List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1918531/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid growth of the US wildland-urban interface raises wildfire risk. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3314-3319.	7.1	628
2	Projected land-use change impacts on ecosystem services in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7492-7497.	7.1	557
3	HUMAN INFLUENCE ON CALIFORNIA FIRE REGIMES. , 2007, 17, 1388-1402.		515
4	Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy, 2011, 28, 552-562.	5.6	369
5	Determinants of agricultural land abandonment in post-Soviet European Russia. Land Use Policy, 2013, 30, 873-884.	5.6	343
6	Housing growth in and near United States protected areas limits their conservation value. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 940-945.	7.1	316
7	Benefits of the free and open Landsat data policy. Remote Sensing of Environment, 2019, 224, 382-385.	11.0	291
8	Rural and Suburban Sprawl in the U.S. Midwest from 1940 to 2000 and Its Relation to Forest Fragmentation. Conservation Biology, 2005, 19, 793-805.	4.7	269
9	Cross-border Comparison of Post-socialist Farmland Abandonment in the Carpathians. Ecosystems, 2008, 11, 614-628.	3.4	253
10	Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sensing of Environment, 2012, 124, 334-347.	11.0	249
11	Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites. Remote Sensing of Environment, 2014, 151, 72-88.	11.0	231
12	Forest and agricultural land change in the Carpathian region—A meta-analysis of long-term patterns and drivers of change. Land Use Policy, 2014, 38, 685-697.	5.6	219
13	Characterizing dynamic spatial and temporal residential density patterns from 1940–1990 across the North Central United States. Landscape and Urban Planning, 2004, 69, 183-199.	7.5	217
14	Global priorities for conservation across multiple dimensions of mammalian diversity. Proceedings of the United States of America, 2017, 114, 7641-7646.	7.1	213
15	Predicting spatial patterns of fire on a southern California landscape. International Journal of Wildland Fire, 2008, 17, 602.	2.4	212
16	Effects of institutional changes on land use: agricultural land abandonment during the transition from state-command to market-driven economies in post-Soviet Eastern Europe. Environmental Research Letters, 2012, 7, 024021.	5.2	208
17	Land cover mapping of large areas using chain classification of neighboring Landsat satellite images. Remote Sensing of Environment, 2009, 113, 957-964.	11.0	201
18	Conservation Threats Due to Humanâ€Caused Increases in Fire Frequency in Mediterranean limate Ecosystems. Conservation Biology, 2009, 23, 758-769.	4.7	200

#	Article	IF	CITATIONS
19	Image texture as a remotely sensed measure of vegetation structure. Remote Sensing of Environment, 2012, 121, 516-526.	11.0	198
20	Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data. Environmental Research Letters, 2013, 8, 035035.	5.2	197
21	Forest cover change and illegal logging in the Ukrainian Carpathians in the transition period from 1988 to 2007. Remote Sensing of Environment, 2009, 113, 1194-1207.	11.0	182
22	Ten ways remote sensing can contribute to conservation. Conservation Biology, 2015, 29, 350-359.	4.7	180
23	Phenological differences in Tasseled Cap indices improve deciduous forest classification. Remote Sensing of Environment, 2002, 80, 460-472.	11.0	179
24	The rise of novelty in ecosystems. Ecological Applications, 2015, 25, 2051-2068.	3.8	179
25	Regime shift on the roof of the world: Alpine meadows converting to shrublands in the southern Himalayas. Biological Conservation, 2013, 158, 116-127.	4.1	168
26	Housing is positively associated with invasive exotic plant species richness in New England, USA. Ecological Applications, 2010, 20, 1913-1925.	3.8	166
27	Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sensing of Environment, 2018, 210, 12-24.	11.0	163
28	Detection rates of the MODIS active fire product in the United States. Remote Sensing of Environment, 2008, 112, 2656-2664.	11.0	161
29	Post-Soviet farmland abandonment, forest recovery, and carbon sequestration in western Ukraine. Global Change Biology, 2011, 17, 1335-1349.	9.5	159
30	Demographic Trends, the Wildland–Urban Interface, and Wildfire Management. Society and Natural Resources, 2009, 22, 777-782.	1.9	158
31	Integrating Landscape and Metapopulation Modeling Approaches: Viability of the Sharp-Tailed Grouse in a Dynamic Landscape. Conservation Biology, 2004, 18, 526-537.	4.7	149
32	Cross-border comparison of land cover and landscape pattern in Eastern Europe using a hybrid classification technique. Remote Sensing of Environment, 2006, 103, 449-464.	11.0	149
33	The effect of Landsat ETM/ETM + image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sensing of Environment, 2012, 126, 195-209.	11.0	148
34	Human Impacts on Regional Avian Diversity and Abundance. Conservation Biology, 2008, 22, 405-416.	4.7	139
35	Difference in spatiotemporal patterns of wildlife road-crossings and wildlife-vehicle collisions. Biological Conservation, 2012, 145, 70-78.	4.1	138
36	Wildfire ignition-distribution modelling: a comparative study in the Huron–Manistee National Forest, Michigan, USA. International Journal of Wildland Fire, 2013, 22, 174.	2.4	137

