
Carr Hoi Yi Ho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1918555/publications.pdf Version: 2024-02-01

<u>CARR HOLYI HO</u>

#	Article	IF	CITATIONS
1	Enhanced Surface Passivation of Lead Sulfide Quantum Dots for Short-Wavelength Photodetectors. Chemistry of Materials, 2022, 34, 5433-5442.	6.7	13
2	Balancing crop production and energy harvesting in organic solar-powered greenhouses. Cell Reports Physical Science, 2021, 2, 100381.	5.6	48
3	Investigating the active layer thickness dependence of non-fullerene organic solar cells based on PM7 derivatives. Journal of Materials Chemistry C, 2020, 8, 15459-15469.	5.5	16
4	Effects of polymer crystallinity on non-fullerene acceptor based organic solar cell photostability. Journal of Materials Chemistry C, 2020, 8, 16092-16099.	5.5	13
5	Efficient Double- and Triple-Junction Nonfullerene Organic Photovoltaics and Design Guidelines for Optimal Cell Performance. ACS Energy Letters, 2020, 5, 3692-3701.	17.4	15
6	Highâ€₽erformance Tandem Organic Solar Cells Using HSolar as the Interconnecting Layer. Advanced Energy Materials, 2020, 10, 2000823.	19.5	23
7	A facile and robust approach to prepare fluorinated polymer dielectrics for probing the intrinsic transport behavior of organic semiconductors. Materials Advances, 2020, 1, 891-898.	5.4	9
8	Organic Solar Cells: Highâ€Performance Tandem Organic Solar Cells Using HSolar as the Interconnecting Layer (Adv. Energy Mater. 25/2020). Advanced Energy Materials, 2020, 10, 2070109.	19.5	0
9	Critical Role of Polymer Aggregation and Miscibility in Nonfullereneâ€Based Organic Photovoltaics. Advanced Energy Materials, 2020, 10, 1902430.	19.5	41
10	Observing electron transport and percolation in selected bulk heterojunctions bearing fullerene derivatives, non-fullerene small molecules, and polymeric acceptors. Nano Energy, 2019, 64, 103950.	16.0	31
11	Defect Passivation by Fullerene Derivative in Perovskite Solar Cells with Aluminum-Doped Zinc Oxide as Electron Transporting Layer. Chemistry of Materials, 2019, 31, 6833-6840.	6.7	50
12	Panchromatic Allâ€Polymer Photodetector with Tunable Polarization Sensitivity. Advanced Optical Materials, 2019, 7, 1801346.	7.3	26
13	Balanced Electric Field Dependent Mobilities: A Key to Access High Fill Factors in Organic Bulk Heterojunction Solar Cells. Solar Rrl, 2018, 2, 1700239.	5.8	49
14	A Universal Strategy to Utilize Polymeric Semiconductors for Perovskite Solar Cells with Enhanced Efficiency and Longevity. Advanced Functional Materials, 2018, 28, 1706377.	14.9	134
15	Impact of Nonfullerene Molecular Architecture on Charge Generation, Transport, and Morphology in PTB7â€Thâ€Based Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1802702.	14.9	44
16	Donor Conjugated Polymers with Polar Side Chain Groups: The Role of Dielectric Constant and Energetic Disorder on Photovoltaic Performance. Advanced Functional Materials, 2018, 28, 1803418.	14.9	42
17	Side-Chain Sequence Enabled Regioisomeric Acceptors for Conjugated Polymers. Macromolecules, 2018, 51, 8486-8492.	4.8	15
18	Molecular design enabled reduction of interface trap density affords highly efficient and stable perovskite solar cells with over 83% fill factor. Nano Energy, 2018, 52, 300-306.	16.0	112

CARR HOI YI HO

#	Article	IF	CITATIONS
19	Using Ultralow Dosages of Electron Acceptor to Reveal the Early Stage Donor–Acceptor Electronic Interactions in Bulk Heterojunction Blends. Advanced Energy Materials, 2017, 7, 1602360.	19.5	64
20	Naphthalene diimide-difluorobenzene-based polymer acceptors for all-polymer solar cells. Chemical Communications, 2017, 53, 3249-3252.	4.1	27
21	Thickâ€Film Highâ€Performance Bulkâ€Heterojunction Solar Cells Retaining 90% PCEs of the Optimized Thin Film Cells. Advanced Electronic Materials, 2017, 3, 1700007.	5.1	33
22	Pinning Down the Anomalous Light Soaking Effect toward High-Performance and Fast-Response Perovskite Solar Cells: The Ion-Migration-Induced Charge Accumulation. Journal of Physical Chemistry Letters, 2017, 8, 5069-5076.	4.6	60
23	Boosting the photovoltaic thermal stability of fullerene bulk heterojunction solar cells through charge transfer interactions. Journal of Materials Chemistry A, 2017, 5, 23662-23670.	10.3	15
24	A readily-accessible, random perylene diimide copolymer acceptor for all-polymer solar cells. Dyes and Pigments, 2017, 146, 20-26.	3.7	15
25	Bulk-heterojunction solar cells with enriched polymer contents. Organic Electronics, 2017, 40, 1-7.	2.6	18
26	Impact of Solvent Additive on Carrier Transport in Polymer:Fullerene Bulk Heterojunction Photovoltaic Cells. Advanced Materials Interfaces, 2015, 2, 1500166.	3.7	46