Volker C Radeloff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1918531/publications.pdf

Version: 2024-02-01

275 papers

17,965 citations

69 h-index 20961 115 g-index

283 all docs 283 docs citations

times ranked

283

16539 citing authors

#	Article	IF	CITATIONS
1	Growth of the wildland-urban interface within and around U.S. National Forests and Grasslands, 1990–2010. Landscape and Urban Planning, 2022, 218, 104283.	7.5	10
2	Forest phenoclusters for Argentina based on vegetation phenology and climate. Ecological Applications, 2022, 32, e2526.	3.8	9
3	Mapping forest types over large areas with Landsat imagery partially affected by clouds and SLC gaps. International Journal of Applied Earth Observation and Geoinformation, 2022, 107, 102689.	2.8	2
4	The wildland–urban interface in the United States based on 125 million building locations. Ecological Applications, 2022, 32, e2597.	3.8	24
5	Integrated topographic corrections improve forest mapping using Landsat imagery. International Journal of Applied Earth Observation and Geoinformation, 2022, 108, 102716.	2.8	3
6	Mapping breeding bird species richness at managementâ€relevant resolutions across the United States. Ecological Applications, 2022, 32, e2624.	3.8	7
7	Winter conditions structure extratropical patterns of species richness of amphibians, birds and mammals globally. Global Ecology and Biogeography, 2022, 31, 1366-1380.	5 . 8	10
8	Rural land abandonment is too ephemeral to provide major benefits for biodiversity and climate. Science Advances, 2022, 8, .	10.3	36
9	Conservation responsibility for bird species in tropical logged forests. Conservation Letters, 2022, 15,	5.7	3
10	A Tale of Two Fires: Retreat and Rebound a Decade After Wildfires in California and South Carolina. Society and Natural Resources, 2022, 35, 875-895.	1.9	1
11	Recent collapse of crop belts and declining diversity of US agriculture since 1840. Global Change Biology, 2021, 27, 151-164.	9.5	40
12	Satellite image texture captures vegetation heterogeneity and explains patterns of bird richness. Remote Sensing of Environment, 2021, 253, 112175.	11.0	43
13	The importance of small fires for wildfire hazard in urbanised landscapes of the northeastern US. International Journal of Wildland Fire, 2021, 30, 307.	2.4	5
14	Contrasting seasonal patterns of relative temperature and thermal heterogeneity and their influence on breeding and winter bird richness patterns across the conterminous United States. Ecography, 2021, 44, 953-965.	4.5	12
15	Winter Habitat Indices (WHIs) for the contiguous US and their relationship with winter bird diversity. Remote Sensing of Environment, 2021, 255, 112309.	11.0	14
16	Spatio-temporal remotely sensed indices identify hotspots of biodiversity conservation concern. Remote Sensing of Environment, 2021, 258, 112368.	11.0	20
17	Conservation prioritization when species distribution data are scarce. Landscape and Urban Planning, 2021, 210, 104067.	7.5	9
18	Patterns of bird species richness explained by annual variation in remotely sensed Dynamic Habitat Indices. Ecological Indicators, 2021, 127, 107774.	6.3	4

#	Article	IF	Citations
19	Post-wildfire rebuilding and new development in California indicates minimal adaptation to fire risk. Land Use Policy, 2021, 107, 105502.	5.6	12
20	Early warning sign of forest loss in protected areas. Current Biology, 2021, 31, 4620-4626.e3.	3.9	19
21	Habitat connectivity for endangered Indochinese tigers in Thailand. Global Ecology and Conservation, 2021, 29, e01718.	2.1	11
22	Effects of post-WWII forced displacements on long-term landscape dynamics in the Polish Carpathians. Landscape and Urban Planning, 2021, 214, 104164.	7.5	14
23	Informing forest conservation planning with detailed human footprint data for Argentina. Global Ecology and Conservation, 2021, 31, e01787.	2.1	3
24	Statistical inference for trends in spatiotemporal data. Remote Sensing of Environment, 2021, 266, 112678.	11.0	23
25	Changes in the grasslands of the Caucasus based on Cumulative Endmember Fractions from the full 1987–2019 Landsat record. Science of Remote Sensing, 2021, 4, 100035.	4.8	5
26	Conservation status of the threatened and endemic Rufous-throated Dipper Cinclus schulzi in Argentina. Bird Conservation International, 2020, 30, 396-405.	1.3	4
27	Landsat 8 TIRS-derived relative temperature and thermal heterogeneity predict winter bird species richness patterns across the conterminous United States. Remote Sensing of Environment, 2020, 236, 111514.	11.0	19
28	Short-term vegetation loss versus decadal degradation of grasslands in the Caucasus based on Cumulative Endmember Fractions. Remote Sensing of Environment, 2020, 248, 111969.	11.0	21
29	Land-cover change in the Caucasus Mountains since 1987 based on the topographic correction of multi-temporal Landsat composites. Remote Sensing of Environment, 2020, 248, 111967.	11.0	49
30	Restoring riparian forests according to existing regulations could greatly improve connectivity for forest fauna in Chile. Landscape and Urban Planning, 2020, 203, 103895.	7.5	7
31	Half a century of forest cover change along the Latvian-Russian border captured by object-based image analysis of Corona and Landsat TM/OLI data. Remote Sensing of Environment, 2020, 249, 112010.	11.0	33
32	Potential adaptability of marine turtles to climate change may be hindered by coastal development in the USA. Regional Environmental Change, 2020, 20, 1.	2.9	19
33	Responses to land cover and grassland management vary across lifeâ€history stages for a grassland specialist. Ecology and Evolution, 2020, 10, 12777-12791.	1.9	6
34	Habitat heterogeneity captured by 30â€m resolution satellite image texture predicts bird richness across the United States. Ecological Applications, 2020, 30, e02157.	3.8	27
35	Self-perpetuating ecological–evolutionary dynamics in an agricultural host–parasite system. Nature Ecology and Evolution, 2020, 4, 702-711.	7.8	21
36	Pine plantations and five decades of land use change in central Chile. PLoS ONE, 2020, 15, e0230193.	2.5	23