#	Article	IF	CITATIONS
37	Wildland - urban interface housing growth during the 1990s in California, Oregon, and Washington. International Journal of Wildland Fire, 2007, 16, 255.	2.4	135
38	Housing Arrangement and Location Determine the Likelihood of Housing Loss Due to Wildfire. PLoS ONE, 2012, 7, e33954.	2.5	131
39	Long-term agricultural land-cover change and potential for cropland expansion in the former Virgin Lands area of Kazakhstan. Environmental Research Letters, 2015, 10, 054012.	5.2	127
40	Forest restitution and protected area effectiveness in post-socialist Romania. Biological Conservation, 2012, 146, 204-212.	4.1	126
41	POST-SOCIALIST FOREST DISTURBANCE IN THE CARPATHIAN BORDER REGION OF POLAND, SLOVAKIA, AND UKRAINE. , 2007, 17, 1279-1295.		121
42	Wildfire risk in the wildland–urban interface: A simulation study in northwestern Wisconsin. Forest Ecology and Management, 2009, 258, 1990-1999.	3.2	119
43	Forest landscape change in the northwestern Wisconsin Pine Barrens from pre-European settlement to the present. Canadian Journal of Forest Research, 1999, 29, 1649-1659.	1.7	118
44	Road Density and Landscape Pattern in Relation to Housing Density, and Ownership, Land Cover, and Soils. Landscape Ecology, 2005, 20, 609-625.	4.2	117
45	Detecting Jack Pine Budworm Defoliation Using Spectral Mixture Analysis. Remote Sensing of Environment, 1999, 69, 156-169.	11.0	115
46	Human and biophysical influences on fire occurrence in the United States. Ecological Applications, 2013, 23, 565-582.	3.8	114
47	Rapid land use change after socio-economic disturbances: the collapse of the Soviet Union versus Chernobyl. Environmental Research Letters, 2011, 6, 045201.	5.2	112
48	Road Development, Housing Growth, And Landscape Fragmentation In Northern Wisconsin: 1937–1999. , 2006, 16, 1222-1237.		107
49	Satellite image texture and a vegetation index predict avian biodiversity in the Chihuahuan Desert of New Mexico. Ecography, 2009, 32, 468-480.	4.5	107
50	Biotic and Abiotic Effects of Human Settlements in the Wildland–Urban Interface. BioScience, 2014, 64, 429-437.	4.9	104
51	European Bison habitat in the Carpathian Mountains. Biological Conservation, 2010, 143, 908-916.	4.1	101
52	Global mitigation potential of carbon stored in harvested wood products. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14526-14531.	7.1	99
53	High-resolution image texture as a predictor of bird species richness. Remote Sensing of Environment, 2006, 105, 299-312.	11.0	98
54	Roads and Landscape Pattern in Northern Wisconsin Based on a Comparison of Four Road Data Sources. Conservation Biology, 2004, 18, 1233-1244.	4.7	95

#	Article	IF	CITATIONS
55	Monitoring the invasion of an exotic tree (Ligustrum lucidum) from 1983 to 2006 with Landsat TM/ETM+ satellite data and Support Vector Machines in Córdoba, Argentina. Remote Sensing of Environment, 2012, 122, 134-145.	11.0	95
56	Monitoring cropland abandonment with Landsat time series. Remote Sensing of Environment, 2020, 246, 111873.	11.0	93
57	Modeling forest songbird species richness using LiDAR-derived measures of forest structure. Remote Sensing of Environment, 2011, 115, 2823-2835.	11.0	92
58	Legacies of 19th century land use shape contemporary forest cover. Global Environmental Change, 2015, 34, 83-94.	7.8	92
59	Places where wildfire potential and social vulnerability coincide in the coterminous United States. International Journal of Wildland Fire, 2016, 25, 896.	2.4	91
60	Scenarios of future land use change around United States' protected areas. Biological Conservation, 2015, 184, 446-455.	4.1	89
61	Invasion of glossy privet (Ligustrum lucidum) and native forest loss in the Sierras Chicas of Córdoba, Argentina. Biological Invasions, 2010, 12, 3261-3275.	2.4	87
62	Using the Landsat record to detect forest-cover changes during and after the collapse of the Soviet Union in the temperate zone of European Russia. Remote Sensing of Environment, 2012, 124, 174-184.	11.0	83
63	EFFECTS OF INTERACTING DISTURBANCES ON LANDSCAPE PATTERNS: BUDWORM DEFOLIATION AND SALVAGE LOGGING. , 2000, 10, 233-247.		81
64	Effects of drought on avian community structure. Global Change Biology, 2010, 16, 2158-2170.	9.5	81
65	Improved estimates of forest vegetation structure and biomass with a LiDARâ€optimized sampling design. Journal of Geophysical Research, 2009, 114, .	3.3	81
66	The Dynamic Habitat Indices (DHIs) from MODIS and global biodiversity. Remote Sensing of Environment, 2019, 222, 204-214.	11.0	81
67	Spring plant phenology and false springs in the conterminous US during the 21st century. Environmental Research Letters, 2015, 10, 104008.	5.2	80
68	Building patterns and landscape fragmentation in northern Wisconsin, USA. Landscape Ecology, 2007, 22, 217-230.	4.2	78
69	Threats and opportunities for freshwater conservation under future land use change scenarios in the United States. Clobal Change Biology, 2014, 20, 113-124.	9.5	78
70	High wildfire damage in interface communities in California. International Journal of Wildland Fire, 2019, 28, 641.	2.4	78
71	Where wildfires destroy buildings in the US relative to the wildland–urban interface and national fire outreach programs. International Journal of Wildland Fire, 2018, 27, 329.	2.4	76
72	Current and Future Land Use around a Nationwide Protected Area Network. PLoS ONE, 2013, 8, e55737.	2.5	74

