
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1918515/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective inhibition of BET bromodomains. Nature, 2010, 468, 1067-1073.	27.8	3,456
2	Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15835-15840.	7.1	526
3	RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19754-19759.	7.1	391
4	NMR-Based Model of a Telomerase-Inhibiting Compound Bound to G-Quadruplex DNAâ€. Biochemistry, 1998, 37, 12367-12374.	2.5	369
5	A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20523-20528.	7.1	342
6	Dual kinase-bromodomain inhibitors for rationally designed polypharmacology. Nature Chemical Biology, 2014, 10, 305-312.	8.0	296
7	The (un)targeted cancer kinome. Nature Chemical Biology, 2010, 6, 166-169.	8.0	267
8	Discovery and Optimization of Small-Molecule Ligands for the CBP/p300 Bromodomains. Journal of the American Chemical Society, 2014, 136, 9308-9319.	13.7	244
9	PFI-1, a Highly Selective Protein Interaction Inhibitor, Targeting BET Bromodomains. Cancer Research, 2013, 73, 3336-3346.	0.9	218
10	3,5-Dimethylisoxazoles Act As Acetyl-lysine-mimetic Bromodomain Ligands. Journal of Medicinal Chemistry, 2011, 54, 6761-6770.	6.4	204
11	CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proceedings of the United States of America, 2015, 112, 10768-10773.	7.1	200
12	G-quadruplexes as targets for drug design. , 2000, 85, 141-158.		199
13	Generation of a Selective Small Molecule Inhibitor of the CBP/p300 Bromodomain for Leukemia Therapy. Cancer Research, 2015, 75, 5106-5119.	0.9	193
14	Induction of Duplex to G-quadruplex Transition in the c-myc Promoter Region by a Small Molecule. Journal of Biological Chemistry, 2001, 276, 4640-4646.	3.4	184
15	Structural Analysis Identifies Imidazo[1,2- <i>b</i>]Pyridazines as PIM Kinase Inhibitors with <i>In vitro</i> Antileukemic Activity. Cancer Research, 2007, 67, 6916-6924.	0.9	183
16	Structural diversity in the RGS domain and its interaction with heterotrimeric G protein α-subunits. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6457-6462.	7.1	174
17	Specific CLK Inhibitors from a Novel Chemotype for Regulation of Alternative Splicing. Chemistry and Biology, 2011, 18, 67-76.	6.0	173
18	Kinase Inhibitor Selectivity Profiling Using Differential Scanning Fluorimetry. Methods in Molecular Biology, 2012, 795, 109-118.	0.9	145

#	Article	IF	CITATIONS
19	Structural Basis of Inhibitor Specificity of the Human Protooncogene Proviral Insertion Site in Moloney Murine Leukemia Virus (PIM-1) Kinase. Journal of Medicinal Chemistry, 2005, 48, 7604-7614.	6.4	141
20	Bromodomain-peptide displacement assays for interactome mapping and inhibitor discovery. Molecular BioSystems, 2011, 7, 2899.	2.9	136
21	Discovery and Characterization of GSK2801, a Selective Chemical Probe for the Bromodomains BAZ2A and BAZ2B. Journal of Medicinal Chemistry, 2016, 59, 1410-1424.	6.4	133
22	Leucettines, a Class of Potent Inhibitors of cdc2-Like Kinases and Dual Specificity, Tyrosine Phosphorylation Regulated Kinases Derived from the Marine Sponge Leucettamine B: Modulation of Alternative Pre-RNA Splicing. Journal of Medicinal Chemistry, 2011, 54, 4172-4186.	6.4	130
23	Optimization of 3,5-Dimethylisoxazole Derivatives as Potent Bromodomain Ligands. Journal of Medicinal Chemistry, 2013, 56, 3217-3227.	6.4	125
24	A poised fragment library enables rapid synthetic expansion yielding the first reported inhibitors of PHIP(2), an atypical bromodomain. Chemical Science, 2016, 7, 2322-2330.	7.4	120