3

#	Article	IF	CITATIONS
37	Conservation planning for island nations: Using a network analysis model to find novel opportunities for landscape connectivity in Puerto Rico. Global Ecology and Conservation, 2020, 23, e01075.	2.1	9
38	Vegetation productivity summarized by the Dynamic Habitat Indices explains broad-scale patterns of moose abundance across Russia. Scientific Reports, 2020, 10, 836.	3.3	17
39	The role of smallholder woodlots in global restoration pledges – Lessons from Tanzania. Forest Policy and Economics, 2020, 115, 102144.	3.4	22
40	Correlates of forest-cover change in European Russia, 1989–2012. Land Use Policy, 2020, 96, 104648.	5.6	5
41	Monitoring cropland abandonment with Landsat time series. Remote Sensing of Environment, 2020, 246, 111873.	11.0	93
42	Rapid WUI growth in a natural amenity-rich region in central-western Patagonia, Argentina. International Journal of Wildland Fire, 2019, 28, 473.	2.4	30
43	Tropical bird species richness is strongly associated with patterns of primary productivity captured by the Dynamic Habitat Indices. Remote Sensing of Environment, 2019, 232, 111306.	11.0	21
44	Untangling multiple species richness hypothesis globally using remote sensing habitat indices. Ecological Indicators, 2019, 107, 105567.	6.3	10
45	Global mitigation potential of carbon stored in harvested wood products. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14526-14531.	7.1	99
46	Climate change causes functionally colder winters for snow cover-dependent organisms. Nature Climate Change, 2019, 9, 886-893.	18.8	50
47	Forests, houses, or both? Relationships between land cover, housing characteristics, and resident socioeconomic status across ecoregions. Journal of Environmental Management, 2019, 234, 464-475.	7.8	23
48	Landâ€use and climatic causes of environmental novelty in Wisconsin since 1890. Ecological Applications, 2019, 29, e01955.	3.8	4
49	Effects of ecotourism on forest loss in the Himalayan biodiversity hotspot based on counterfactual analyses. Conservation Biology, 2019, 33, 1318-1328.	4.7	27
50	Future changes in fire weather, spring droughts, and false springs across U.S. National Forests and Grasslands. Ecological Applications, 2019, 29, e01904.	3.8	16
51	The conundrum of agendaâ€driven science in conservation. Frontiers in Ecology and the Environment, 2019, 17, 80-82.	4.0	31
52	Assessing vulnerability and threat from housing development to Conservation Opportunity Areas in State Wildlife Action Plans across the United States. Landscape and Urban Planning, 2019, 185, 237-245.	7.5	9
53	Agricultural abandonment and re-cultivation during and after the Chechen Wars in the northern Caucasus. Global Environmental Change, 2019, 55, 149-159.	7.8	43
54	Benefits of the free and open Landsat data policy. Remote Sensing of Environment, 2019, 224, 382-385.	11.0	291

#	Article	IF	CITATIONS
55	High wildfire damage in interface communities in California. International Journal of Wildland Fire, 2019, 28, 641.	2.4	78
56	Reinforcing the concept of agendaâ€driven science: a response to Rohlf. Frontiers in Ecology and the Environment, 2019, 17, 556-557.	4.0	0
57	The Dynamic Habitat Indices (DHIs) from MODIS and global biodiversity. Remote Sensing of Environment, 2019, 222, 204-214.	11.0	81
58	Species diversity as a surrogate for conservation of phylogenetic and functional diversity in terrestrial vertebrates across the Americas. Nature Ecology and Evolution, 2019, 3, 53-61.	7.8	45
59	Assessing niche overlap between domestic and threatened wild sheep to identify conservation priority areas. Diversity and Distributions, 2019, 25, 129-141.	4.1	23
60	Bird conservation in the Carpathian Ecoregion in light of long-term land use trends and conservation responsibility. Biodiversity and Conservation, 2018, 27, 2051-2068.	2.6	3
61	Slow and steady wins the race? Future climate and land use change leaves the imperiled Blanding's turtle (Emydoidea blandingii) behind. Biological Conservation, 2018, 222, 75-85.	4.1	20
62	Wildlife population changes across Eastern Europe after the collapse of socialism. Frontiers in Ecology and the Environment, 2018, 16, 77-81.	4.0	22
63	Evolutionary time drives global tetrapod diversity. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172378.	2.6	32
64	Recognizing the â€~sparsely settled forest': Multi-decade socioecological change dynamics and community exemplars. Landscape and Urban Planning, 2018, 170, 177-186.	7. 5	10
65	Vegetation cover in relation to socioeconomic factors in a tropical city assessed from subâ€meter resolution imagery. Ecological Applications, 2018, 28, 681-693.	3.8	13
66	Sprawling and diverse: The changing U.S. population and implications for public lands in the 21st Century. Journal of Environmental Management, 2018, 215, 153-165.	7.8	9
67	Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sensing of Environment, 2018, 210, 12-24.	11.0	163
68	Rapid growth of the US wildland-urban interface raises wildfire risk. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3314-3319.	7.1	628
69	Widespread forest cutting in the aftermath of World War II captured by broad-scale historical Corona spy satellite photography. Remote Sensing of Environment, 2018, 204, 322-332.	11.0	42
70	Environmental variation is a major predictor of global trait turnover in mammals. Journal of Biogeography, 2018, 45, 225-237.	3.0	17
71	Enhancing biodiversity conservation in existing land-use plans with widely available datasets and spatial analysis techniques. Environmental Conservation, 2018, 45, 252-260.	1.3	14
72	Long-Term Changes of the Wildland–Urban Interface in the Polish Carpathians. ISPRS International Journal of Geo-Information, 2018, 7, 137.	2.9	14