VOLKER C RADELOFF

#	Article	IF	CITATIONS
73	Land-use change in the Caucasus during and after the Nagorno-Karabakh conflict. Regional Environmental Change, 2015, 15, 1703-1716.	2.9	73
74	Broad scale forest cover reconstruction from historical topographicÂmaps. Applied Geography, 2016, 67, 39-48.	3.7	73
75	A comparison of Dynamic Habitat Indices derived from different MODIS products as predictors of avian species richness. Remote Sensing of Environment, 2017, 195, 142-152.	11.0	73
76	INTEGRATION OF GIS DATA AND CLASSIFIED SATELLITE IMAGERY FOR REGIONAL FOREST ASSESSMENT. , 1998, 8, 1072-1083.		72
77	Landsat remote sensing of forest windfall disturbance. Remote Sensing of Environment, 2014, 143, 171-179.	11.0	72
78	Rural housing is related to plant invasions in forests of southern Wisconsin, USA. Landscape Ecology, 2010, 25, 1505-1518.	4.2	71
79	Quasi-experimental methods enable stronger inferences from observational data in ecology. Basic and Applied Ecology, 2017, 19, 1-10.	2.7	71
80	Paying the Extinction Debt in Southern Wisconsin Forest Understories. Conservation Biology, 2009, 23, 1497-1506.	4.7	70
81	Improving Environmental and Social Targeting through Adaptive Management in Mexico's Payments for Hydrological Services Program. Conservation Biology, 2014, 28, 1151-1159.	4.7	70
82	Predicting potential European bison habitat across its former range. , 2011, 21, 830-843.		69
83	Combined speeds of climate and land-use change of the conterminous US until 2050. Nature Climate Change, 2014, 4, 811-816.	18.8	69
84	Opportunities for the application of advanced remotely-sensed data in ecological studies of terrestrial animal movement. Movement Ecology, 2015, 3, 8.	2.8	69
85	Continued loss of temperate old-growth forests in the Romanian Carpathians despite an increasing protected area network. Environmental Conservation, 2013, 40, 182-193.	1.3	68
86	Using Landsat imagery to map forest change in southwest China in response to the national logging ban and ecotourism development. Remote Sensing of Environment, 2012, 121, 358-369.	11.0	67
87	Image Texture Predicts Avian Density and Species Richness. PLoS ONE, 2013, 8, e63211.	2.5	67
88	The relative effectiveness of protected areas, a logging ban, and sacred areas for old-growth forest protection in southwest China. Biological Conservation, 2015, 181, 1-8.	4.1	66
89	MODELING HABITAT SUITABILITY FOR GREATER RHEAS BASED ON SATELLITE IMAGE TEXTURE. , 2008, 18, 1956-1966.		63
90	Modeling broad-scale patterns of avian species richness across the Midwestern United States with measures of satellite image texture. Remote Sensing of Environment, 2012, 118, 140-150.	11.0	63

#	Article	IF	CITATIONS
91	The pace of past climate change vs. potential bird distributions and land use in the United States. Global Change Biology, 2016, 22, 1130-1144.	9.5	62
92	Phenology from Landsat when data is scarce: Using MODIS and Dynamic Time-Warping to combine multi-year Landsat imagery to derive annual phenology curves. International Journal of Applied Earth Observation and Geoinformation, 2017, 54, 72-83.	2.8	62
93	A Historical Perspective and Future Outlook on Landscape Scale Restoration in the Northwest Wisconsin Pine Barrens. Restoration Ecology, 2000, 8, 119-126.	2.9	61
94	Reconstructing long time series of burned areas in arid grasslands of southern Russia by satellite remote sensing. Remote Sensing of Environment, 2010, 114, 1638-1648.	11.0	61
95	Rapid declines of large mammal populations after the collapse of the Soviet Union. Conservation Biology, 2015, 29, 844-853.	4.7	61
96	Divergent projections of future land use in the United States arising from different models and scenarios. Ecological Modelling, 2016, 337, 281-297.	2.5	61
97	Landsat-based mapping of post-Soviet land-use change to assess the effectiveness of the Oksky and Mordovsky protected areas in European Russia. Remote Sensing of Environment, 2013, 133, 38-51.	11.0	58
98	Combined effects of heat waves and droughts on avian communities across the conterminous United States. Ecosphere, 2010, 1, 1-22.	2.2	57
99	The influence of vertical and horizontal habitat structure on nationwide patterns of avian biodiversity. Auk, 2013, 130, 656-665.	1.4	56
100	Heat waves measured with MODIS land surface temperature data predict changes in avian community structure. Remote Sensing of Environment, 2011, 115, 245-254.	11.0	55
101	PATTERNS OF HOUSES AND HABITAT LOSS FROM 1937 TO 1999 IN NORTHERN WISCONSIN, USA. , 2007, 17, 2011-2023.		54
102	Bird diversity: a predictable function of satelliteâ€derived estimates of seasonal variation in canopy light absorbance across the United States. Journal of Biogeography, 2009, 36, 905-918.	3.0	54
103	Combined effects of night warming and light pollution on predator–prey interactions. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171195.	2.6	54
104	Reconstructing range dynamics and range fragmentation of European bison for the last 8000 years. Diversity and Distributions, 2012, 18, 47-59.	4.1	51
105	Climate, Livestock, and Vegetation: What Drives Fire Increase in the Arid Ecosystems of Southern Russia?. Ecosystems, 2011, 14, 547-562.	3.4	50
106	Climate change causes functionally colder winters for snow cover-dependent organisms. Nature Climate Change, 2019, 9, 886-893.	18.8	50
107	The changing relation of landscape patterns and jack pine budworm populations during an outbreak. Oikos, 2000, 90, 417-430.	2.7	49
108	Reaffirming Social Landscape Analysis in Landscape Ecology: A Conceptual Framework. Society and Natural Resources, 2003, 16, 349-361.	1.9	49