25	Arginine Methylation-Dependent Reader-Writer Interplay Governs Growth Control by E2F-1. Molecular Cell, 2013, 52, 37-51.	9.7	119
26	Discovery of Novel Small-Molecule Inhibitors of BRD4 Using Structure-Based Virtual Screening. Journal of Medicinal Chemistry, 2013, 56, 8073-8088.	6.4	116
27	Benzodiazepines and benzotriazepines as protein interaction inhibitors targeting bromodomains of the BET family. Bioorganic and Medicinal Chemistry, 2012, 20, 1878-1886.	3.0	112
28	Selective targeting of the BRG/PB1 bromodomains impairs embryonic and trophoblast stem cell maintenance. Science Advances, 2015, 1, e1500723.	10.3	112
29	Cationic Porphyrins Promote the Formation of i-Motif DNA and Bind Peripherally by a Nonintercalative Mechanism. Biochemistry, 2000, 39, 15083-15090.	2.5	108
30	A Series of Potent CREBBP Bromodomain Ligands Reveals an Inducedâ€Fit Pocket Stabilized by a Cation–π Interaction. Angewandte Chemie - International Edition, 2014, 53, 6126-6130.	13.8	108
31	Kinase Domain Insertions Define Distinct Roles of CLK Kinases in SR Protein Phosphorylation. Structure, 2009, 17, 352-362.	3.3	106
32	Crystal Structures of the p21-Activated Kinases PAK4, PAK5, and PAK6 Reveal Catalytic Domain Plasticity of Active Group II PAKs. Structure, 2007, 15, 201-213.	3.3	105
33	Structural and Functional Characterization of the Human Protein Kinase ASK1. Structure, 2007, 15, 1215-1226.	3.3	98
34	Targeting Low-Druggability Bromodomains: Fragment Based Screening and Inhibitor Design against the BAZ2B Bromodomain. Journal of Medicinal Chemistry, 2013, 56, 10183-10187.	6.4	92
35	Structure and Regulation of the Human Nek2 Centrosomal Kinase. Journal of Biological Chemistry, 2007, 282, 6833-6842.	3.4	90
36	Structure Enabled Design of BAZ2-ICR, A Chemical Probe Targeting the Bromodomains of BAZ2A and BAZ2B. Journal of Medicinal Chemistry, 2015, 58, 2553-2559.	6.4	90

#	Article	IF	CITATIONS
37	Promiscuous targeting of bromodomains by bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia. Science Advances, 2016, 2, e1600760.	10.3	90
38	Discovery of a Chemical Tool Inhibitor Targeting the Bromodomains of TRIM24 and BRPF. Journal of Medicinal Chemistry, 2016, 59, 1642-1647.	6.4	86
39	A chemical toolbox for the study of bromodomains and epigenetic signaling. Nature Communications, 2019, 10, 1915.	12.8	85
40	[1,2,4]Triazolo[4,3- <i>a</i>]phthalazines: Inhibitors of Diverse Bromodomains. Journal of Medicinal Chemistry, 2014, 57, 462-476.	6.4	84
41	Identification of a Chemical Probe for Family VIII Bromodomains through Optimization of a Fragment Hit. Journal of Medicinal Chemistry, 2016, 59, 4800-4811.	6.4	79
42	Type II Inhibitors Targeting CDK2. ACS Chemical Biology, 2015, 10, 2116-2125.	3.4	75
43	Discovery of a PCAF Bromodomain Chemical Probe. Angewandte Chemie - International Edition, 2017, 56, 827-831.	13.8	69
44	Topical Antiangiogenic SRPK1 Inhibitors Reduce Choroidal Neovascularization in Rodent Models of Exudative AMD. , 2013, 54, 6052.		67
45	7,8-Dichloro-1-oxo-β-carbolines as a Versatile Scaffold for the Development of Potent and Selective Kinase Inhibitors with Unusual Binding Modes. Journal of Medicinal Chemistry, 2012, 55, 403-413.	6.4	64
46	Solution structure sf r(gaggacug):d(CAGTCCTC) hybrid: implications for the initiation of HIV-1(+)-strand synthesis. Journal of Molecular Biology, 1997, 269, 225-239.	4.2	63
