
Bin Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1918418/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Efficient Conversion of Propargylic Alcohols and Propargylic Amines with CO ₂ Activated by Nobleâ€Metalâ€Free Catalyst Cu ₂ O@ZIFâ€8. Angewandte Chemie - International Edition, 2022, 61, .	13.8	32
2	Highly effective CS ₂ conversion with aziridines catalyzed by novel [Dy ₂₄] nano-cages in MOFs under mild conditions. Journal of Materials Chemistry A, 2022, 10, 4889-4894.	10.3	13
3	Highly Efficient Conversion of Propargylic Alcohols and Propargylic Amines with CO ₂ Activated by Nobleâ€Metalâ€Free Catalyst Cu ₂ O@ZIFâ€8. Angewandte Chemie, 2022, 134, .	2.0	6
4	Mechanistic insights into the luminescent sensing of nitrophenol compounds by a cationic Zn-based metal-organic framework. Dyes and Pigments, 2022, 199, 110099.	3.7	15
5	Development of photochromic fused 2 <i>H</i> -naphthopyrans with promising thermal fading rates. Journal of Materials Chemistry C, 2022, 10, 5542-5549.	5.5	3
6	Selectively Regulating Lewis Acid–Base Sites in Metal–Organic Frameworks for Achieving Turnâ€On/Off of the Catalytic Activity in Different CO ₂ Reactions. Angewandte Chemie - International Edition, 2022, 61, .	13.8	31
7	Selectively Regulating Lewis Acid–Base Sites in Metal–Organic Frameworks for Achieving Turnâ€On/Off of the Catalytic Activity in Different CO ₂ Reactions. Angewandte Chemie, 2022, 134, .	2.0	6
8	Slow magnetic relaxation in a Dy ₃ triangle and a bistriangular Dy ₆ cluster. Dalton Transactions, 2022, 51, 9404-9411.	3.3	8
9	Recyclable Luminescent Sensor for Detecting Creatinine Based on a Lanthanide–Organic Framework. Inorganic Chemistry, 2022, 61, 9990-9996.	4.0	14
10	Characterization of laccase gene StLAC6 and its involvement in the pathogenicity and peroxisome function in Setosphaeria turcica. Journal of Integrative Agriculture, 2022, 21, 2019-2030.	3.5	3
11	An uncommon multicentered ZnI–ZnI bond-based MOF for CO2 fixation with aziridines/epoxides. Chemical Communications, 2021, 57, 7537-7540.	4.1	21
12	Discovery and validation of pesticide novel target: take pyruvate kinase as an example. , 2021, , 443-450.		0
13	A high sensitivity luminescent sensor for the stress biomarker cortisol using four-fold interpenetrated europium–organic frameworks integrated with logic gates. Journal of Materials Chemistry C, 2021, 9, 9643-9649.	5.5	25
14	Photocatalytic Hydrogen Evolution Based on Cobalt–Organic Framework with High Water Vapor Adsorption. Inorganic Chemistry, 2021, 60, 1922-1929.	4.0	10
15	Applications of MOFs as Luminescent Sensors for Environmental Pollutants. Small, 2021, 17, e2005327.	10.0	177
16	Design, synthesis and biological evaluation of pyrazole-aromatic containing carboxamides as potent SDH inhibitors. European Journal of Medicinal Chemistry, 2021, 214, 113230.	5.5	26
17	Recyclable Luminescence Sensor for Dinotefuran in Water by Stable Cadmium–Organic Framework. Analytical Chemistry, 2021, 93, 6599-6603.	6.5	35
18	Dual-Selective Catalysis in Dephosphorylation Tuned by Hf ₆ -Containing Metal–Organic Frameworks Mimicking Phosphatase. ACS Central Science, 2021, 7, 831-840.	11.3	17

Βιν Ζηαο

#	Article	IF	CITATIONS
19	Eco-friendly co-catalyst-free cycloaddition of CO2 and aziridines activated by a porous MOF catalyst. Science China Chemistry, 2021, 64, 1316-1322.	8.2	23
20	Tetraphenylpyrazine-Based Manganese Metal–Organic Framework as a Multifunctional Sensor for Cu ²⁺ , Cr ³⁺ , MnO ₄ [–] , and 2,4,6-Trinitrophenol and the Construction of a Molecular Logical Gate. Inorganic Chemistry, 2021, 60, 11222-11230.	4.0	49
21	Design, Synthesis, and Evaluation of Novel Isothiazole-Purines as a Pyruvate Kinase-Based Fungicidal Lead Compound. Journal of Agricultural and Food Chemistry, 2021, 69, 9461-9471.	5.2	10
22	Green Conversion of CO ₂ and Propargylamines Triggered by Triply Synergistic Catalytic Effects in Metal–Organic Frameworks. Angewandte Chemie, 2021, 133, 20580-20586.	2.0	11