#	Article	IF	Citations
73	Prey abundance and urbanization influence the establishment of avian predators in a metropolitan landscape. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20182120.	2.6	17
74	Remotely-sensed productivity clusters capture global biodiversity patterns. Scientific Reports, 2018, 8, 16261.	3.3	18
75	Tariffs and Trees: The Effects of the Austro-Hungarian Customs Union on Specialization and Land-Use Change. Journal of Economic History, 2018, 78, 1142-1178.	1.2	5
76	Historical land use dataset of the Carpathian region (1819–1980). Journal of Maps, 2018, 14, 644-651.	2.0	36
77	Forest management for novelty, persistence, and restoration influenced by policy and society. Frontiers in Ecology and the Environment, 2018, 16, 454-462.	4.0	17
78	Payments for ecosystem services in Mexico reduce forest fragmentation. Ecological Applications, 2018, 28, 1982-1997.	3.8	22
79	Changes in bird assemblages in a wetland ecosystem after 14Âyears of intensified cattle farming. Austral Ecology, 2018, 43, 786-797.	1.5	17
80	Where wildfires destroy buildings in the US relative to the wildland–urban interface and national fire outreach programs. International Journal of Wildland Fire, 2018, 27, 329.	2.4	76
81	The Great Lakes Region is a melting pot for vicariant red fox (Vulpes vulpes) populations. Journal of Mammalogy, 2018, 99, 1229-1236.	1.3	6
82	Quasi-experimental methods enable stronger inferences from observational data in ecology. Basic and Applied Ecology, 2017, 19, 1-10.	2.7	71
83	Monitoring selective logging with Landsat satellite imagery reveals that protected forests in Western Siberia experience greater harvest than non-protected forests. Environmental Conservation, 2017, 44, 191-199.	1.3	8
84	Improving the mapping of crop types in the Midwestern U.S. by fusing Landsat and MODIS satellite data. International Journal of Applied Earth Observation and Geoinformation, 2017, 58, 1-11.	2.8	33
85	A comparison of Dynamic Habitat Indices derived from different MODIS products as predictors of avian species richness. Remote Sensing of Environment, 2017, 195, 142-152.	11.0	73
86	Nineteenth-century land-use legacies affect contemporary land abandonment in the Carpathians. Regional Environmental Change, 2017, 17, 2209-2222.	2.9	27
87	Effects of national forestâ€management regimes on unprotected forests of the Himalaya. Conservation Biology, 2017, 31, 1271-1282.	4.7	39
88	Characterizing global patterns of frozen ground with and without snow cover using microwave and MODIS satellite data products. Remote Sensing of Environment, 2017, 191, 168-178.	11.0	17
89	Assessing landscape connectivity for large mammals in the Caucasus using Landsat 8 seasonal image composites. Remote Sensing of Environment, 2017, 193, 193-203.	11.0	44
90	Combined effects of night warming and light pollution on predator–prey interactions. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171195.	2.6	54

#	Article	IF	CITATIONS
91	The signature of human pressure history on the biogeography of body mass in tetrapods. Global Ecology and Biogeography, 2017, 26, 1022-1034.	5.8	28
92	Global priorities for conservation across multiple dimensions of mammalian diversity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7641-7646.	7.1	213
93	Underlying Drivers and Spatial Determinants of post-Soviet Agricultural Land Abandonment in Temperate Eastern Europe., 2017,, 91-117.		10
94	Effects of local land-use planning on development and disturbance in riparian areas. Land Use Policy, 2017, 60, 16-25.	5.6	24
95	The effect of protected areas on forest disturbance in the Carpathian Mountains 1985–2010. Conservation Biology, 2017, 31, 570-580.	4.7	35
96	Phenology from Landsat when data is scarce: Using MODIS and Dynamic Time-Warping to combine multi-year Landsat imagery to derive annual phenology curves. International Journal of Applied Earth Observation and Geoinformation, 2017, 54, 72-83.	2.8	62
97	Geography of current and future global mammal extinction risk. PLoS ONE, 2017, 12, e0186934.	2.5	34
98	Land Change in the Carpathian Region Before and After Major Institutional Changes., 2017,, 57-90.		8
99	Places where wildfire potential and social vulnerability coincide in the coterminous United States. International Journal of Wildland Fire, 2016, 25, 896.	2.4	91
100	Conservation hotspots for marine turtle nesting in the United States based on coastal development. Ecological Applications, 2016, 26, 2708-2719.	3.8	48
101	Factors related to building loss due to wildfires in the conterminous United States. Ecological Applications, 2016, 26, 2323-2338.	3.8	46
102	The pace of past climate change vs. potential bird distributions and land use in the United States. Global Change Biology, 2016, 22, 1130-1144.	9.5	62
103	Recovery and adaptation after wildfire on the Colorado Front Range (2010–12). International Journal of Wildland Fire, 2016, 25, 1144.	2.4	21
104	Identifying areas of optimal multispecies conservation value by accounting for incompatibilities between species. Ecological Modelling, 2016, 332, 74-82.	2.5	2
105	Divergent projections of future land use in the United States arising from different models and scenarios. Ecological Modelling, 2016, 337, 281-297.	2.5	61
106	Potential breeding distributions of U.S. birds predicted with both shortâ€term variability and longâ€term average climate data. Ecological Applications, 2016, 26, 2720-2731.	3.8	34
107	Using the North American Breeding Bird Survey to assess broad-scale response of the continent's most imperiled avian community, grassland birds, to weather variability. Condor, 2016, 118, 502-512.	1.6	34
108	Past and predicted future effects of housing growth on open space conservation opportunity areas and habitat connectivity around National Wildlife Refuges. Landscape Ecology, 2016, 31, 2175-2186.	4.2	10