47	The design and synthesis of 5- and 6-isoxazolylbenzimidazoles as selective inhibitors of the BET bromodomains. MedChemComm, 2013, 4, 140-144.	3.4	63
48	Design and synthesis of potent and selective inhibitors of BRD7 and BRD9 bromodomains. MedChemComm, 2015, 6, 1381-1386.	3.4	63
49	Bromo-deaza-SAH: A potent and selective DOT1L inhibitor. Bioorganic and Medicinal Chemistry, 2013, 21, 1787-1794.	3.0	62
50	Insights for the development of specific kinase inhibitors by targeted structural genomics. Drug Discovery Today, 2007, 12, 365-372.	6.4	60
51	Molecular Basis of Histone Tail Recognition by Human TIP5 PHD Finger and Bromodomain of the Chromatin Remodeling Complex NoRC. Structure, 2015, 23, 80-92.	3.3	59
52	Discovery of an MLLT1/3 YEATS Domain Chemical Probe. Angewandte Chemie - International Edition, 2018, 57, 16302-16307.	13.8	58
53	Structural plasticity of histones H3–H4 facilitates their allosteric exchange between RbAp48 and ASF1. Nature Structural and Molecular Biology, 2013, 20, 29-35.	8.2	57
54	SGC-GAK-1: A Chemical Probe for Cyclin G Associated Kinase (GAK). Journal of Medicinal Chemistry, 2019. 62. 2830-2836.	6.4	56

#	Article	IF	CITATIONS
55	Identification of a small-molecule ligand of the epigenetic reader protein Spindlin1 via a versatile screening platform. Nucleic Acids Research, 2016, 44, e88-e88.	14.5	50
56	Development of Selective CBP/P300 Benzoxazepine Bromodomain Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 8889-8912.	6.4	49
57	A common 40 amino acid motif in eukaryotic RNases H1 and caulimovirus ORF VI proteins binds to duplex RNAs. Nucleic Acids Research, 1998, 26, 1834-1840.	14.5	47
58	Benzoisoquinolinediones as Potent and Selective Inhibitors of BRPF2 and TAF1/TAF1L Bromodomains. Journal of Medicinal Chemistry, 2017, 60, 4002-4022.	6.4	47
59	Structure-based approaches towards identification of fragments for the low-druggability ATAD2 bromodomain. MedChemComm, 2014, 5, 1843-1848.	3.4	46
60	Structural Comparison of Human Mammalian Ste20-Like Kinases. PLoS ONE, 2010, 5, e11905.	2.5	46
61	BET inhibition as a new strategy for the treatment of gastric cancer. Oncotarget, 2016, 7, 43997-44012.	1.8	44
62	Structural and Atropisomeric Factors Governing the Selectivity of Pyrimido-benzodiazipinones as Inhibitors of Kinases and Bromodomains. ACS Chemical Biology, 2018, 13, 2438-2448.	3.4	44
63	Mapping the chemical chromatin reactivation landscape identifies BRD4-TAF1 cross-talk. Nature Chemical Biology, 2016, 12, 504-510.	8.0	43
64	Machine-assisted synthesis of modulators of the histone reader BRD9 using flow methods of chemistry and frontal affinity chromatography. MedChemComm, 2014, 5, 540-546.	3.4	42
65	DNA Sequence GCGAATGAGC Containing the Human Centromere Core Sequence GAAT Forms a Self-complementary Duplex with Sheared G·A Pairs in Solution. Journal of Molecular Biology, 1994, 241, 467-479.	4.2	41
66	The Structure and Dynamics of Tandem WW Domains in a Negative Regulator of Notch Signaling, Suppressor of Deltex. Journal of Biological Chemistry, 2004, 279, 34991-35000.	3.4	41
67	Discovery and Optimization of a Selective Ligand for the Switch/Sucrose Nonfermenting-Related Bromodomains of Polybromo Protein-1 by the Use of Virtual Screening and Hydration Analysis. Journal of Medicinal Chemistry, 2016, 59, 8787-8803.	6.4	41
68	Selective Targeting of Bromodomains of the Bromodomain-PHD Fingers Family Impairs Osteoclast Differentiation. ACS Chemical Biology, 2017, 12, 2619-2630.	3.4	41