23	Green Conversion of CO ₂ and Propargylamines Triggered by Triply Synergistic Catalytic Effects in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 20417-20423.	13.8	43
24	Cooperation between microporous frameworks and micron-sized channel in crystals for excellent chromate removal. Chemical Engineering Journal, 2021, , 132655.	12.7	0
25	Efficient Cycloaddition of CO ₂ and Aziridines Activated by a Quadruple-Interpenetrated Indium–Organic Framework as a Recyclable Catalyst. Inorganic Chemistry, 2021, 60, 15383-15389.	4.0	29
26	Efficient CO2 electroreduction coupled with semi-dehydrogenation of tetrahydroisoquinoline by MOFs modified electrodes. Journal of Energy Chemistry, 2021, 63, 328-335.	12.9	16
27	Anchoring Ag(I) into Nitro-Functionalized Metal–Organic Frameworks: Effectively Catalyzing Cycloaddition of CO ₂ with Propargylic Alcohols under Mild Conditions. ACS Applied Materials & Interfaces, 2021, 13, 45558-45565.	8.0	29
28	A Facile Strategy for Constructing a Carbonâ€Particleâ€Modified Metal–Organic Framework for Enhancing the Efficiency of CO ₂ Electroreduction into Formate. Angewandte Chemie - International Edition, 2021, 60, 23394-23402.	13.8	58
29	A Facile Strategy for Constructing a Carbonâ€Particleâ€Modified Metal–Organic Framework for Enhancing the Efficiency of CO ₂ Electroreduction into Formate. Angewandte Chemie, 2021, 133, 23582-23590.	2.0	16
30	A seven-coordinated Dy ^{III} single-ion magnet with <i>C</i> _{2v} symmetry constructed by a multidentate Schiff-base ligand. CrystEngComm, 2021, 23, 1718-1722.	2.6	3
31	Highly efficient hydroboration of alkynes catalyzed by porous copper-organic framework under mild conditions. Journal of Catalysis, 2021, 404, 250-257.	6.2	10
32	Formation of CX Bonds in CO ₂ Chemical Fixation Catalyzed by Metalâ^'Organic Frameworks. Advanced Materials, 2020, 32, e1806163.	21.0	102
33	N,Cl co-doped fluorescent carbon dots as nanoprobe for detection of tartrazine in beverages. Food Chemistry, 2020, 310, 125832.	8.2	56
34	Systematic identification of genes associated with plant growth–defense tradeoffs under JA signaling in Arabidopsis. Planta, 2020, 251, 43.	3.2	17
35	MOFs-Based Catalysts Supported Chemical Conversion of CO2. Topics in Current Chemistry, 2020, 378, 11.	5.8	38
36	Direct label-free methods for identification of target proteins in agrochemicals. International Journal of Biological Macromolecules, 2020, 164, 1475-1483.	7.5	5

#	Article	IF	CITATIONS
37	Size-Tunable Ultrafine Pt Nanoparticles in Soluble Metal–Organic Cages: Displaying Highly Stereoselective Hydrogenation of α-Pinene. Chemistry of Materials, 2020, 32, 7063-7069.	6.7	15
38	Bimetallic Lanthanide-Organic Framework Membranes as a Self-Calibrating Luminescent Sensor for Rapidly Detecting Antibiotics in Water. ACS Applied Materials & Interfaces, 2020, 12, 38124-38131.	8.0	72
39	Cluster/cage-based coordination polymers with tetrazole derivatives. Coordination Chemistry Reviews, 2020, 422, 213424.	18.8	39
40	Preparation and Biomedical Applications of Multicolor Carbon Dots: Recent Advances and Future Challenges. Particle and Particle Systems Characterization, 2020, 37, 1900489.	2.3	27
41	Controllable chemoselective hydrogenation of furfural by PdAg/C bimetallic catalysts under ambient operating conditions: an interesting Ag switch. Green Chemistry, 2020, 22, 1432-1442.	9.0	38
42	Highly Efficient Conversion of Propargylic Amines and CO ₂ Catalyzed by Nobleâ€Metalâ€Free [Zn ₁₁₆] Nanocages. Angewandte Chemie - International Edition, 2020, 59, 8586-8593.	13.8	74
43	Highly Efficient Conversion of Propargylic Amines and CO ₂ Catalyzed by Nobleâ€Metalâ€Free [Zn ₁₁₆] Nanocages. Angewandte Chemie, 2020, 132, 8664-8671.	2.0	10
44	Highly Sensitive and Selective Luminescence Sensor Based on Two-Fold Interpenetrated MOFs for Detecting Glutamate in Serum. Inorganic Chemistry, 2020, 59, 2171-2177.	4.0	64
