David Gardiner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1918313/publications.pdf

Version: 2024-02-01

73 papers

4,412 citations

39 h-index 64 g-index

73 all docs

73 docs citations

times ranked

73

2635 citing authors

#	Article	IF	Citations
1	A stepwise model system for limb regeneration. Developmental Biology, 2004, 270, 135-145.	2.0	283
2	Conversion by retinoic acid of anterior cells into ZPA cells in the chick wing bud. Nature, 1991, 350, 81-83.	27.8	225
3	Microarray and cDNA sequence analysis of transcription during nerve-dependent limb regeneration. BMC Biology, 2009, 7, 1.	3.8	203
4	Vertebrate limb regeneration and the origin of limb stem cells. International Journal of Developmental Biology, 2002, 46, 887-96.	0.6	170
5	The axolotl limb blastema: cellular and molecular mechanisms driving blastema formation and limb regeneration in tetrapods. Regeneration (Oxford, England), 2015, 2, 54-71.	6.3	156
6	Retinoic acid, local cell-cell interactions, and pattern formation in vertebrate limbs. Developmental Biology, 1992, 152, 1-25.	2.0	152
7	Expression ofMmp-9 and related matrix metalloproteinase genes during axolotl limb regeneration. Developmental Dynamics, 1999, 216, 2-9.	1.8	128
8	Neurotrophic regulation of epidermal dedifferentiation during wound healing and limb regeneration in the axolotl (Ambystoma mexicanum). Developmental Biology, 2008, 319, 321-335.	2.0	119
9	Nerve-induced ectopic limb blastemas in the axolotl are equivalent to amputation-induced blastemas. Developmental Biology, 2007, 312, 231-244.	2.0	118
10	Expression of Msx-2 during development, regeneration, and wound healing in axolotl limbs., 1998, 282, 715-723.		115
11	Expression ofHoxDGenes in Developing and Regenerating Axolotl Limbs. Developmental Biology, 1998, 200, 225-233.	2.0	108
12	The migration of dermal cells during blastema formation in axolotls. Developmental Biology, 1986, 118, 488-493.	2.0	100
13	Regrowing Human Limbs. Scientific American, 2008, 298, 56-63.	1.0	100
14	Sonic Hedgehog (shh) expression in developing and regenerating axolotl limbs. The Journal of Experimental Zoology, 1999, 284, 197-206.	1.4	97
15	The molecular basis of amphibian limb regeneration: integrating the old with the new. Seminars in Cell and Developmental Biology, 2002, 13, 345-352.	5.0	91
16	Expression of Hoxb13 and Hoxc10 in Developing and Regenerating Axolotl Limbs and Tails. Developmental Biology, 2001, 229, 396-406.	2.0	88
17	Vaccinia as a Tool for Functional Analysis in Regenerating Limbs: Ectopic Expression of Shh. Developmental Biology, 2000, 218, 199-205.	2.0	86
18	Large scale gene expression profiling during intestine and body wall regeneration in the sea cucumber Apostichopus japonicus. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2011, 6, 195-205.	1.0	85

#	Article	lF	CITATIONS
19	Gene expression patterns specific to the regenerating limb of the Mexican axolotl. Biology Open, 2012, 1, 937-948.	1.2	84
20	Environmentally induced limb malformations in mink frogs (Rana septentrionalis). The Journal of Experimental Zoology, 1999, 284, 207-216.	1.4	83
21	Genic regions of a large salamander genome contain long introns and novel genes. BMC Genomics, 2009, 10, 19.	2.8	81
22	From biomedicine to natural history research: EST resources for ambystomatid salamanders. BMC Genomics, 2004, 5, 54.	2.8	79
23	The Axolotl Model for Regeneration and Aging Research: A Mini-Review. Gerontology, 2011, 57, 565-571.	2.8	78
24	Gene expression during the first 28 days of axolotl limb regeneration I: Experimental design and global analysis of gene expression. Regeneration (Oxford, England), 2015, 2, 120-136.	6.3	72
25	Positional Information Is Reprogrammed in Blastema Cells of the Regenerating Limb of the Axolotl (Ambystoma mexicanum). PLoS ONE, 2013, 8, e77064.	2.5	66
26	Molecular mechanisms in the control of limb regeneration: the role of homeobox genes. International Journal of Developmental Biology, 1996, 40, 797-805.	0.6	64
27	Limb Development and Regeneration. American Zoologist, 1987, 27, 675-696.	0.7	62
28	Analysis of the expression and function of Wntâ€5a and Wntâ€5b in developing and regenerating axolotl (<i>Ambystoma mexicanum</i>) limbs. Development Growth and Differentiation, 2008, 50, 289-297.	1.5	62
29	Activation of germline-specific genes is required for limb regeneration in the Mexican axolotl. Developmental Biology, 2012, 370, 42-51.	2.0	60
30	Positional information in axolotl and mouse limb extracellular matrix is mediated via heparan sulfate and fibroblast growth factor during limb regeneration in the axolotl (<i>Ambystoma mexicanum</i> Regeneration (Oxford, England), 2015, 2, 182-201.	6.3	59
31	Nerve dependency of regeneration: the role of Distal-less and FGF signaling in amphibian limb regeneration. Development (Cambridge), 1996, 122, 3487-97.	2.5	58
32	Deformed frogs and environmental retinoids. Pure and Applied Chemistry, 2003, 75, 2263-2273.	1.9	57
33	Neurotrophic regulation of fibroblast dedifferentiation during limb skeletal regeneration in the axolotl (Ambystoma mexicanum). Developmental Biology, 2010, 337, 444-457.	2.0	54
34	Regulation of dermal fibroblast dedifferentiation and redifferentiation during wound healing and limb regeneration in the Axolotl. Development Growth and Differentiation, 2008, 50, 743-754.	1.5	53
35	Cartilage and bone cells do not participate in skeletal regeneration in Ambystoma mexicanum limbs. Developmental Biology, 2016, 416, 26-33.	2.0	53
36	Conserved Vertebrate Chromosome Segments in the Large Salamander Genome. Genetics, 2001, 158, 735-746.	2.9	47

