	Senescent cells limit p53 activity via multiple mechanisms to remain viable. Nature Communications, 2022, 13, .	12.8	16
3	Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nature Reviews Molecular Cell Biology, 2021, 22, 75-95.	37.0	812
4	Senescent cells suppress innate smooth muscle cell repair functions in atherosclerosis. Nature Aging, 2021, 1, 698-714.	11.6	34
5	p21 produces a bioactive secretome that places stressed cells under immunosurveillance. Science, 2021, 374, eabb3420.	12.6	112
6	Glomerular endothelial cell senescence drives ageâ€related kidney disease through PAIâ€1. EMBO Molecular Medicine, 2021, 13, e14146.	6.9	27
7	FoxM1 insufficiency hyperactivates Ect2–RhoA–mDia1 signaling to drive cancer. Nature Cancer, 2020, 1, 1010-1024.	13.2	6
8	CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD+ and NMN levels. Nature Metabolism, 2020, 2, 1284-1304.	11.9	157
9	Implicating endothelial cell senescence to dysfunction in the ageing and diseased brain. Basic and Clinical Pharmacology and Toxicology, 2020, 127, 102-110.	2.5	52
10	Therapy-Induced Senescence Drives Bone Loss. Cancer Research, 2020, 80, 1171-1182.	0.9	69
11	Insights from In Vivo Studies of Cellular Senescence. Cells, 2020, 9, 954.	4.1	21
12	Chemotherapy-induced cellular senescence suppresses progression of Notch-driven T-ALL. PLoS ONE, 2019, 14, e0224172.	2.5	6
13	Pak2 kinase promotes cellular senescence and organismal aging. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13311-13319.	7.1	30
14	Cellular Senescence and the Immune System in Cancer. Gerontology, 2019, 65, 505-512.	2.8	66
15	Senescence in aging and disorders of the central nervous system. Translational Medicine of Aging, 2019, 3, 17-25.	1.3	17
16	Cellular Identification and Quantification of Senescence-Associated β-Galactosidase Activity In Vivo. Methods in Molecular Biology, 2019, 1896, 31-38.	0.9	16
17	Circulating levels of monocyte chemoattractant proteinâ€1 as a potential measure of biological age in mice and frailty in humans. Aging Cell, 2018, 17, e12706.	6.7	77
18	Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature, 2018, 562, 578-582.	27.8	803

DARREN J BAKER

#	Article	IF	CITATIONS
19	Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. Journal of Clinical Investigation, 2018, 128, 1208-1216.	8.2	289
20	Expansion of myeloid-derived suppressor cells with aging in the bone marrow of mice through a NF-κB-dependent mechanism. Aging Cell, 2017, 16, 480-487.	6.7	80
21	Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nature Medicine, 2017, 23, 775-781.	30.7	994
22	Spartan deficiency causes accumulation of Topoisomerase 1 cleavage complexes and tumorigenesis. Nucleic Acids Research, 2017, 45, 4564-4576.	14.5	91
23	Age-related decline in BubR1 impairs adult hippocampal neurogenesis. Aging Cell, 2017, 16, 598-601.	6.7	31
24	Cellular senescence in renal ageing and disease. Nature Reviews Nephrology, 2017, 13, 77-89.	9.6	243
25	Senescent cells: an emerging target for diseases of ageing. Nature Reviews Drug Discovery, 2017, 16, 718-735.	46.4	788
26	NF-κB p65 serine 467 phosphorylation sensitizes mice to weight gain and TNFα-or diet-induced inflammation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1785-1798.	4.1	9
27	The Spindle Assembly Checkpoint Is Required for Hematopoietic Progenitor Cell Engraftment. Stem Cell Reports, 2017, 9, 1359-1368.	4.8	10
28	Biphasic Modeling of Mitochondrial Metabolism Dysregulation during Aging. Trends in Biochemical Sciences, 2017, 42, 702-711.	7.5	36
29	BubR1 alterations that reinforce mitotic surveillance act against aneuploidy and cancer. ELife, 2016, 5, .	6.0	15
30	Cyclin A2 is an RNA binding protein that controls <i>Mre11</i> mRNA translation. Science, 2016, 353, 1549-1552.	12.6	64
31	Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science, 2016, 354, 472-477.	12.6	824
32	Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue. Diabetes, 2016, 65, 1606-1615.	0.6	185
33	Vascular Cell Senescence Contributes to Blood–Brain Barrier Breakdown. Stroke, 2016, 47, 1068-1077.	2.0	167
34	Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature, 2016, 530, 184-189.	27.8	2,016
35	Whole chromosome aneuploidy in the brain of Bub1bH/Hand Ercc1â^'/Δ7mice. Human Molecular Genetics, 2016, 25, 755-765.	2.9	17
36	The progeroid gene BubR1 regulates axon myelination and motor function. Aging, 2016, 8, 2667-2688.	3.1	23

DARREN J BAKER

#	Article	IF	CITATIONS
37	Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nature Medicine, 2015, 21, 1424-1435.	30.7	1,547
38	The Role of Stem Cell Genomic Instability in Aging. Current Stem Cell Reports, 2015, 1, 151-161.	1.6	0
39	Spartan deficiency causes genomic instability and progeroid phenotypes. Nature Communications, 2014, 5, 5744.	12.8	89
40	<scp>SIRT</scp> 2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO Journal, 2014, 33, 1438-1453.	7.8	195
41	Endonucleases: new tools to edit the mouse genome. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1942-1950.	3.8	56
42	Senescence and apoptosis: dueling or complementary cell fates?. EMBO Reports, 2014, 15, 1139-1153.	4.5	643
43	Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan. Nature Cell Biology, 2013, 15, 96-102.	10.3	229
44	p21 Both Attenuates and Drives Senescence and Aging in BubR1 Progeroid Mice. Cell Reports, 2013, 3, 1164-1174.	6.4	110
45	Probing the depths of cellular senescence. Journal of Cell Biology, 2013, 202, 11-13.	5.2	47
46	Hypomorphic Mice. Methods in Molecular Biology, 2011, 693, 233-244.	0.9	2
47	Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 2011, 479, 232-236.	27.8	2,806
48	Chromosome missegregation causes colon cancer by <i>APC</i> loss of heterozygosity. Cell Cycle, 2010, 9, 1711-1716.	2.6	28
49	Whole Chromosome Instability Caused by Bub1 Insufficiency Drives Tumorigenesis through Tumor Suppressor Gene Loss of Heterozygosity. Cancer Cell, 2009, 16, 475-486.	16.8	198
50	Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nature Cell Biology, 2008, 10, 825-836.	10.3	338
51	The yin and yang of the Cdkn2a locus in senescence and aging. Cell Cycle, 2008, 7, 2795-2802.	2.6	44
52	Early aging–associated phenotypes in Bub3/Rae1 haploinsufficient mice. Journal of Cell Biology, 2006, 172, 529-540.	5.2	168
53	BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nature Genetics, 2004, 36, 744-749.	21.4	663
54	Rae1 is an essential mitotic checkpoint regulator that cooperates with Bub3 to prevent chromosome missegregation. Journal of Cell Biology, 2003, 160, 341-353.	5.2	337