
Chang S Nam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1918926/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI. IEEE Transactions on Cybernetics, 2019, 49, 3322-3332.	9.5	232
2	Immersion of virtual reality for rehabilitation - Review. Applied Ergonomics, 2018, 69, 153-161.	3.1	220
3	Movement imagery-related lateralization of event-related (de)synchronization (ERD/ERS): Motor-imagery duration effects. Clinical Neurophysiology, 2011, 122, 567-577.	1.5	148
4	Event-related (De)synchronization (ERD/ERS) during motor imagery tasks: Implications for brain–computer interfaces. International Journal of Industrial Ergonomics, 2011, 41, 428-436.	2.6	119
5	Neuroimaging of Human Balance Control: A Systematic Review. Frontiers in Human Neuroscience, 2017, 11, 170.	2.0	107
6	A systematic review of hybrid brain-computer interfaces: Taxonomy and usability perspectives. PLoS ONE, 2017, 12, e0176674.	2.5	90
7	A meta-analysis of human-system interfaces in unmanned aerial vehicle (UAV) swarm management. Applied Ergonomics, 2017, 58, 66-80.	3.1	62
8	Factors affecting trust in high-vulnerability human-robot interaction contexts: A structural equation modelling approach. Applied Ergonomics, 2020, 85, 103056.	3.1	61
9	A P300-Based Brain–Computer Interface: Effects of Interface Type and Screen Size. International Journal of Human-Computer Interaction, 2010, 27, 52-68.	4.8	60
10	Web-Based Learning Environment: A Theory-Based Design Process for Development and Evaluation. Journal of Information Technology Education:Research, 0, 6, 023-043.	0.0	56
11	Incorporating affective customer needs for luxuriousness into product design attributes. Human Factors and Ergonomics in Manufacturing, 2009, 19, 105-127.	2.7	52
12	Acceptance of Assistive Technology by Special Education Teachers: A Structural Equation Model Approach. International Journal of Human-Computer Interaction, 2013, 29, 365-377.	4.8	50
13	Emotional Granularity Effects on Event-Related Brain Potentials during Affective Picture Processing. Frontiers in Human Neuroscience, 2017, 11, 133.	2.0	41
14	The Human Factors and Ergonomics of P300-Based Brain-Computer Interfaces. Brain Sciences, 2015, 5, 318-356.	2.3	40
15	Touchscreen interfaces in context: A systematic review of research into touchscreens across settings, populations, and implementations. Applied Ergonomics, 2017, 61, 116-143.	3.1	40
16	Brain-to-Brain Neural Synchrony During Social Interactions: A Systematic Review on Hyperscanning Studies. Applied Sciences (Switzerland), 2020, 10, 6669.	2.5	36
17	The process of team communication in multi-cultural contexts: An empirical study using Bales' interaction process analysis (IPA). International Journal of Industrial Ergonomics, 2009, 39, 771-782.	2.6	34
18	Effects of Luminosity Contrast and Stimulus Duration on User Performance and Preference in a P300-Based Brain–Computer Interface. International Journal of Human-Computer Interaction, 2014, 30, 151-163.	4.8	34

#	Article	IF	CITATIONS
19	The roles of sensory modalities in collaborative virtual environments (CVEs). Computers in Human Behavior, 2008, 24, 1404-1417.	8.5	33
20	Evaluation of P300-Based Brain-Computer Interface in Real-World Contexts. International Journal of Human-Computer Interaction, 2010, 26, 621-637.	4.8	31
21	Severe motor disability affects functional cortical integration in the context of brain–computer interface (BCI) use. Ergonomics, 2012, 55, 581-591.	2.1	28
22	Behavioral and Neural Correlates of Executive Function: Interplay between Inhibition and Updating Processes. Frontiers in Neuroscience, 2017, 11, 378.	2.8	27
23	Effect of Low Intensity Transcranial Ultrasound Stimulation on Neuromodulation in Animals and Humans: An Updated Systematic Review. Frontiers in Neuroscience, 2021, 15, 620863.	2.8	27
24	Artistic brain-computer interfaces: state-of-the-art control mechanisms. Brain-Computer Interfaces, 2015, 2, 70-75.	1.8	25