#	Article	IF	CITATIONS
109	The Relationship between Environmental Amenities and Changing Human Settlement Patterns between 1980 and 2000 in the Midwestern USA. Landscape Ecology, 2005, 20, 773-789.	4.2	49
110	Land-cover change in the Caucasus Mountains since 1987 based on the topographic correction of multi-temporal Landsat composites. Remote Sensing of Environment, 2020, 248, 111967.	11.0	49
111	Using structure locations as a basis for mapping the wildland urban interface. Journal of Environmental Management, 2013, 128, 540-547.	7.8	48
112	Conservation hotspots for marine turtle nesting in the United States based on coastal development. Ecological Applications, 2016, 26, 2708-2719.	3.8	48
113	Historical forest management in Romania is imposing strong legacies on contemporary forests and their management. Forest Ecology and Management, 2016, 361, 179-193.	3.2	48
114	Land over Change and Avian Diversity in the Conterminous United States. Conservation Biology, 2012, 26, 821-829.	4.7	47
115	Effects of different matrix representations and connectivity measures on habitat network assessments. Landscape Ecology, 2014, 29, 1551-1570.	4.2	47
116	Future landâ€use scenarios and the loss of wildlife habitats in the southeastern United States. Ecological Applications, 2015, 25, 160-171.	3.8	47
117	Assessing differences in connectivity based on habitat versus movement models for brown bears in the Carpathians. Landscape Ecology, 2016, 31, 1863-1882.	4.2	47
118	Sacred forests are keystone structures for forest bird conservation in southwest China's Himalayan Mountains. Biological Conservation, 2013, 166, 34-42.	4.1	46
119	Factors related to building loss due to wildfires in the conterminous United States. Ecological Applications, 2016, 26, 2323-2338.	3.8	46
120	The relative impacts of vegetation, topography and spatial arrangement on building loss to wildfires in case studies of California and Colorado. Landscape Ecology, 2016, 31, 415-430.	4.2	45
121	Species diversity as a surrogate for conservation of phylogenetic and functional diversity in terrestrial vertebrates across the Americas. Nature Ecology and Evolution, 2019, 3, 53-61.	7.8	45
122	The Impact of Phenological Variation on Texture Measures of Remotely Sensed Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009, 2, 299-309.	4.9	44
123	Hot moments for biodiversity conservation. Conservation Letters, 2013, 6, 58-65.	5.7	44
124	Assessing landscape connectivity for large mammals in the Caucasus using Landsat 8 seasonal image composites. Remote Sensing of Environment, 2017, 193, 193-203.	11.0	44
125	Agricultural abandonment and re-cultivation during and after the Chechen Wars in the northern Caucasus. Global Environmental Change, 2019, 55, 149-159.	7.8	43
126	Satellite image texture captures vegetation heterogeneity and explains patterns of bird richness. Remote Sensing of Environment, 2021, 253, 112175.	11.0	43

#	Article	IF	CITATIONS
127	Increasing development in the surroundings of U.S. National Park Service holdings jeopardizes park effectiveness. Journal of Environmental Management, 2011, 92, 229-239.	7.8	42
128	Potential habitat connectivity of European bison (Bison bonasus) in the Carpathians. Biological Conservation, 2012, 146, 188-196.	4.1	42
129	Widespread forest cutting in the aftermath of World War II captured by broad-scale historical Corona spy satellite photography. Remote Sensing of Environment, 2018, 204, 322-332.	11.0	42
130	Spatial patterns of cone serotiny in Pinus banksiana in relation to fire disturbance. Forest Ecology and Management, 2004, 189, 133-141.	3.2	41
131	Habitat and population modelling of roe deer using an interactive geographic information system. Ecological Modelling, 1999, 114, 287-304.	2.5	40
132	Recent collapse of crop belts and declining diversity of US agriculture since 1840. Global Change Biology, 2021, 27, 151-164.	9.5	40
133	Effects of national forestâ€management regimes on unprotected forests of the Himalaya. Conservation Biology, 2017, 31, 1271-1282.	4.7	39
134	Spatiotemporal dynamics of housing growth hotspots in the North Central U.S. from 1940 to 2000. Landscape Ecology, 2007, 22, 939-952.	4.2	38
135	Costâ€effectiveness of strategies to establish a European bison metapopulation in the Carpathians. Journal of Applied Ecology, 2011, 48, 317-329.	4.0	38
136	Housing development erodes avian community structure in U.S. protected areas. Ecological Applications, 2014, 24, 1445-1462.	3.8	38
137	Rebuilding and new housing development after wildfire. International Journal of Wildland Fire, 2015, 24, 138.	2.4	38
138	Effects of ignition location models on the burn patterns of simulated wildfires. Environmental Modelling and Software, 2011, 26, 583-592.	4.5	37
139	Modeling forest harvesting effects on landscape pattern in the Northwest Wisconsin Pine Barrens. Forest Ecology and Management, 2006, 236, 113-126.	3.2	36
140	Regional- and district-level drivers of timber harvesting in European Russia after the collapse of the Soviet Union. Global Environmental Change, 2011, 21, 1290-1300.	7.8	36
141	Drivers of forest cover change in Eastern Europe and European Russia, 1985–2012. Land Use Policy, 2016, 59, 284-297.	5.6	36
142	Historical land use dataset of the Carpathian region (1819–1980). Journal of Maps, 2018, 14, 644-651.	2.0	36
143	Rural land abandonment is too ephemeral to provide major benefits for biodiversity and climate. Science Advances, 2022, 8, .	10.3	36
144	Modelling avian biodiversity using raw, unclassified satellite imagery. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130197.	4.0	35