#	Article	IF	CITATIONS
109	Drivers of forest cover change in Eastern Europe and European Russia, 1985–2012. Land Use Policy, 2016, 59, 284-297.	5.6	36
110	Future frequencies of extreme weather events in the National Wildlife Refuges of the conterminous U.S Biological Conservation, 2016, 201, 327-335.	4.1	17
111	Effects of habitat suitability and minimum patch size thresholds on the assessment of landscape connectivity for jaguars in the Sierra Gorda, Mexico. Biological Conservation, 2016, 204, 296-305.	4.1	19
112	Future land use threats to rangeâ€restricted fish species in the United States. Diversity and Distributions, 2016, 22, 663-671.	4.1	10
113	Assessing differences in connectivity based on habitat versus movement models for brown bears in the Carpathians. Landscape Ecology, 2016, 31, 1863-1882.	4.2	47
114	Prioritizing land management efforts at a landscape scale: a case study using prescribed fire in <scp>W</scp> isconsin. Ecological Applications, 2016, 26, 1018-1029.	3.8	9
115	The relative impacts of vegetation, topography and spatial arrangement on building loss to wildfires in case studies of California and Colorado. Landscape Ecology, 2016, 31, 415-430.	4.2	45
116	Broad scale forest cover reconstruction from historical topographicÂmaps. Applied Geography, 2016, 67, 39-48.	3.7	73
117	Historical forest management in Romania is imposing strong legacies on contemporary forests and their management. Forest Ecology and Management, 2016, 361, 179-193.	3.2	48
118	The rise of novelty in ecosystems. Ecological Applications, 2015, 25, 2051-2068.	3.8	179
119	Rebuilding and new housing development after wildfire. International Journal of Wildland Fire, 2015, 24, 138.	2.4	38
120	Long-term agricultural land-cover change and potential for cropland expansion in the former Virgin Lands area of Kazakhstan. Environmental Research Letters, 2015, 10, 054012.	5.2	127
121	Longâ€term avian community response to housing development at the boundary of <scp>US</scp> protected areas: effect size increases with time. Journal of Applied Ecology, 2015, 52, 1227-1236.	4.0	32
122	Spring plant phenology and false springs in the conterminous US during the 21st century. Environmental Research Letters, 2015, 10, 104008.	5.2	80
123	The importance of range edges for an irruptive species during extreme weather events. Landscape Ecology, 2015, 30, 1095-1110.	4.2	30
124	Opportunities for the application of advanced remotely-sensed data in ecological studies of terrestrial animal movement. Movement Ecology, 2015, 3, 8.	2.8	69
125	Adapting to Wildfire: Rebuilding After Home Loss. Society and Natural Resources, 2015, 28, 839-856.	1.9	32
126	Legacies of 19th century land use shape contemporary forest cover. Global Environmental Change, 2015, 34, 83-94.	7.8	92

#	Article	IF	CITATIONS
127	Technology or policy? Drivers of land cover change in northwestern Spain before and after the accession to European Economic Community. Land Use Policy, 2015, 45, 18-25.	5.6	24
128	Habitat–occupancy associations and tree-species use patterns by breeding birds in Tibetan sacred forests. Biodiversity and Conservation, 2015, 24, 129-148.	2.6	6
129	Rapid declines of large mammal populations after the collapse of the Soviet Union. Conservation Biology, 2015, 29, 844-853.	4.7	61
130	Future landâ€use scenarios and the loss of wildlife habitats in the southeastern United States. Ecological Applications, 2015, 25, 160-171.	3.8	47
131	Effectiveness of protected areas in the Western Caucasus before and after the transition to post-socialism. Biological Conservation, 2015, 184, 456-464.	4.1	21
132	Mapping seasonal European bison habitat in the Caucasus Mountains to identify potential reintroduction sites. Biological Conservation, 2015, 191, 83-92.	4.1	31
133	Scenarios of future land use change around United States' protected areas. Biological Conservation, 2015, 184, 446-455.	4.1	89
134	Influences of succession and erosion on bird communities in a South American highland wooded landscape. Forest Ecology and Management, 2015, 349, 85-93.	3.2	10
135	Change in agricultural land use constrains adaptation of national wildlife refuges to climate change. Environmental Conservation, 2015, 42, 12-19.	1.3	15
136	An evaluation of environmental, institutional and socio-economic factors explaining successful conservation plan implementation in the north-central United States. Biological Conservation, 2015, 192, 135-144.	4.1	9
137	Post-Soviet land-use change effects on large mammals' habitat in European Russia. Biological Conservation, 2015, 191, 567-576.	4.1	28
138	Future Land-Use Changes and the Potential for Novelty in Ecosystems of the United States. Ecosystems, 2015, 18, 1332-1342.	3.4	13
139	Land-use change in the Caucasus during and after the Nagorno-Karabakh conflict. Regional Environmental Change, 2015, 15, 1703-1716.	2.9	73
140	The relative effectiveness of protected areas, a logging ban, and sacred areas for old-growth forest protection in southwest China. Biological Conservation, 2015, 181, 1-8.	4.1	66
141	Ten ways remote sensing can contribute to conservation. Conservation Biology, 2015, 29, 350-359.	4.7	180
142	Projected land-use change impacts on ecosystem services in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7492-7497.	7.1	557
143	Systematic Temporal Patterns in the Relationship Between Housing Development and Forest Bird Biodiversity. Conservation Biology, 2014, 28, 1291-1301.	4.7	24
144	Threats and opportunities for freshwater conservation under future land use change scenarios in the United States. Global Change Biology, 2014, 20, 113-124.	9.5	78