45	The different magnetic relaxation behaviors in [Fe(CN) ₆] ^{3â^'} or [Co(CN) ₆] ^{3â^'} bridged 3d–4f heterometallic compounds. CrystEngComm, 2020, 22, 2998-3004.	2.6	19
46	Synthesis, bioactivity and mode of action of 5 _A 5 _B 6 _C tricyclic spirolactones as novel antiviral lead compounds. Pest Management Science, 2019, 75, 292-301.	3.4	23
47	An Ultrastable Matryoshka [Hf ₁₃] Nanocluster as a Luminescent Sensor for Concentrated Alkali and Acid. Angewandte Chemie - International Edition, 2019, 58, 16610-16616.	13.8	39
48	An Ultrastable Matryoshka [Hf ₁₃] Nanocluster as a Luminescent Sensor for Concentrated Alkali and Acid. Angewandte Chemie, 2019, 131, 16763-16769.	2.0	7
49	Ultrabright Full Color Carbon Dots by Fine-Tuning Crystal Morphology Controllable Synthesis for Multicolor Bioimaging and Sensing. ACS Applied Materials & Interfaces, 2019, 11, 27259-27268.	8.0	29
50	Luminescent Detection of Colchicine by a Unique Indium–Organic Framework in Water with High Sensitivity. Analytical Chemistry, 2019, 91, 9754-9759.	6.5	46
51	Two Stable Heterometalâ€MOFs as Highly Efficient and Recyclable Catalysts in the CO 2 Coupling Reaction with Aziridines. Chemistry - an Asian Journal, 2019, 14, 3668-3674.	3.3	13
52	Discovery of Novel Isothiazole, 1,2,3-Thiadiazole, and Thiazole-Based Cinnamamides as Fungicidal Candidates. Journal of Agricultural and Food Chemistry, 2019, 67, 12357-12365.	5.2	35
53	Synthesis and Biological Activity of Novel Succinate Dehydrogenase Inhibitor Derivatives as Potent Fungicide Candidates. Journal of Agricultural and Food Chemistry, 2019, 67, 13185-13194.	5.2	56
54	Enhancing the energy barrier of dysprosium(<scp>iii</scp>) single-molecule magnets by tuning the magnetic interactions through different <i>N</i> -oxide bridging ligands. CrystEngComm, 2019, 21, 6219-6225.	2.6	11

#	Article	IF	CITATIONS
55	A stable zinc–organic framework with luminescence detection of acetylacetone in aqueous solution. Inorganic Chemistry Frontiers, 2019, 6, 271-277.	6.0	109
56	Discovery of Novel Thiazole Carboxamides as Antifungal Succinate Dehydrogenase Inhibitors. Journal of Agricultural and Food Chemistry, 2019, 67, 1647-1655.	5.2	70
57	Water Stable [Tb ₄] Cluster-Based Metal–Organic Framework as Sensitive and Recyclable Luminescence Sensor of Quercetin. Analytical Chemistry, 2019, 91, 2595-2599.	6.5	91
58	Discovery and structure-activity relationship of novel diphenylthiazole derivatives as BTK inhibitor with potent activity against B cell lymphoma cell lines. European Journal of Medicinal Chemistry, 2019, 178, 767-781.	5.5	14
59	Highly Selective Enamination of βâ€ketoesters Catalyzed by Interlocked [Cu 8] and [Cu 18] Nanocages. Angewandte Chemie, 2019, 131, 13436-13441.	2.0	5
60	Homolytic cleavage of water on magnesia film promoted by interfacial oxideâ ``metal nanocomposite. Applied Surface Science, 2019, 487, 1222-1232.	6.1	5
61	Mode of action for a new potential fungicide candidate, 3-(4-Methyl-1,2,3-thiadiazolyl)-6-trichloromethyl-[1,2,4]-triazolo-[3,4- <i>b</i>][1,3,4]-thiadiazole by iTRAQ. Food and Agricultural Immunology, 2019, 30, 533-547.	1.4	8
62	Highly Selective Enamination of βâ€ketoesters Catalyzed by Interlocked [Cu ₈] and [Cu ₁₈] Nanocages. Angewandte Chemie - International Edition, 2019, 58, 13302-13307.	13.8	16
63	Stable Lanthanide–Organic Framework as a Luminescent Probe To Detect Both Histidine and Aspartic Acid in Water. Inorganic Chemistry, 2019, 58, 6356-6362.	4.0	80
64	Enhancing Magnetic Behaviors of Dysprosium Single-Molecule Magnets from Crystal Field Perturbation by Deprotonating Schiff-Base Ligand. Crystal Growth and Design, 2019, 19, 3365-3371.	3.0	16
65	Stable metal-organic frameworks with high catalytic performance in the cycloaddition of CO2 with aziridines. Science China Chemistry, 2019, 62, 622-628.	8.2	24
66	[Zn 4 O] Clusterâ€Based Metalâ€Organic Frameworks as Catalysts for Conversion of CO 2. Chinese Journal of Chemistry, 2019, 37, 474-478.	4.9	25