69	Thiazolidine derivatives as potent and selective inhibitors of the PIM kinase family. Bioorganic and Medicinal Chemistry, 2017, 25, 2657-2665.	3.0	40
70	Structure-Based Identification of Inhibitory Fragments Targeting the p300/CBP-Associated Factor Bromodomain. Journal of Medicinal Chemistry, 2016, 59, 1648-1653.	6.4	39
71	Design of a Biased Potent Small Molecule Inhibitor of the Bromodomain and PHD Finger-Containing (BRPF) Proteins Suitable for Cellular and in Vivo Studies. Journal of Medicinal Chemistry, 2017, 60, 668-680.	6.4	38
72	The Solution Structure of the r(gcg)d(TATACCC):d(GGGTATACGC) Okazaki Fragment Contains Two Distinct Duplex Morphologies Connected by a Junction. Journal of Molecular Biology, 1994, 241, 440-455.	4.2	36

#	Article	IF	CITATIONS
73	The Cryptosporidium parvum Kinome. BMC Genomics, 2011, 12, 478.	2.8	35
74	Structure-Based Approach toward Identification of Inhibitory Fragments for Eleven-Nineteen-Leukemia Protein (ENL). Journal of Medicinal Chemistry, 2018, 61, 10929-10934.	6.4	33
75	CBP/p300 Bromodomains Regulate Amyloid-like Protein Aggregation upon Aberrant Lysine Acetylation. Cell Chemical Biology, 2017, 24, 9-23.	5.2	32
76	Structural Variation among Retroviral Primerâ^'DNA Junctions:Â Solution Structure of the HIV-1 (â^')-Strand Okazaki Fragment r(gcca)d(CTGC)·d(GCAGTGGC)â€,‡. Biochemistry, 1996, 35, 11070-11080.	2.5	29
77	Design of a Chemical Probe for the Bromodomain and Plant Homeodomain Finger-Containing (BRPF) Family of Proteins. Journal of Medicinal Chemistry, 2017, 60, 6998-7011.	6.4	28
78	DFG-1 Residue Controls Inhibitor Binding Mode and Affinity, Providing a Basis for Rational Design of Kinase Inhibitor Selectivity. Journal of Medicinal Chemistry, 2020, 63, 10224-10234.	6.4	26
79	Structure of Chimeric Duplex Junctions:Â Solution Conformation of the Retroviral Okazaki-like Fragment r(ccca)d(AATGA)·d(TCATTTGGG) from Moloney Murine Leukemia Virusâ€,‡. Biochemistry, 1996, 35, 8126-8135.	2.5	24
80	Structure of dystrophia myotonica protein kinase. Protein Science, 2009, 18, 782-791.	7.6	22
81	Controlling Intramolecular Interactions in the Design of Selective, High-Affinity Ligands for the CREBBP Bromodomain. Journal of Medicinal Chemistry, 2021, 64, 10102-10123.	6.4	17
82	Stimulation of Hepatic Apolipoprotein A-I Production by Novel Thieno-Triazolodiazepines: Roles of the Classical Benzodiazepine Receptor, PAF Receptor, and Bromodomain Binding. Lipid Insights, 2013, 6, LPI.S13258.	1.0	14
83	Synthesis of kinase inhibitors containing a pentafluorosulfanyl moiety. Organic and Biomolecular Chemistry, 2017, 15, 8655-8660.	2.8	14
84	Propionate Analogues of Zearalenone Bind to Hsp90. ChemBioChem, 2009, 10, 2203-2212.	2.6	11
85	Discovery of a PCAF Bromodomain Chemical Probe. Angewandte Chemie, 2017, 129, 845-849.	2.0	10
86	RhoB can adopt a Mg ²⁺ free conformation prior to GEF binding. Proteins: Structure, Function and Bioinformatics, 2008, 72, 498-505.	2.6	7
87	Synthesis and Biological Investigation of (+)-JD1, an Organometallic BET Bromodomain Inhibitor. Organometallics, 2020, 39, 408-416.	2.3	6
88	Entdeckung einer chemischen Sonde für MLLT1/3‥EATSâ€Ðomäen. Angewandte Chemie, 2018, 130, 16540-16545.	2.0	1
89	Resonance assignment of the RCS domain of human RGS10. Journal of Biomolecular NMR, 2007, 38, 191-191.	2.8	0
90	What is the future of bromodomains in targeted drug development?. Future Medicinal Chemistry, 2014, 6, 1101-1103.	2.3	0