#	Article	IF	CITATIONS
145	Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites. Remote Sensing of Environment, 2014, 151, 72-88.	11.0	231
146	Improving the utility of existing conservation plans using projected housing development. Landscape and Urban Planning, 2014, 126, 10-20.	7.5	7
147	Landsat remote sensing of forest windfall disturbance. Remote Sensing of Environment, 2014, 143, 171-179.	11.0	72
148	Forest and agricultural land change in the Carpathian regionâ€"A meta-analysis of long-term patterns and drivers of change. Land Use Policy, 2014, 38, 685-697.	5.6	219
149	Effects of different matrix representations and connectivity measures on habitat network assessments. Landscape Ecology, 2014, 29, 1551-1570.	4.2	47
150	Improving Environmental and Social Targeting through Adaptive Management in Mexico's Payments for Hydrological Services Program. Conservation Biology, 2014, 28, 1151-1159.	4.7	70
151	Combined speeds of climate and land-use change of the conterminous US until 2050. Nature Climate Change, 2014, 4, 811-816.	18.8	69
152	Evaluating the influence of conservation plans on land protection actions in Wisconsin, USA. Biological Conservation, 2014, 178, 37-49.	4.1	19
153	Housing development erodes avian community structure in U.S. protected areas. Ecological Applications, 2014, 24, 1445-1462.	3.8	38
154	Potential impacts of oil and gas development and climate change on migratory reindeer calving grounds across the Russian Arctic. Diversity and Distributions, 2014, 20, 416-429.	4.1	15
155	Biotic and Abiotic Effects of Human Settlements in the Wildland–Urban Interface. BioScience, 2014, 64, 429-437.	4.9	104
156	Modelling avian biodiversity using raw, unclassified satellite imagery. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130197.	4.0	35
157	Sacred forests are keystone structures for forest bird conservation in southwest China's Himalayan Mountains. Biological Conservation, 2013, 166, 34-42.	4.1	46
158	The loss of forest birds habitats under different land use policies as projected by a coupled ecological-econometric model. Biological Conservation, 2013, 165, 1-9.	4.1	9
159	Assessing Naturalness in Northern Great Lakes Forests Based on Historical Land-Cover and Vegetation Changes. Environmental Management, 2013, 52, 481-492.	2.7	10
160	Wildfire ignition-distribution modelling: a comparative study in the Huron–Manistee National Forest, Michigan, USA. International Journal of Wildland Fire, 2013, 22, 174.	2.4	137
161	Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data. Environmental Research Letters, 2013, 8, 035035.	5.2	197
162	Landsat-based mapping of post-Soviet land-use change to assess the effectiveness of the Oksky and Mordovsky protected areas in European Russia. Remote Sensing of Environment, 2013, 133, 38-51.	11.0	58

#	Article	IF	Citations
163	Spatial and temporal residential density patterns from 1940 to 2000 in and around the Northern Forest of the Northeastern United States. Population and Environment, 2013, 34, 400-419.	3.0	15
164	Using structure locations as a basis for mapping the wildland urban interface. Journal of Environmental Management, 2013, 128, 540-547.	7.8	48
165	Reserve selection with land market feedbacks. Journal of Environmental Management, 2013, 114, 276-284.	7.8	11
166	Behavioural response to infrastructure of wildlife adapted to natural disturbances. Landscape and Urban Planning, 2013, 114, 9-27.	7.5	26
167	Hot moments for biodiversity conservation. Conservation Letters, 2013, 6, 58-65.	5.7	44
168	Using housing growth to estimate habitat change: detecting Ovenbird response in a rapidly growing New England State. Urban Ecosystems, 2013, 16, 499-510.	2.4	2
169	Human and biophysical influences on fire occurrence in the United States. Ecological Applications, 2013, 23, 565-582.	3.8	114
170	Determinants of agricultural land abandonment in post-Soviet European Russia. Land Use Policy, 2013, 30, 873-884.	5.6	343
171	Regime shift on the roof of the world: Alpine meadows converting to shrublands in the southern Himalayas. Biological Conservation, 2013, 158, 116-127.	4.1	168
172	Continued loss of temperate old-growth forests in the Romanian Carpathians despite an increasing protected area network. Environmental Conservation, 2013, 40, 182-193.	1.3	68
173	The influence of vertical and horizontal habitat structure on nationwide patterns of avian biodiversity. Auk, 2013, 130, 656-665.	1.4	56
174	Current and Future Land Use around a Nationwide Protected Area Network. PLoS ONE, 2013, 8, e55737.	2.5	74
175	Image Texture Predicts Avian Density and Species Richness. PLoS ONE, 2013, 8, e63211.	2.5	67
176	Effects of institutional changes on land use: agricultural land abandonment during the transition from state-command to market-driven economies in post-Soviet Eastern Europe. Environmental Research Letters, 2012, 7, 024021.	5.2	208
177	Analytical Solutions to Tradeâ€Offs between Size of Protected Areas and Landâ€Use Intensity. Conservation Biology, 2012, 26, 883-893.	4.7	24
178	Combining Satellite-Based Fire Observations and Ground-Based Lightning Detections to Identify Lightning Fires Across the Conterminous USA. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5, 1438-1447.	4.9	8
179	The effect of Landsat ETM/ETM + image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sensing of Environment, 2012, 126, 195-209.	11.0	148
180	Modeling broad-scale patterns of avian species richness across the Midwestern United States with measures of satellite image texture. Remote Sensing of Environment, 2012, 118, 140-150.	11.0	63