67	Applications of MOFs: Recent advances in photocatalytic hydrogen production from water. Coordination Chemistry Reviews, 2019, 390, 50-75.	18.8	272
68	Triple-Interpenetrated Lanthanide-Organic Framework as Dual Wave Bands Self-Calibrated pH Luminescent Probe. Analytical Chemistry, 2019, 91, 5455-5460.	6.5	70
69	High Uptake of ReO ₄ ^{â^'} and CO ₂ Conversion by a Radiationâ€Resistant Thorium–Nickle [Th ₄₈ Ni ₆] Nanocageâ€Based Metal–Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 6022-6027.	: 13.8	109
70	High Uptake of ReO ₄ ^{â^'} and CO ₂ Conversion by a Radiationâ€Resistant Thorium–Nickle [Th ₄₈ Ni ₆] Nanocageâ€Based Metal–Organic Framework. Angewandte Chemie, 2019, 131, 6083-6088.	2.0	15
71	Selectively detecting toluene and benzaldehyde by two stable lanthanide–organic frameworks as luminescent probes. Dalton Transactions, 2019, 48, 3453-3458.	3.3	42
72	A Nobleâ€Metalâ€Free Metal–Organic Framework (MOF) Catalyst for the Highly Efficient Conversion of CO ₂ with Propargylic Alcohols. Angewandte Chemie - International Edition, 2019, 58, 577-581.	13.8	140

#	Article	IF	CITATIONS
73	A Nobleâ€Metalâ€Free Metal–Organic Framework (MOF) Catalyst for the Highly Efficient Conversion of CO ₂ with Propargylic Alcohols. Angewandte Chemie, 2019, 131, 587-591.	2.0	27
74	Discovery of Novel Piperidinylthiazole Derivatives As Broad-Spectrum Fungicidal Candidates. Journal of Agricultural and Food Chemistry, 2019, 67, 1360-1370.	5.2	23
75	Wheel-like Ln ₁₈ Cluster Organic Frameworks for Magnetic Refrigeration and Conversion of CO ₂ . Inorganic Chemistry, 2018, 57, 3144-3150.	4.0	79
76	A Cuprous/Lanthanideâ€Organic Framework as the Luminescent Sensor of Hypochlorite. Chemistry - A European Journal, 2018, 24, 10296-10299.	3.3	36
77	A multifunctional MOF as a recyclable catalyst for the fixation of CO ₂ with aziridines or epoxides and as a luminescent probe of Cr(<scp>vi</scp>). Dalton Transactions, 2018, 47, 4545-4553.	3.3	77
78	Interpenetration-Dependent Luminescent Probe in Indium-Organic Frameworks for Selectively Detecting Nitrofurazone in Water. Analytical Chemistry, 2018, 90, 1516-1519.	6.5	137
79	Metal–metal bonded compounds with uncommon low oxidation state. Coordination Chemistry Reviews, 2018, 365, 122-144.	18.8	42
80	Stable Zn ^I ontaining MOFs with Large [Zn ₇₀] Nanocages from Assembly of Zn ^{II} lons and Aromatic [Zn ^I ₈] Clusters. Chemistry - A European Journal, 2018, 24, 3683-3688.	3.3	19
81	Design, synthesis and fungicidal activity of isothiazole–thiazole derivatives. RSC Advances, 2018, 8, 39593-39601.	3.6	23
82	Synthesis and fungicidal activity of monocyclic and fused 1,2,3-triazolium-5-olates. Chemistry of Heterocyclic Compounds, 2018, 54, 956-963.	1.2	5
83	Frontispiece: Metalâ€Organic Frameworks Based on Multicenterâ€Bonded [M ^I] ₈ (M=Mn, Zn) Clusters with Cubic Aromaticity. Chemistry - A European Journal, 2018, 24, .	3.3	0
84	Discovery of Pyruvate Kinase as a Novel Target of New Fungicide Candidate 3-(4-Methyl-1,2,3-thiadiazolyl)-6-trichloromethyl-[1,2,4]-triazolo-[3,4- <i>b</i>][1,3,4]-thiadizole. Journal of Agricultural and Food Chemistry, 2018, 66, 12439-12452.	5.2	35
85	Structure-Based Discovery and Synthesis of Potential Transketolase Inhibitors. Molecules, 2018, 23, 2116.	3.8	18
86	Design, Synthesis and Biological Evaluation of Isothiazole Based 1,2,4â€Trizaole Derivatives. Chinese Journal of Chemistry, 2018, 36, 731-736.	4.9	11
87	Metalâ€Organic Frameworks Based on Multicenterâ€Bonded [M ^I] ₈ (M=Mn, Zn) Clusters with Cubic Aromaticity. Chemistry - A European Journal, 2018, 24, 16702-16707.	3.3	14
88	Modulating CO ₂ Adsorption in Metal–Organic Frameworks via Metal-Ion Doping. Inorganic Chemistry, 2018, 57, 6135-6141.	4.0	21
89	A two-fold interpenetrated zinc–organic framework: luminescence detection of CrO42â^'/Cr2O72â^' and chemical conversion of CO2. CrystEngComm, 2018, 20, 6040-6045.	2.6	13