25	Trusting Autonomous Security Robots: The Role of Reliability and Stated Social Intent. Human Factors, 2021, 63, 603-618.	3.5	23
26	The Effects of Haptic Feedback and Visual Distraction on Pointing Task Performance. International Journal of Human-Computer Interaction, 2016, 32, 89-102.	4.8	22
27	Navigation by vibration: Effects of vibrotactile feedback on a navigation task. International Journal of Industrial Ergonomics, 2015, 46, 76-84.	2.6	21
28	Haptic User Interfaces for the Visually Impaired: Implications for Haptically Enhanced Science Learning Systems. International Journal of Human-Computer Interaction, 2012, 28, 784-798.	4.8	17
29	The Role of Haptic Feedback in Robotic-Assisted Retinal Microsurgery Systems: A Systematic Review. IEEE Transactions on Haptics, 2017, 10, 94-105.	2.7	16
30	Evaluation of human–agent user interfaces in multi-agent systems. International Journal of Industrial Ergonomics, 2009, 39, 192-201.	2.6	15
31	Collaborative Brain-Computer Interface for People with Motor Disabilities [Research Frontier]. IEEE Computational Intelligence Magazine, 2016, 11, 56-66.	3.2	15
32	Elicitation of Haptic User Interface Needs of People with Low Vision. International Journal of Human-Computer Interaction, 2013, 29, 488-500.	4.8	14
33	The effects of interruption similarity and complexity on performance in a simulated visual-manual assembly operation. Applied Ergonomics, 2017, 59, 94-103.	3.1	13
34	Designing of smart chair for monitoring of sitting posture using convolutional neural networks. Data Technologies and Applications, 2019, 53, 142-155.	1.4	12
35	Functional Electrical Stimulation Controlled by Motor Imagery Brain-Computer Interface for Rehabilitation. Brain Sciences, 2020, 10, 512.	2.3	12
36	Direct Communication Between Brains: A Systematic PRISMA Review of Brain-To-Brain Interface. Frontiers in Neurorobotics, 2021, 15, 656943.	2.8	12

#	Article	IF	CITATIONS
37	Does Touch Matter?: The Effects of Haptic Visualization on Human Performance, Behavior and Perception. International Journal of Human-Computer Interaction, 2014, 30, 839-841.	4.8	10
38	Arts and Brain-Computer Interfaces (BCIs). Brain-Computer Interfaces, 2015, 2, 57-59.	1.8	10
39	Quantitative modeling of user performance in multitasking environments. Computers in Human Behavior, 2018, 84, 130-140.	8.5	10
40	Neural Correlates of Workload Transition in Multitasking: An ACT-R Model of Hysteresis Effect. Frontiers in Human Neuroscience, 2018, 12, 535.	2.0	10
41	The Role of Individual Differences as Predictors of Trust in Autonomous Security Robots. , 2020, , .		10
42	Leg strength comparison between younger and middle-age adults. International Journal of Industrial Ergonomics, 2010, 40, 315-320.	2.6	8
43	Current Trends in Brain–Computer Interface (BCI) Research and Development. International Journal of Human-Computer Interaction, 2010, 27, 1-4.	4.8	8
44	Comparison of Stimulation Patterns to Elicit Steady-State Somatosensory Evoked Potentials (SSSEPs): Implications for Hybrid and SSSEP-Based BCIs. , 2015, , .		8
45	Muscle loading in exoskeletal orthotic use in an activity of daily living. Applied Ergonomics, 2017, 58, 190-197.	3.1	8
46	Emotion depends on context, culture and their interaction: evidence from effective connectivity. Social Cognitive and Affective Neuroscience, 2022, 17, 206-217.	3.0	8
47	Feasibility of a Wearable, Sensor-based Motion Tracking System. Procedia Manufacturing, 2015, 3, 192-199.	1.9	7
48	Designing Better, Cost-Effective Brain–Computer Interfaces. Ergonomics in Design, 2015, 23, 13-19.	0.7	7
49	Influence of Avatar Creation on Attitude, Empathy, Presence, and Para-Social Interaction. , 2007, , 711-720.		7
50	Environmental Noise and P300-Based Brain-Computer Interface (BCI). Proceedings of the Human Factors and Ergonomics Society, 2008, 52, 803-807.	0.3	6
51	A Collaborative Brain-Computer Interface (BCI) for ALS Patients. Proceedings of the Human Factors and Ergonomics Society, 2015, 59, 716-720.	0.3	6