#	Article	IF	Citations
181	Image texture as a remotely sensed measure of vegetation structure. Remote Sensing of Environment, 2012, 121, 516-526.	11.0	198
182	Using Landsat imagery to map forest change in southwest China in response to the national logging ban and ecotourism development. Remote Sensing of Environment, 2012, 121, 358-369.	11.0	67
183	Using the Landsat record to detect forest-cover changes during and after the collapse of the Soviet Union in the temperate zone of European Russia. Remote Sensing of Environment, 2012, 124, 174-184.	11.0	83
184	Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sensing of Environment, 2012, 124, 334-347.	11.0	249
185	Landâ€Cover Change and Avian Diversity in the Conterminous United States. Conservation Biology, 2012, 26, 821-829.	4.7	47
186	The ability of zoning and land acquisition to increase property values and maintain largemouth bass growth rates in an amenity rich region. Landscape and Urban Planning, 2012, 107, 69-78.	7.5	7
187	Difference in spatiotemporal patterns of wildlife road-crossings and wildlife-vehicle collisions. Biological Conservation, 2012, 145, 70-78.	4.1	138
188	Potential habitat connectivity of European bison (Bison bonasus) in the Carpathians. Biological Conservation, 2012, 146, 188-196.	4.1	42
189	Forest restitution and protected area effectiveness in post-socialist Romania. Biological Conservation, 2012, 146, 204-212.	4.1	126
190	Refugee species: which historic baseline should inform conservation planning?. Diversity and Distributions, 2012, 18, 1258-1261.	4.1	24
191	Monitoring the invasion of an exotic tree (Ligustrum lucidum) from 1983 to 2006 with Landsat TM/ETM+ satellite data and Support Vector Machines in $C\tilde{A}^3$ rdoba, Argentina. Remote Sensing of Environment, 2012 , 122 , 134 - 145 .	11.0	95
192	Reconstructing range dynamics and range fragmentation of European bison for the last 8000â€∫years. Diversity and Distributions, 2012, 18, 47-59.	4.1	51
193	Complex effects of scale on the relationships of landscape pattern versus avian species richness and community structure in a woodland savanna mosaic. Ecography, 2012, 35, 393-411.	4.5	33
194	An evaluation of prior influence on the predictive ability of Bayesian model averaging. Oecologia, 2012, 168, 719-726.	2.0	3
195	Housing Arrangement and Location Determine the Likelihood of Housing Loss Due to Wildfire. PLoS ONE, 2012, 7, e33954.	2.5	131
196	Regional- and district-level drivers of timber harvesting in European Russia after the collapse of the Soviet Union. Global Environmental Change, 2011, 21, 1290-1300.	7.8	36
197	Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy, 2011, 28, 552-562.	5.6	369
198	Modeling forest songbird species richness using LiDAR-derived measures of forest structure. Remote Sensing of Environment, 2011, 115, 2823-2835.	11.0	92

#	Article	IF	Citations
199	Allocating fuel breaks to optimally protect structures in the wildland–urban interface. International Journal of Wildland Fire, 2011, 20, 59.	2.4	22
200	Costâ€effectiveness of strategies to establish a European bison metapopulation in the Carpathians. Journal of Applied Ecology, 2011, 48, 317-329.	4.0	38
201	Optimizing regional conservation planning for forest birds. Journal of Applied Ecology, 2011, 48, 726-735.	4.0	6
202	Post-Soviet farmland abandonment, forest recovery, and carbon sequestration in western Ukraine. Global Change Biology, 2011, 17, 1335-1349.	9.5	159
203	Predicting potential European bison habitat across its former range. , 2011, 21, 830-843.		69
204	Climate, Livestock, and Vegetation: What Drives Fire Increase in the Arid Ecosystems of Southern Russia?. Ecosystems, 2011, 14, 547-562.	3.4	50
205	Effects of ignition location models on the burn patterns of simulated wildfires. Environmental Modelling and Software, 2011, 26, 583-592.	4.5	37
206	Increasing development in the surroundings of U.S. National Park Service holdings jeopardizes park effectiveness. Journal of Environmental Management, 2011, 92, 229-239.	7.8	42
207	Heat waves measured with MODIS land surface temperature data predict changes in avian community structure. Remote Sensing of Environment, 2011, 115, 245-254.	11.0	55
208	Rapid land use change after socio-economic disturbances: the collapse of the Soviet Union versus Chernobyl. Environmental Research Letters, 2011, 6, 045201.	5.2	112
209	Effects of drought on avian community structure. Global Change Biology, 2010, 16, 2158-2170.	9.5	81
210	Lakeshore zoning has heterogeneous ecological effects: an application of a coupled economicâ€ecological model. Ecological Applications, 2010, 20, 867-879.	3.8	18
211	Performance and accuracy of Argos transmitters for wildlife monitoring in Southern Russia. European Journal of Wildlife Research, 2010, 56, 459-463.	1.4	18
212	Invasion of glossy privet (Ligustrum lucidum) and native forest loss in the Sierras Chicas of Córdoba, Argentina. Biological Invasions, 2010, 12, 3261-3275.	2.4	87
213	Habitat variables explain Loggerhead Shrike occurrence in the northern Chihuahuan Desert, but are poor correlates of fitness measures. Landscape Ecology, 2010, 25, 643-654.	4.2	14
214	Two multi-scale contextual approaches for mapping spatial pattern. Landscape Ecology, 2010, 25, 711-725.	4.2	22
215	Rural housing is related to plant invasions in forests of southern Wisconsin, USA. Landscape Ecology, 2010, 25, 1505-1518.	4.2	71
216	Reconstructing long time series of burned areas in arid grasslands of southern Russia by satellite remote sensing. Remote Sensing of Environment, 2010, 114, 1638-1648.	11.0	61