#	Article	IF	CITATIONS
145	The effect of protected areas on forest disturbance in the Carpathian Mountains 1985–2010. Conservation Biology, 2017, 31, 570-580.	4.7	35
146	Potential breeding distributions of U.S. birds predicted with both shortâ€ŧerm variability and longâ€ŧerm average climate data. Ecological Applications, 2016, 26, 2720-2731.	3.8	34
147	Using the North American Breeding Bird Survey to assess broad-scale response of the continent's most imperiled avian community, grassland birds, to weather variability. Condor, 2016, 118, 502-512.	1.6	34
148	Geography of current and future global mammal extinction risk. PLoS ONE, 2017, 12, e0186934.	2.5	34
149	Complex effects of scale on the relationships of landscape pattern versus avian species richness and community structure in a woodland savanna mosaic. Ecography, 2012, 35, 393-411.	4.5	33
150	Improving the mapping of crop types in the Midwestern U.S. by fusing Landsat and MODIS satellite data. International Journal of Applied Earth Observation and Geoinformation, 2017, 58, 1-11.	2.8	33
151	Half a century of forest cover change along the Latvian-Russian border captured by object-based image analysis of Corona and Landsat TM/OLI data. Remote Sensing of Environment, 2020, 249, 112010.	11.0	33
152	Longâ€ŧerm avian community response to housing development at the boundary of <scp>US</scp> protected areas: effect size increases with time. Journal of Applied Ecology, 2015, 52, 1227-1236.	4.0	32
153	Adapting to Wildfire: Rebuilding After Home Loss. Society and Natural Resources, 2015, 28, 839-856.	1.9	32
154	Evolutionary time drives global tetrapod diversity. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172378.	2.6	32
155	Contrasting measures of fitness to classify habitat quality for the black-throated sparrow (Amphispiza bilineata). Biological Conservation, 2006, 132, 199-210.	4.1	31
156	Avifauna response to hurricanes: regional changes in community similarity. Global Change Biology, 2010, 16, 905-917.	9.5	31
157	Mapping seasonal European bison habitat in the Caucasus Mountains to identify potential reintroduction sites. Biological Conservation, 2015, 191, 83-92.	4.1	31
158	The conundrum of agendaâ€driven science in conservation. Frontiers in Ecology and the Environment, 2019, 17, 80-82.	4.0	31
159	The importance of range edges for an irruptive species during extreme weather events. Landscape Ecology, 2015, 30, 1095-1110.	4.2	30
160	Rapid WUI growth in a natural amenity-rich region in central-western Patagonia, Argentina. International Journal of Wildland Fire, 2019, 28, 473.	2.4	30
161	Post-Soviet land-use change effects on large mammals' habitat in European Russia. Biological Conservation, 2015, 191, 567-576.	4.1	28
162	The signature of human pressure history on the biogeography of body mass in tetrapods. Global Ecology and Biogeography, 2017, 26, 1022-1034.	5.8	28

#	Article	IF	CITATIONS
163	Nineteenth-century land-use legacies affect contemporary land abandonment in the Carpathians. Regional Environmental Change, 2017, 17, 2209-2222.	2.9	27
164	Effects of ecotourism on forest loss in the Himalayan biodiversity hotspot based on counterfactual analyses. Conservation Biology, 2019, 33, 1318-1328.	4.7	27
165	Habitat heterogeneity captured by 30â€m resolution satellite image texture predicts bird richness across the United States. Ecological Applications, 2020, 30, e02157.	3.8	27
166	Behavioural response to infrastructure of wildlife adapted to natural disturbances. Landscape and Urban Planning, 2013, 114, 9-27.	7.5	26
167	Influence of forest planning alternatives on landscape pattern and ecosystem processes in northern Wisconsin, USA. Forest Ecology and Management, 2008, 254, 429-444.	3.2	25
168	Analytical Solutions to Tradeâ€Offs between Size of Protected Areas and Landâ€Use Intensity. Conservation Biology, 2012, 26, 883-893.	4.7	24
169	Refugee species: which historic baseline should inform conservation planning?. Diversity and Distributions, 2012, 18, 1258-1261.	4.1	24
170	Systematic Temporal Patterns in the Relationship Between Housing Development and Forest Bird Biodiversity. Conservation Biology, 2014, 28, 1291-1301.	4.7	24
171	Technology or policy? Drivers of land cover change in northwestern Spain before and after the accession to European Economic Community. Land Use Policy, 2015, 45, 18-25.	5.6	24
172	Effects of local land-use planning on development and disturbance in riparian areas. Land Use Policy, 2017, 60, 16-25.	5.6	24
173	The wildland–urban interface in the United States based on 125 million building locations. Ecological Applications, 2022, 32, e2597.	3.8	24
174	Variability in Energy Influences Avian Distribution Patterns Across the USA. Ecosystems, 2008, 11, 854-867.	3.4	23
175	Forests, houses, or both? Relationships between land cover, housing characteristics, and resident socioeconomic status across ecoregions. Journal of Environmental Management, 2019, 234, 464-475.	7.8	23
176	Assessing niche overlap between domestic and threatened wild sheep to identify conservation priority areas. Diversity and Distributions, 2019, 25, 129-141.	4.1	23
177	Pine plantations and five decades of land use change in central Chile. PLoS ONE, 2020, 15, e0230193.	2.5	23
178	Statistical inference for trends in spatiotemporal data. Remote Sensing of Environment, 2021, 266, 112678.	11.0	23
179	Two multi-scale contextual approaches for mapping spatial pattern. Landscape Ecology, 2010, 25, 711-725.	4.2	22
180	Allocating fuel breaks to optimally protect structures in the wildland–urban interface. International Journal of Wildland Fire, 2011, 20, 59.	2.4	22