90	Transketolase Is Identified as a Target of Herbicidal Substance α-Terthienyl by Proteomics. Toxins, 2018, 10, 41.	3.4	17

#	Article	IF	CITATIONS
91	Solvent-dependent variations of both structure and catalytic performance in three manganese coordination polymers. Dalton Transactions, 2018, 47, 6986-6994.	3.3	24
92	Trace water accelerating the CO ₂ cycloaddition reaction catalyzed by an indium–organic framework. Inorganic Chemistry Frontiers, 2018, 5, 1694-1699.	6.0	24
93	Steering reduction and decomposition of peroxide compounds by interface interactions between MgO thin film and transition-metal support. Applied Surface Science, 2018, 459, 812-821.	6.1	8
94	Four tetra-nuclear lanthanide complexes based on 8-hydroxyquinolin derivatives: magnetic refrigeration and single-molecule magnet behaviour. New Journal of Chemistry, 2018, 42, 11847-11853.	2.8	39
95	Synthesis of Novel 3,4-Chloroisothiazole-Based Imidazoles as Fungicides and Evaluation of Their Mode of Action. Journal of Agricultural and Food Chemistry, 2018, 66, 7319-7327.	5.2	45
96	3d-4f Heterometal–Organic Frameworks for Efficient Capture and Conversion of CO ₂ . Crystal Growth and Design, 2017, 17, 3128-3133.	3.0	43
97	Metal–Organic Frameworks with Tb ₄ Clusters as Nodes: Luminescent Detection of Chromium(VI) and Chemical Fixation of CO ₂ . Inorganic Chemistry, 2017, 56, 6244-6250.	4.0	109
98	Cluster-based MOFs with accelerated chemical conversion of CO ₂ through C–C bond formation. Chemical Communications, 2017, 53, 6013-6016.	4.1	89
99	Remarkably Strong Chemisorption of Nitric Oxide on Insulating Oxide Films Promoted by Hybrid Structure. Journal of Physical Chemistry C, 2017, 121, 21482-21490.	3.1	10
100	A water-stable metal-organic framework: serving as a chemical sensor of PO43– and a catalyst for CO2 conversion. Science China Chemistry, 2017, 60, 1328-1333.	8.2	21
101	A unique zinc-organic framework constructed through in situ ligand synthesis for conversion of CO ₂ under mild conditions and as a luminescence sensor for Cr ₂ O ₇ ^{2â^'} /CrO ₄ ^{2â^'} . Dalton Transactions, 2017, 46, 13862-13868.	3.3	40
102	Several [Gd-M] Heterometal–Organic Frameworks with [Gd _n] as Nodes: Tunable Structures and Magnetocaloric Effect. Inorganic Chemistry, 2017, 56, 9169-9176.	4.0	33
103	A Sensitive Luminescent Acetylacetone Probe Based on Znâ€MOF with Sixâ€Fold Interpenetration. Chemistry - A European Journal, 2017, 23, 13289-13293.	3.3	92
104	A Semi onductive Copper–Organic Framework with Two Types of Photocatalytic Activity. Angewandte Chemie - International Edition, 2016, 55, 4938-4942.	13.8	164
105	A Semi onductive Copper–Organic Framework with Two Types of Photocatalytic Activity. Angewandte Chemie, 2016, 128, 5022-5026.	2.0	19
106	Structures and magnetic properties of several phenoxo-O bridged dinuclear lanthanide complexes: Dy derivatives displaying substituent dependent magnetic relaxation behavior. Dalton Transactions, 2016, 45, 8182-8191.	3.3	106
107	Unique (3,4,10)-Connected Lanthanide–Organic Framework as a Recyclable Chemical Sensor for Detecting Al ³⁺ . Inorganic Chemistry, 2016, 55, 4790-4794.	4.0	158
108	Two solvent-stable MOFs as a recyclable luminescent probe for detecting dichromate or chromate anions. CrystEngComm, 2016, 18, 4445-4451.	2.6	130

#	Article	IF	CITATIONS
109	A Bifunctional Europium–Organic Framework with Chemical Fixation of CO ₂ and Luminescent Detection of Al ³⁺ . Inorganic Chemistry, 2016, 55, 9671-9676.	4.0	142
110	A Porous Metal–Organic Framework Assembled by [Cu ₃₀] Nanocages: Serving as Recyclable Catalysts for CO ₂ Fixation with Aziridines. Advanced Science, 2016, 3, 1600048.	11.2	96
111	Lanthanide-based metal–organic frameworks as luminescent probes. Dalton Transactions, 2016, 45, 18003-18017.	3.3	233
112	Assembly of single molecular magnets from dinuclear to 2D Dy-compounds with significant change of relaxation energy barriers. Dalton Transactions, 2016, 45, 85-88.	3.3	25