52	Wayfinding of Users With Visual Impairments in Haptically Enhanced Virtual Environments. International Journal of Human-Computer Interaction, 2015, 31, 295-306.	4.8	6
53	Trends in BCI Research I: Brain-Computer Interfaces for Assessment of Patients with Locked-in Syndrome or Disorders of Consciousness. Springer Briefs in Electrical and Computer Engineering, 2017, , 105-125.	0.5	6
54	Neural Correlates of Trust During an Automated System Monitoring Task: Preliminary Results of an Effective Connectivity Study. Proceedings of the Human Factors and Ergonomics Society, 2019, 63, 83-87.	0.3	6

#	Article	IF	CITATIONS
55	Evaluating Effective Connectivity of Trust in Human–Automation Interaction: A Dynamic Causal Modeling (DCM) Study. Human Factors, 2022, 64, 1051-1069.	3.5	6
56	Brain–computer interface (BCI) and ergonomics. Ergonomics, 2012, 55, 513-515.	2.1	5
57	Neuroergonomics Behind the Wheel: Neural Correlates of Driving. Cognitive Science and Technology, 2020, , 353-388.	0.4	5
58	Brain–Computer Interfaces for Spinal Cord Injury Rehabilitation. Cognitive Science and Technology, 2020, , 315-328.	0.4	5
59	Culture and gender modulate dlPFC integration in the emotional brain: evidence from dynamic causal modeling. Cognitive Neurodynamics, 2023, 17, 153-168.	4.0	5
60	Capturing judgment policy on customers' creditworthiness: A lens model and SDT approach. International Journal of Industrial Ergonomics, 2008, 38, 593-600.	2.6	4
61	Emotional expressions facilitate human–human trust when using automation in high-risk situations. Military Psychology, 2019, 31, 292-305.	1.1	4
62	Dual Task Effects on Speed and Accuracy During Cognitive and Upper Limb Motor Tasks in Adults With Stroke Hemiparesis. Frontiers in Human Neuroscience, 2021, 15, 671541.	2.0	4
63	Low-cost brain computer interface for everyday use. Experimental Brain Research, 2021, 239, 3573-3583.	1.5	4
64	The Effects of Individuals' Mood State and Personality Trait on the Cognitive Processing of Emotional Stimuli. Proceedings of the Human Factors and Ergonomics Society, 2012, 56, 1059-1063.	0.3	3
65	Scenario-Based Observation Approach for Eliciting User Requirements for Haptic User Interfaces. International Journal of Human-Computer Interaction, 2014, 30, 842-854.	4.8	3
66	A Wandering Mind Cannot Resolve Conflicts in Displayed Information. Proceedings of the Human Factors and Ergonomics Society, 2015, 59, 1397-1401.	0.3	3
67	Affective experience of physical user interfaces: Similarities and differences among control types. Human Factors and Ergonomics in Manufacturing, 2018, 28, 56-68.	2.7	3
68	Detecting Human Trust Calibration in Automation: A Deep Learning Approach. Proceedings of the Human Factors and Ergonomics Society, 2019, 63, 88-90.	0.3	3
69	The EEG Cookbook: A Practical Guide to Neuroergonomics Research. Cognitive Science and Technology, 2020, , 33-51.	0.4	3
70	Adaptive Control of Thought-Rational (ACT-R): Applying a Cognitive Architecture to Neuroergonomics. Cognitive Science and Technology, 2020, , 105-114.	0.4	3
71	The Neural Correlates of Moral Thinking: A Meta-Analysis. International Journal of Computational & Neural Engineering, 0, , 28-39.	0.0	3
72	Guidelines for the Development and Improvement of Universal Access Systems for Blind Students. Lecture Notes in Computer Science, 2007, , 603-612.	1.3	3

#	Article	IF	CITATIONS
73	Detecting Human Trust Calibration in Automation: A Convolutional Neural Network Approach. IEEE Transactions on Human-Machine Systems, 2022, 52, 774-783.	3.5	3
74	Designing for Usability and Safety in RFID-Based Intelligent Commuting Environments. , 2007, , .		2
75	Effects of Working Memory Capacity, Task Switching, and Task Difficulty on Multitasking Performance. Proceedings of the Human Factors and Ergonomics Society, 2016, 60, 502-506.	0.3	2