VOLKER C RADELOFF

#	Article	IF	CITATIONS
181	Wildlife population changes across Eastern Europe after the collapse of socialism. Frontiers in Ecology and the Environment, 2018, 16, 77-81.	4.0	22
182	Payments for ecosystem services in Mexico reduce forest fragmentation. Ecological Applications, 2018, 28, 1982-1997.	3.8	22
183	The role of smallholder woodlots in global restoration pledges – Lessons from Tanzania. Forest Policy and Economics, 2020, 115, 102144.	3.4	22
184	Effectiveness of protected areas in the Western Caucasus before and after the transition to post-socialism. Biological Conservation, 2015, 184, 456-464.	4.1	21
185	Recovery and adaptation after wildfire on the Colorado Front Range (2010–12). International Journal of Wildland Fire, 2016, 25, 1144.	2.4	21
186	Tropical bird species richness is strongly associated with patterns of primary productivity captured by the Dynamic Habitat Indices. Remote Sensing of Environment, 2019, 232, 111306.	11.0	21
187	Short-term vegetation loss versus decadal degradation of grasslands in the Caucasus based on Cumulative Endmember Fractions. Remote Sensing of Environment, 2020, 248, 111969.	11.0	21
188	Self-perpetuating ecological–evolutionary dynamics in an agricultural host–parasite system. Nature Ecology and Evolution, 2020, 4, 702-711.	7.8	21
189	Modeling the Influence of Dynamic Zoning of Forest Harvesting on Ecological Succession in a Northern Hardwoods Landscape. Environmental Management, 2005, 35, 410-425.	2.7	20
190	Slow and steady wins the race? Future climate and land use change leaves the imperiled Blanding's turtle (Emydoidea blandingii) behind. Biological Conservation, 2018, 222, 75-85.	4.1	20
191	Spatio-temporal remotely sensed indices identify hotspots of biodiversity conservation concern. Remote Sensing of Environment, 2021, 258, 112368.	11.0	20
192	Conservation of Forest Birds: Evidence of a Shifting Baseline in Community Structure. PLoS ONE, 2010, 5, e11938.	2.5	20
193	Evaluating the influence of conservation plans on land protection actions in Wisconsin, USA. Biological Conservation, 2014, 178, 37-49.	4.1	19
194	Effects of habitat suitability and minimum patch size thresholds on the assessment of landscape connectivity for jaguars in the Sierra Gorda, Mexico. Biological Conservation, 2016, 204, 296-305.	4.1	19
195	Landsat 8 TIRS-derived relative temperature and thermal heterogeneity predict winter bird species richness patterns across the conterminous United States. Remote Sensing of Environment, 2020, 236, 111514.	11.0	19
196	Potential adaptability of marine turtles to climate change may be hindered by coastal development in the USA. Regional Environmental Change, 2020, 20, 1.	2.9	19
197	Early warning sign of forest loss in protected areas. Current Biology, 2021, 31, 4620-4626.e3.	3.9	19
198	Lakeshore zoning has heterogeneous ecological effects: an application of a coupled economicâ€ecological model. Ecological Applications, 2010, 20, 867-879.	3.8	18

#	Article	IF	CITATIONS
199	Performance and accuracy of Argos transmitters for wildlife monitoring in Southern Russia. European Journal of Wildlife Research, 2010, 56, 459-463.	1.4	18
200	Remotely-sensed productivity clusters capture global biodiversity patterns. Scientific Reports, 2018, 8, 16261.	3.3	18
201	Modeling regional-scale habitat of forest birds when land management guidelines are needed but information is limited. Biological Conservation, 2010, 143, 1759-1769.	4.1	17
202	Future frequencies of extreme weather events in the National Wildlife Refuges of the conterminous U.S Biological Conservation, 2016, 201, 327-335.	4.1	17
203	Characterizing global patterns of frozen ground with and without snow cover using microwave and MODIS satellite data products. Remote Sensing of Environment, 2017, 191, 168-178.	11.0	17
204	Environmental variation is a major predictor of global trait turnover in mammals. Journal of Biogeography, 2018, 45, 225-237.	3.0	17
205	Prey abundance and urbanization influence the establishment of avian predators in a metropolitan landscape. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20182120.	2.6	17
206	Forest management for novelty, persistence, and restoration influenced by policy and society. Frontiers in Ecology and the Environment, 2018, 16, 454-462.	4.0	17
207	Changes in bird assemblages in a wetland ecosystem after 14Âyears of intensified cattle farming. Austral Ecology, 2018, 43, 786-797.	1.5	17
208	Vegetation productivity summarized by the Dynamic Habitat Indices explains broad-scale patterns of moose abundance across Russia. Scientific Reports, 2020, 10, 836.	3.3	17
209	Assessing housing growth when census boundaries change. International Journal of Geographical Information Science, 2009, 23, 859-876.	4.8	16
210	Future changes in fire weather, spring droughts, and false springs across U.S. National Forests and Grasslands. Ecological Applications, 2019, 29, e01904.	3.8	16
211	Spatial and temporal residential density patterns from 1940 to 2000 in and around the Northern Forest of the Northeastern United States. Population and Environment, 2013, 34, 400-419.	3.0	15
212	Potential impacts of oil and gas development and climate change on migratory reindeer calving grounds across the Russian Arctic. Diversity and Distributions, 2014, 20, 416-429.	4.1	15
213	Change in agricultural land use constrains adaptation of national wildlife refuges to climate change. Environmental Conservation, 2015, 42, 12-19.	1.3	15
214	Periodicity in spatial data and geostatistical models: autocorrelation between patches. Ecography, 2000, 23, 81-91.	4.5	15
215	Habitat variables explain Loggerhead Shrike occurrence in the northern Chihuahuan Desert, but are poor correlates of fitness measures. Landscape Ecology, 2010, 25, 643-654.	4.2	14
216	Enhancing biodiversity conservation in existing land-use plans with widely available datasets and spatial analysis techniques. Environmental Conservation, 2018, 45, 252-260.	1.3	14