113	Modulating single-molecule magnet behaviour of phenoxo-O bridged lanthanide(<scp>iii</scp>) dinuclear complexes by using different β-diketonate coligands. Inorganic Chemistry Frontiers, 2016, 3, 133-141.	6.0	139
114	Metal–Organic Frameworks (MOFs) of a Cubic Metal Cluster with Multicentered Mn ^I Mn ^I Bonds. Angewandte Chemie - International Edition, 2015, 54, 11681-11685.	13.8	50
115	Controlled lanthanide–organic framework nanospheres as reversible and sensitive luminescent sensors for practical applications. Chemical Communications, 2015, 51, 6769-6772.	4.1	97
116	Ultrastrong Alkali-Resisting Lanthanide-Zeolites Assembled by [Ln ₆₀] Nanocages. Journal of the American Chemical Society, 2015, 137, 15988-15991.	13.7	248
117	Two- and three-dimensional lanthanide-based coordination polymers assembled by the synergistic effect of various lanthanide radii and flexibility of a new binicotinate-containing ligand: in situ synthesis, structures, and properties. RSC Advances, 2015, 5, 2239-2248.	3.6	21
118	Heterometal–organic frameworks as highly sensitive and highly selective luminescent probes to detect I ^{â^'} ions in aqueous solutions. Chemical Communications, 2015, 51, 3985-3988.	4.1	177
119	Robust metal–organic framework with [Mn3] clusters: Synthesis, structure and magnetic property. Inorganic Chemistry Communication, 2015, 53, 76-79.	3.9	3
120	A multicentre-bonded [Znl]8 cluster with cubic aromaticity. Nature Communications, 2015, 6, 6331.	12.8	94
121	Ln-Ag heterometallic coordination polymers. Reviews in Inorganic Chemistry, 2015, 35, 81-113.	4.1	7
122	A tetranuclear [Co4] cluster-based metal–organic framework: Synthesis, structure and magnetic property. Inorganic Chemistry Communication, 2015, 55, 5-7.	3.9	6
123	A water-stable lanthanide-organic framework as a recyclable luminescent probe for detecting pollutant phosphorus anions. Chemical Communications, 2015, 51, 10280-10283.	4.1	244
124	A triangular [Mn ₃] cluster-based ferrimagnet with significant magnetic entropy change. Journal of Materials Chemistry C, 2015, 3, 3494-3499.	5.5	23
125	Unique Chiral Interpenetrating d–f Heterometallic MOFs as Luminescent Sensors. Inorganic Chemistry, 2015, 54, 5266-5272.	4.0	110
126	Lanthanide Organic Framework as a Regenerable Luminescent Probe for Fe ³⁺ . Inorganic Chemistry, 2015, 54, 4585-4587.	4.0	306

#	Article	IF	CITATIONS
127	Self-assembly of heterometallic Ln ^{III} –Co ^{II} coordination polymers: syntheses, structures, and magnetic studies. Dalton Transactions, 2015, 44, 18856-18863.	3.3	10
128	Ligand Field Affected Single-Molecule Magnet Behavior of Lanthanide(III) Dinuclear Complexes with an 8-Hydroxyquinoline Schiff Base Derivative as Bridging Ligand. Inorganic Chemistry, 2015, 54, 10610-10622.	4.0	181
129	Three Cu(II) coordination polymers with novel bi-triazole ligand: Synthesis, structure and EPR properties. Inorganic Chemistry Communication, 2015, 51, 95-98.	3.9	27
130	New strategy to construct single-ion magnets: a unique Dy@Zn6 cluster exhibiting slow magnetic relaxation. Chemical Communications, 2014, 50, 4255-4257.	4.1	52
131	The multiple core–shell structure in Cu24Ln6 cluster with magnetocaloric effect and slow magnetization relaxation. Dalton Transactions, 2014, 43, 5639.	3.3	45
132	Structures, luminescent and magnetic properties of a series of (3,6)-connected lanthanide–organic frameworks. Dalton Transactions, 2014, 43, 1814-1820.	3.3	50
133	Syntheses, structures, photoluminescence and magnetic properties of four-connected lanthanide–tricarboxylate coordination polymers. CrystEngComm, 2013, 15, 3308.	2.6	28
134	Structures, luminescent and magnetic properties of six lanthanide–organic frameworks: observation of slow magnetic relaxation behavior in the Dylll compound. Dalton Transactions, 2013, 42, 3587.	3.3	100
135	A new octanuclear Fe8 cluster with antiferromagnetic coupling. Inorganic Chemistry Communication, 2013, 35, 89-91.	3.9	6