#	Article	IF	Citations
217	Avifauna response to hurricanes: regional changes in community similarity. Global Change Biology, 2010, 16, 905-917.	9.5	31
218	Combined effects of heat waves and droughts on avian communities across the conterminous United States. Ecosphere, 2010, 1, 1-22.	2.2	57
219	European Bison habitat in the Carpathian Mountains. Biological Conservation, 2010, 143, 908-916.	4.1	101
220	Modeling regional-scale habitat of forest birds when land management guidelines are needed but information is limited. Biological Conservation, 2010, 143, 1759-1769.	4.1	17
221	Housing is positively associated with invasive exotic plant species richness in New England, USA. Ecological Applications, 2010, 20, 1913-1925.	3.8	166
222	Housing growth in and near United States protected areas limits their conservation value. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 940-945.	7.1	316
223	Conservation of Forest Birds: Evidence of a Shifting Baseline in Community Structure. PLoS ONE, 2010, 5, e11938.	2.5	20
224	Assessing housing growth when census boundaries change. International Journal of Geographical Information Science, 2009, 23, 859-876.	4.8	16
225	Demographic Trends, the Wildland–Urban Interface, and Wildfire Management. Society and Natural Resources, 2009, 22, 777-782.	1.9	158
226	The Impact of Phenological Variation on Texture Measures of Remotely Sensed Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009, 2, 299-309.	4.9	44
227	Land cover mapping of large areas using chain classification of neighboring Landsat satellite images. Remote Sensing of Environment, 2009, 113, 957-964.	11.0	201
228	Forest cover change and illegal logging in the Ukrainian Carpathians in the transition period from 1988 to 2007. Remote Sensing of Environment, 2009, 113, 1194-1207.	11.0	182
229	Bird diversity: a predictable function of satelliteâ€derived estimates of seasonal variation in canopy light absorbance across the United States. Journal of Biogeography, 2009, 36, 905-918.	3.0	54
230	Satellite image texture and a vegetation index predict avian biodiversity in the Chihuahuan Desert of New Mexico. Ecography, 2009, 32, 468-480.	4.5	107
231	Conservation Threats Due to Humanâ€Caused Increases in Fire Frequency in Mediterraneanâ€Climate Ecosystems. Conservation Biology, 2009, 23, 758-769.	4.7	200
232	Paying the Extinction Debt in Southern Wisconsin Forest Understories. Conservation Biology, 2009, 23, 1497-1506.	4.7	70
233	Housing growth, forests, and public lands in Northern Wisconsin from 1940 to 2000. Journal of Environmental Management, 2009, 90, 2690-2698.	7.8	13
234	Wildfire risk in the wildland–urban interface: A simulation study in northwestern Wisconsin. Forest Ecology and Management, 2009, 258, 1990-1999.	3.2	119

#	Article	IF	CITATIONS
235	Improved estimates of forest vegetation structure and biomass with a LiDARâ€optimized sampling design. Journal of Geophysical Research, 2009, 114, .	3.3	81
236	Cross-border Comparison of Post-socialist Farmland Abandonment in the Carpathians. Ecosystems, 2008, 11, 614-628.	3.4	253
237	Variability in Energy Influences Avian Distribution Patterns Across the USA. Ecosystems, 2008, 11, 854-867.	3.4	23
238	Detection rates of the MODIS active fire product in the United States. Remote Sensing of Environment, 2008, 112, 2656-2664.	11.0	161
239	Human Impacts on Regional Avian Diversity and Abundance. Conservation Biology, 2008, 22, 405-416.	4.7	139
240	MODELING HABITAT SUITABILITY FOR GREATER RHEAS BASED ON SATELLITE IMAGE TEXTURE. , 2008, 18, 1956-1966.		63
241	Influence of forest planning alternatives on landscape pattern and ecosystem processes in northern Wisconsin, USA. Forest Ecology and Management, 2008, 254, 429-444.	3.2	25
242	Predicting spatial patterns of fire on a southern California landscape. International Journal of Wildland Fire, 2008, 17, 602.	2.4	212
243	Adding uncertainty to forest inventory plot locations: effects on analyses using geospatial data. Canadian Journal of Forest Research, 2007, 37, 2313-2325.	1.7	9
244	HUMAN INFLUENCE ON CALIFORNIA FIRE REGIMES. , 2007, 17, 1388-1402.		515
245	Wildland - urban interface housing growth during the 1990s in California, Oregon, and Washington. International Journal of Wildland Fire, 2007, 16, 255.	2.4	135
246	PATTERNS OF HOUSES AND HABITAT LOSS FROM 1937 TO 1999 IN NORTHERN WISCONSIN, USA. , 2007, 17, 2011-2023.		54
247	Computer visualization of pre-settlement and current forests in Wisconsin. Forest Ecology and Management, 2007, 246, 135-143.	3.2	10
248	POST-SOCIALIST FOREST DISTURBANCE IN THE CARPATHIAN BORDER REGION OF POLAND, SLOVAKIA, AND UKRAINE. , 2007, 17, 1279-1295.		121
249	Building patterns and landscape fragmentation in northern Wisconsin, USA. Landscape Ecology, 2007, 22, 217-230.	4.2	78
250	Spatiotemporal dynamics of housing growth hotspots in the North Central U.S. from 1940 to 2000. Landscape Ecology, 2007, 22, 939-952.	4.2	38
251	Modeling forest harvesting effects on landscape pattern in the Northwest Wisconsin Pine Barrens. Forest Ecology and Management, 2006, 236, 113-126.	3.2	36
252	Contrasting measures of fitness to classify habitat quality for the black-throated sparrow (Amphispiza bilineata). Biological Conservation, 2006, 132, 199-210.	4.1	31