76	Behavioral and Neural Correlates of Hysteresis Effects during Multitasking. Proceedings of the Human Factors and Ergonomics Society, 2018, 62, 11-13.	0.3	2
77	A Sensorimotor Rhythm-Based Brain–Computer Interface Controlled Functional Electrical Stimulation for Handgrasp Rehabilitation. Cognitive Science and Technology, 2020, , 329-349.	0.4	2
78	Haptic Science Learning System for Students with Visual Impairments: A Preliminary Study. Lecture Notes in Computer Science, 2009, , 157-166.	1.3	2
79	Behavioral Characteristics of Users with Visual Impairment in Haptically Enhanced Virtual Environments. Lecture Notes in Computer Science, 2013, , 618-625.	1.3	2
80	Co-presence in Shared Virtual Environments: Avatars Beyond the Opposition of Presence and Representation. Lecture Notes in Computer Science, 2007, , 949-958.	1.3	2
81	Neural Correlates and Mechanisms of Trust. Cognitive Science and Technology, 2020, , 451-461.	0.4	2
82	Culture and Cognition: Implications for Cognitive Design of Learning Resources. Proceedings of the Human Factors and Ergonomics Society, 2005, 49, 1444-1448.	0.3	1
83	Supporting Collaborative Privacy-Observant Information Sharing Using RFID-Tagged Objects. Advances in Human-Computer Interaction, 2009, 2009, 1-13.	2.8	1
84	Use of Reference Frame and Movement Pattern in Haptically Enhanced 3D Virtual Environment. International Journal of Human-Computer Interaction, 2014, 30, 891-903.	4.8	1
85	Executive function updating level modulates connectivity network between brain regions in alpha band. Proceedings of the Human Factors and Ergonomics Society, 2017, 61, 49-50.	0.3	1
86	BCI-Based Expressive Arts: Moving Toward Mind-Body Alignment. , 2019, , 355-373.		1
87	A Functional BCI Model by the P2731 working group: Physiology. Brain-Computer Interfaces, 2021, 8, 54-81.	1.8	1
88	Influence of Haptic Feedback on a Pointing Task in a Haptically Enhanced 3D Virtual Environment. Lecture Notes in Computer Science, 2013, , 561-567.	1.3	1
89	Functional Near-Infrared Spectroscopy (fNIRS) in Neuroergonomics. Cognitive Science and Technology, 2020, , 53-76.	0.4	1
90	Transcranial Direct Current Stimulation (tDCS): A Beginner's Guide for Neuroergonomists. Cognitive Science and Technology, 2020, , 77-101.	0.4	1

#	Article	IF	CITATIONS
91	A functional BCI model by the P2731 working group: control interface. Brain-Computer Interfaces, 2021, 8, 154-160.	1.8	1
92	Reinforcement learning in EEC-based human-robot interaction. , 2022, , 145-154.		1
93	A Preliminary Research on P300-Based BCI Application for People with Motor Disabilities. Proceedings of the Human Factors and Ergonomics Society, 2012, 56, 1049-1053.	0.3	0
94	Call For Book Chapters: Brain-Computer Interfaces Handbook: Technological and Theoretical Advances. Brain-Computer Interfaces, 2016, 3, 121-122.	1.8	0
95	Working memory capacity influences performance and brain networks: Evidence from effective connectivity analysis. , 2018, , .		0
96	Introduction: The evolution of trust in human-robot interaction. , 2021, , xxi-xxv.		0
97	Use of Reference Frame in Haptic Virtual Environments: Implications for Users with Visual Impairments. Lecture Notes in Computer Science, 2013, , 610-617.	1.3	0
98	Investigating Eye Movements, Attention, and Multitasking with MATB-II. Proceedings of the Human Factors and Ergonomics Society, 2017, 61, 863-864.	0.3	0
99	Abstract WP194: Interference of Cognitive Tasks and Upper Limb Movements in Chronic Stroke Patients: A Dual-Task Study. Stroke, 2020, 51, .	2.0	0
100	Deep Learning Techniques in Neuroergonomics. Cognitive Science and Technology, 2020, , 115-138.	0.4	0
101	Dynamic Causal Modeling (DCM) for EEG Approach to Neuroergonomics. Cognitive Science and Technology, 2020, , 139-158.	0.4	0
102	Interactive reinforcement learning and error-related potential classification for implicit feedback. , 2022, , 127-143.		0
103	Use of deep learning techniques in EEG-based BCI applications. , 2022, , 173-189.		0