136	Anion-induced changes of structure interpenetration and magnetic properties in 3D Dy–Cu metal–organic frameworks. Chemical Communications, 2013, 49, 2338.	4.1	87
137	Unique (3,12)-connected coordination polymers displaying high stability, large magnetocaloric effect and slow magnetic relaxation. Chemical Communications, 2013, 49, 6066.	4.1	139
138	A 24-Gd nanocapsule with a large magnetocaloric effect. Chemical Communications, 2013, 49, 1055-1057.	4.1	262
139	Four Coordination Polymers Containing 2, 6â€NaphthalenediÂcarboxylic Acid and 1, 10â€Phenanthroline: Synthesis, Structure, and Magnetic Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 626-632.	1.2	12
140	Fast capture and separation of, and luminescent probe for, pollutant chromate using a multi-functional cationic heterometal-organic framework. Chemical Communications, 2012, 48, 8231.	4.1	231
141	3 Dâ€MOFs Containing Trigonal Bipyramidal Ln ₅ â€Clusters as Nodes: Large Magnetocaloric Effect and Slow Magnetic Relaxation Behavior. Chemistry - A European Journal, 2012, 18, 15086-15091.	3.3	125
142	Synthesis, structure, fluorescent and magnetic properties of a series of coordination polymers based on a long and flexible bis-triazole ligand. CrystEngComm, 2012, 14, 2769.	2.6	56
143	Multipoint Interactions Enhanced CO ₂ Uptake: A Zeolite-like Zinc–Tetrazole Framework with 24-Nuclear Zinc Cages. Journal of the American Chemical Society, 2012, 134, 18892-18895.	13.7	240
144	Two-Dimensional 3d–4f Networks Containing Planar Co4Ln2 Clusters with Single-Molecule-Magnet Behaviors. Inorganic Chemistry, 2012, 51, 7433-7435.	4.0	105

#	Article	IF	CITATIONS
145	Structures and magnetic properties of several novel lanthanide coordination polymers based on thiophene-2,5-dicarboxylic acid. Science China Chemistry, 2012, 55, 1073-1078.	8.2	19
146	Syntheses, structures, and photoluminescence of lanthanide coordination polymers with pyridine-2,3,5,6-tetracarboxylic acid. CrystEngComm, 2011, 13, 1870-1876.	2.6	34
147	Investigation on structures, luminescent and magnetic properties of Ln ^{III} –M (M =) Tj ETQq1 1 0.7 805-819.	84314 rgE 3.3	BT /Overlock 75
148	Metal–organic frameworks based on transition-metal carboxylate clusters as secondary building units: synthesis, structures and properties. CrystEngComm, 2011, 13, 907-913.	2.6	34
149	Syntheses, Structures, and Photoluminescence of a Series of Three-Dimensional Cd(II) Frameworks with a Flexible Ligand, 1,5-Bis(5-tetrazolo)-3-oxapentane. Crystal Growth and Design, 2010, 10, 4370-4378.	3.0	114
150	A Chiral Metal-Organic Framework Based on Heptanuclear Zinc Cores. European Journal of Inorganic Chemistry, 2009, 2009, 2599-2602.	2.0	27
151	Synthesis, structure, and magnetic properties of two novel lanthanide-organic frameworks. Science in China Series B: Chemistry, 2009, 52, 1456-1462.	0.8	6
152	Synthesis, structure and property of serial p-carboxylphenoxyacetate-lanthanide coordination polymers. Science Bulletin, 2009, 54, 4296-4302.	9.0	3
153	Structure and Magnetic Property of a Cobalt(II) Complex Synthesized Through in situ Hydrothermal Reaction. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 2592-2595.	1.2	1
154	Fabrication and Properties of Eight Novel Lanthanideâ^'Organic Frameworks Based on 4-Hydroxypyran-2,6-dicarboxylate and 4-Hydroxypyridine-2,6-dicarboxylate. Crystal Growth and Design, 2009, 9, 4006-4016.	3.0	31
155	Syntheses, Structures, and Luminescence Properties of a Series of Ln ^{III} â^Ba ^{II} Heterometal-Organic Frameworks. Crystal Growth and Design, 2009, 9, 3948-3957.	3.0	45
156	Structures and luminescent properties of a series of Ln–Ag heterometallic coordination polymers. CrystEngComm, 2009, 11, 1261.	2.6	87
157	Two [Au(CN) ₂] ^{â^'} -bridged heterometallic coordination polymers directed by different 2,2′-bipyridyl-like ligands. CrystEngComm, 2009, 11, 61-66.	2.6	16
158	A porous 3D heterometal-organic framework containing both lanthanide and high-spin Fe(ii) ions. Chemical Communications, 2009, , 3113.	4.1	140