#	Article	IF	Citations
253	Road Development, Housing Growth, And Landscape Fragmentation In Northern Wisconsin: 1937–1999. , 2006, 16, 1222-1237.		107
254	Cross-border comparison of land cover and landscape pattern in Eastern Europe using a hybrid classification technique. Remote Sensing of Environment, 2006, 103, 449-464.	11.0	149
255	High-resolution image texture as a predictor of bird species richness. Remote Sensing of Environment, 2006, 105, 299-312.	11.0	98
256	Rural and Suburban Sprawl in the U.S. Midwest from 1940 to 2000 and Its Relation to Forest Fragmentation. Conservation Biology, 2005, 19, 793-805.	4.7	269
257	Modeling the Influence of Dynamic Zoning of Forest Harvesting on Ecological Succession in a Northern Hardwoods Landscape. Environmental Management, 2005, 35, 410-425.	2.7	20
258	Road Density and Landscape Pattern in Relation to Housing Density, and Ownership, Land Cover, and Soils. Landscape Ecology, 2005, 20, 609-625.	4.2	117
259	The Relationship between Environmental Amenities and Changing Human Settlement Patterns between 1980 and 2000 in the Midwestern USA. Landscape Ecology, 2005, 20, 773-789.	4.2	49
260	Roads and Landscape Pattern in Northern Wisconsin Based on a Comparison of Four Road Data Sources. Conservation Biology, 2004, 18, 1233-1244.	4.7	95
261	Integrating Landscape and Metapopulation Modeling Approaches: Viability of the Sharp-Tailed Grouse in a Dynamic Landscape. Conservation Biology, 2004, 18, 526-537.	4.7	149
262	Spatial patterns of cone serotiny in Pinus banksiana in relation to fire disturbance. Forest Ecology and Management, 2004, 189, 133-141.	3.2	41
263	Characterizing dynamic spatial and temporal residential density patterns from 1940–1990 across the North Central United States. Landscape and Urban Planning, 2004, 69, 183-199.	7.5	217
264	Reaffirming Social Landscape Analysis in Landscape Ecology: A Conceptual Framework. Society and Natural Resources, 2003, 16, 349-361.	1.9	49
265	Phenological differences in Tasseled Cap indices improve deciduous forest classification. Remote Sensing of Environment, 2002, 80, 460-472.	11.0	179
266	EFFECTS OF INTERACTING DISTURBANCES ON LANDSCAPE PATTERNS: BUDWORM DEFOLIATION AND SALVAGE LOGGING. , 2000, 10, 233-247.		81
267	A Historical Perspective and Future Outlook on Landscape Scale Restoration in the Northwest Wisconsin Pine Barrens. Restoration Ecology, 2000, 8, 119-126.	2.9	61
268	The changing relation of landscape patterns and jack pine budworm populations during an outbreak. Oikos, 2000, 90, 417-430.	2.7	49
269	INTEGRATING DEMOGRAPHIC AND LANDSAT (TM) DATA AT A WATERSHED SCALE. Journal of the American Water Resources Association, 2000, 36, 215-228.	2.4	9
270	Periodicity in spatial data and geostatistical models: autocorrelation between patches. Ecography, 2000, 23, 81-91.	4.5	15

#	Article	IF	CITATIONS
271	Detecting Jack Pine Budworm Defoliation Using Spectral Mixture Analysis. Remote Sensing of Environment, 1999, 69, 156-169.	11.0	115
272	Forest landscape change in the northwestern Wisconsin Pine Barrens from pre-European settlement to the present. Canadian Journal of Forest Research, 1999, 29, 1649-1659.	1.7	118
273	Habitat and population modelling of roe deer using an interactive geographic information system. Ecological Modelling, 1999, 114, 287-304.	2.5	40
274	INTEGRATION OF GIS DATA AND CLASSIFIED SATELLITE IMAGERY FOR REGIONAL FOREST ASSESSMENT. , 1998, 8, 1072-1083.		72
275	National parks influence habitat use of lowland tapirs in adjacent private lands in the Southern Yungas of Argentina. Oryx, 0, , 1-10.	1.0	4