#	Article	IF	CITATIONS
217	Long-Term Changes of the Wildland–Urban Interface in the Polish Carpathians. ISPRS International Journal of Geo-Information, 2018, 7, 137.	2.9	14
218	Winter Habitat Indices (WHIs) for the contiguous US and their relationship with winter bird diversity. Remote Sensing of Environment, 2021, 255, 112309.	11.0	14
219	Effects of post-WWII forced displacements on long-term landscape dynamics in the Polish Carpathians. Landscape and Urban Planning, 2021, 214, 104164.	7.5	14
220	Housing growth, forests, and public lands in Northern Wisconsin from 1940 to 2000. Journal of Environmental Management, 2009, 90, 2690-2698.	7.8	13
221	Future Land-Use Changes and the Potential for Novelty in Ecosystems of the United States. Ecosystems, 2015, 18, 1332-1342.	3.4	13
222	Vegetation cover in relation to socioeconomic factors in a tropical city assessed from subâ€meter resolution imagery. Ecological Applications, 2018, 28, 681-693.	3.8	13
223	Contrasting seasonal patterns of relative temperature and thermal heterogeneity and their influence on breeding and winter bird richness patterns across the conterminous United States. Ecography, 2021, 44, 953-965.	4.5	12
224	Post-wildfire rebuilding and new development in California indicates minimal adaptation to fire risk. Land Use Policy, 2021, 107, 105502.	5.6	12
225	Reserve selection with land market feedbacks. Journal of Environmental Management, 2013, 114, 276-284.	7.8	11
226	Habitat connectivity for endangered Indochinese tigers in Thailand. Global Ecology and Conservation, 2021, 29, e01718.	2.1	11
227	Computer visualization of pre-settlement and current forests in Wisconsin. Forest Ecology and Management, 2007, 246, 135-143.	3.2	10
228	Assessing Naturalness in Northern Great Lakes Forests Based on Historical Land-Cover and Vegetation Changes. Environmental Management, 2013, 52, 481-492.	2.7	10
229	Influences of succession and erosion on bird communities in a South American highland wooded landscape. Forest Ecology and Management, 2015, 349, 85-93.	3.2	10
230	Past and predicted future effects of housing growth on open space conservation opportunity areas and habitat connectivity around National Wildlife Refuges. Landscape Ecology, 2016, 31, 2175-2186.	4.2	10
231	Future land use threats to rangeâ€restricted fish species in the United States. Diversity and Distributions, 2016, 22, 663-671.	4.1	10
232	Underlying Drivers and Spatial Determinants of post-Soviet Agricultural Land Abandonment in Temperate Eastern Europe. , 2017, , 91-117.		10
233	Recognizing the â€~sparsely settled forest': Multi-decade socioecological change dynamics and community exemplars. Landscape and Urban Planning, 2018, 170, 177-186.	7.5	10
234	Untangling multiple species richness hypothesis globally using remote sensing habitat indices. Ecological Indicators, 2019, 107, 105567.	6.3	10