159	The self-assembly of a heteronuclear complex monitored with ESI-MS and fluorescence spectrophotometry. CrystEngComm, 2009, 11, 1811.	2.6	8
160	Structure and luminescent property of novel 2D indium(III) and 1D cadmium(II) coordination polymers based on thiophene-2,5-dicarboxylic acid. Journal of Molecular Structure, 2008, 888, 360-365.	3.6	32
161	Construction and Characterization of Several New Lanthanideâ^'Organic Frameworks: From 2D Lattice to 2D Double-Layer and to Porous 3D Net with Interweaving Triple-Stranded Helixes. Crystal Growth and Design, 2008, 8, 2291-2298.	3.0	72
162	pH-Dependent Cu(II) Coordination Polymers with Tetrazole-1-acetic Acid: Synthesis, Crystal Structures, EPR and Magnetic Properties. Crystal Growth and Design, 2008, 8, 1140-1146.	3.0	139

#	Article	IF	CITATIONS
163	Syntheses, Structures, and Photoluminescence of One-Dimensional Lanthanide Coordination Polymers with 2,4,6-Pyridinetricarboxylic Acid. Crystal Growth and Design, 2007, 7, 1851-1857.	3.0	128
164	Syntheses of CuO nanostructures in ionic liquids. Science in China Series B: Chemistry, 2007, 50, 63-69.	0.8	16
165	Fabrication of ZnO nanorods in ionic liquids and their photoluminescent properties. Science in China Series B: Chemistry, 2007, 50, 224-229.	0.8	16
166	A Promising MgII-Ion-Selective Luminescent Probe: Structures and Properties of Dy-Mn Polymers with High Symmetry. Chemistry - A European Journal, 2006, 12, 149-158.	3.3	279
167	Synthesis, Crystal Structures, and Magnetic Properties of 2D Manganese(II) and 1D Gadolinium(III) Coordination Polymers with 1H-1,2,3-Triazole-4,5-dicarboxylic Acid. European Journal of Inorganic Chemistry, 2006, 2006, 4931-4937.	2.0	44
168	Systematic Investigation of the Hydrothermal Syntheses of Pr(III)â^PDA (PDA =) Tj ETQq0 0 0 rgBT /Overlock 10	Tf 50 542 4.0	Td (Pyridine- 181
169	A 2D Thiocyanato-Bridged Copper(II)-Manganese(II) Bimetallic Coordination Polymer with Ferromagnetic Interactions. European Journal of Inorganic Chemistry, 2005, 2005, 55-58.	2.0	22
170	Microporous Metalâ^'Organic Frameworks Built on a Ln3Cluster as a Six-Connecting Node. Chemistry of Materials, 2005, 17, 2866-2874.	6.7	108
171	Synthesis, crystal structure and magnetism of a three-dimensional manganese(II) complex with carbamyldicyanomethanide anion (cda) as a bridging ligand. Transition Metal Chemistry, 2004, 29	14	2

1/1	586-589.	1.4	2
172	Multi-Dimensional Systems Built from Dichromate Anionsâ^' Syntheses, Crystal Structures, and Magnetic Properties. European Journal of Inorganic Chemistry, 2004, 2004, 562-569.	2.0	20
173	Ferromagnetic and Antiferromagnetic Polymeric Complexes with the Macrocyclic Ligand 1,4,7-Triazacyclononane. European Journal of Inorganic Chemistry, 2004, 2004, 2369-2378.	2.0	32
174	Design and Synthesis of 3dâ^'4f Metal-Based Zeolite-type Materials with a 3D Nanotubular Structure Encapsulated "Water―Pipe. Journal of the American Chemical Society, 2004, 126, 3012-3013.	13.7	572
175	Coordination Polymers Containing 1D Channels as Selective Luminescent Probes. Journal of the American Chemical Society, 2004, 126, 15394-15395.	13.7	853
176	A Macrocyclic Chromium(III) complex with mixed Hydroxo and Carbonato bridges: Crystal structure and Magnetic properties of [(tacn)Cr(μ-OH)2 (μ-CO3)Cr(tacn)](ClO4)2Â-3H2O (tacn=1,4,7-Triazacyclononane). Journal of Coordination Chemistry, 2004, 57, 231-237.	2.2	5
177	Title is missing!. Transition Metal Chemistry, 2003, 28, 326-330.	1.4	4
178	A Nanotubular 3D Coordination Polymer Based on a 3d–4f Heterometallic Assembly. Angewandte Chemie, 2003, 115, 964-966.	2.0	33
179	A Nanotubular 3D Coordination Polymer Based on a 3d–4f Heterometallic Assembly. Angewandte Chemie - International Edition, 2003, 42, 934-936.	13.8	462
180	Two-dimensional Coordination Polymers of Copper(II) with Oxalate:Â Lattice Water Control of	4.0	73

Structure. Inorganic Chemistry, 2001, 40, 2652-2659.