#	Article	IF	CITATIONS
235	Growth of the wildland-urban interface within and around U.S. National Forests and Grasslands, 1990–2010. Landscape and Urban Planning, 2022, 218, 104283.	7.5	10
236	Winter conditions structure extratropical patterns of species richness of amphibians, birds and mammals globally. Global Ecology and Biogeography, 2022, 31, 1366-1380.	5.8	10
237	INTEGRATING DEMOGRAPHIC AND LANDSAT (TM) DATA AT A WATERSHED SCALE. Journal of the American Water Resources Association, 2000, 36, 215-228.	2.4	9
238	Adding uncertainty to forest inventory plot locations: effects on analyses using geospatial data. Canadian Journal of Forest Research, 2007, 37, 2313-2325.	1.7	9
239	The loss of forest birds habitats under different land use policies as projected by a coupled ecological-econometric model. Biological Conservation, 2013, 165, 1-9.	4.1	9
240	An evaluation of environmental, institutional and socio-economic factors explaining successful conservation plan implementation in the north-central United States. Biological Conservation, 2015, 192, 135-144.	4.1	9
241	Prioritizing land management efforts at a landscape scale: a case study using prescribed fire in <scp>W</scp> isconsin. Ecological Applications, 2016, 26, 1018-1029.	3.8	9
242	Sprawling and diverse: The changing U.S. population and implications for public lands in the 21st Century. Journal of Environmental Management, 2018, 215, 153-165.	7.8	9
243	Assessing vulnerability and threat from housing development to Conservation Opportunity Areas in State Wildlife Action Plans across the United States. Landscape and Urban Planning, 2019, 185, 237-245.	7.5	9
244	Conservation planning for island nations: Using a network analysis model to find novel opportunities for landscape connectivity in Puerto Rico. Global Ecology and Conservation, 2020, 23, e01075.	2.1	9
245	Conservation prioritization when species distribution data are scarce. Landscape and Urban Planning, 2021, 210, 104067.	7.5	9
246	Forest phenoclusters for Argentina based on vegetation phenology and climate. Ecological Applications, 2022, 32, e2526.	3.8	9
247	Combining Satellite-Based Fire Observations and Ground-Based Lightning Detections to Identify Lightning Fires Across the Conterminous USA. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5, 1438-1447.	4.9	8
248	Monitoring selective logging with Landsat satellite imagery reveals that protected forests in Western Siberia experience greater harvest than non-protected forests. Environmental Conservation, 2017, 44, 191-199.	1.3	8
249	Land Change in the Carpathian Region Before and After Major Institutional Changes. , 2017, , 57-90.		8
250	The ability of zoning and land acquisition to increase property values and maintain largemouth bass growth rates in an amenity rich region. Landscape and Urban Planning, 2012, 107, 69-78.	7.5	7
251	Improving the utility of existing conservation plans using projected housing development. Landscape and Urban Planning, 2014, 126, 10-20.	7.5	7
252	Restoring riparian forests according to existing regulations could greatly improve connectivity for for forest fauna in Chile. Landscape and Urban Planning, 2020, 203, 103895.	7.5	7

#	Article	IF	CITATIONS
253	Mapping breeding bird species richness at managementâ€relevant resolutions across the United States. Ecological Applications, 2022, 32, e2624.	3.8	7
254	Optimizing regional conservation planning for forest birds. Journal of Applied Ecology, 2011, 48, 726-735.	4.0	6
255	Habitat–occupancy associations and tree-species use patterns by breeding birds in Tibetan sacred forests. Biodiversity and Conservation, 2015, 24, 129-148.	2.6	6
256	The Great Lakes Region is a melting pot for vicariant red fox (Vulpes vulpes) populations. Journal of Mammalogy, 2018, 99, 1229-1236.	1.3	6
257	Responses to land cover and grassland management vary across lifeâ€history stages for a grassland specialist. Ecology and Evolution, 2020, 10, 12777-12791.	1.9	6
258	Tariffs and Trees: The Effects of the Austro-Hungarian Customs Union on Specialization and Land-Use Change. Journal of Economic History, 2018, 78, 1142-1178.	1.2	5
259	The importance of small fires for wildfire hazard in urbanised landscapes of the northeastern US. International Journal of Wildland Fire, 2021, 30, 307.	2.4	5
260	Correlates of forest-cover change in European Russia, 1989–2012. Land Use Policy, 2020, 96, 104648.	5.6	5
261	Changes in the grasslands of the Caucasus based on Cumulative Endmember Fractions from the full 1987–2019 Landsat record. Science of Remote Sensing, 2021, 4, 100035.	4.8	5
262	Landâ€use and climatic causes of environmental novelty in Wisconsin since 1890. Ecological Applications, 2019, 29, e01955.	3.8	4
263	Conservation status of the threatened and endemic Rufous-throated Dipper Cinclus schulzi in Argentina. Bird Conservation International, 2020, 30, 396-405.	1.3	4
264	National parks influence habitat use of lowland tapirs in adjacent private lands in the Southern Yungas of Argentina. Oryx, 0, , 1-10.	1.0	4
265	Patterns of bird species richness explained by annual variation in remotely sensed Dynamic Habitat Indices. Ecological Indicators, 2021, 127, 107774.	6.3	4
266	An evaluation of prior influence on the predictive ability of Bayesian model averaging. Oecologia, 2012, 168, 719-726.	2.0	3
267	Bird conservation in the Carpathian Ecoregion in light of long-term land use trends and conservation responsibility. Biodiversity and Conservation, 2018, 27, 2051-2068.	2.6	3
268	Informing forest conservation planning with detailed human footprint data for Argentina. Global Ecology and Conservation, 2021, 31, e01787.	2.1	3
269	Integrated topographic corrections improve forest mapping using Landsat imagery. International Journal of Applied Earth Observation and Geoinformation, 2022, 108, 102716.	2.8	3
270	Conservation responsibility for bird species in tropical logged forests. Conservation Letters, 2022, 15,	5.7	3

#	Article	IF	CITATIONS
271	Using housing growth to estimate habitat change: detecting Ovenbird response in a rapidly growing New England State. Urban Ecosystems, 2013, 16, 499-510.	2.4	2
272	Identifying areas of optimal multispecies conservation value by accounting for incompatibilities between species. Ecological Modelling, 2016, 332, 74-82.	2.5	2
273	Mapping forest types over large areas with Landsat imagery partially affected by clouds and SLC gaps. International Journal of Applied Earth Observation and Geoinformation, 2022, 107, 102689.	2.8	2
274	A Tale of Two Fires: Retreat and Rebound a Decade After Wildfires in California and South Carolina. Society and Natural Resources, 2022, 35, 875-895.	1.9	1
275	Reinforcing the concept of agendaâ€driven science: a response to Rohlf. Frontiers in Ecology and the Environment, 2019, 17, 556-557.	4.0	0