#	Article	IF	CITATIONS
37	Towards a functional analysis of limb regeneration. Seminars in Cell and Developmental Biology, 1999, 10, 385-393.	5.0	46
38	Ontogenetic Decline of Regenerative Ability and the Stimulation of Human Regeneration. Rejuvenation Research, 2005, 8, 141-153.	1.8	45
39	Cell Cycle Length Affects Gene Expression and Pattern Formation in Limbs. Developmental Biology, 1997, 189, 13-21.	2.0	44
40	Regulation of HoxA expression in developing and regenerating axolotl limbs. Development (Cambridge), 1995, 121, 1731-41.	2.5	42
41	<i>Ex vivo</i> generation of a functional and regenerative wound epithelium from axolotl (<i>Ambystoma mexicanum</i>) skin. Development Growth and Differentiation, 2010, 52, 715-724.	1.5	40
42	Coherent Movement of Cell Layers during Wound Healing by Image Correlation Spectroscopy. Biophysical Journal, 2009, 97, 2098-2106.	0.5	38
43	Understanding positional cues in salamander limb regeneration: implications for optimizing cell-based regenerative therapies. DMM Disease Models and Mechanisms, 2014, 7, 593-599.	2.4	37
44	Assessing the toxicity and teratogenicity of pond water in north-central minnesota to amphibians. Environmental Science and Pollution Research, 2004, 11 , $233-239$.	5.3	36
45	Nerve signaling regulates basal keratinocyte proliferation in the blastema apical epithelial cap in the axolotl (Ambystoma mexicanum). Developmental Biology, 2012, 366, 374-381.	2.0	36
46	Retrotransposon long interspersed nucleotide elementâ€1 (LINEâ€1) is activated during salamander limb regeneration. Development Growth and Differentiation, 2012, 54, 673-685.	1.5	33
47	Positionâ€specific induction of ectopic limbs in nonâ€regenerating blastemas on axolotl forelimbs. Regeneration (Oxford, England), 2014, 1, 27-34.	6.3	33
48	Regeneration of HoxD Expression Domains during Pattern Regulation in Chick Wing Buds. Developmental Biology, 1994, 161, 504-512.	2.0	31
49	Positional plasticity in regenerating Amybstoma mexicanum limbs is associated with cell proliferation and pathways of cellular differentiation. BMC Developmental Biology, 2015, 15, 45.	2.1	30
50	DNA Methylation Dynamics Regulate the Formation of a Regenerative Wound Epithelium during Axolotl Limb Regeneration. PLoS ONE, 2015, 10, e0134791.	2.5	30
51	Homeobox genes in axolotl lateral line placodes and neuromasts. Development Genes and Evolution, 1997, 207, 287-295.	0.9	28
52	Regulation of proximalâ€distal intercalation during limb regeneration in the axolotl (<i>Ambystoma) Tj ETQq0 (</i>	0 0 rgBT /O	verlock 10 Tf !
53	Regeneration of Limb Joints in the Axolotl (Ambystoma mexicanum). PLoS ONE, 2012, 7, e50615.	2.5	28
54	Dermal fibroblasts contribute to multiple tissues in the accessory limb model. Development Growth and Differentiation, 2010, 52, 343-350.	1.5	27

#	Article	IF	CITATIONS
55	The relationship between growth and pattern formation. Regeneration (Oxford, England), 2016, 3, 103-122.	6.3	26
56	Organization of positional information in the axolotl limb. The Journal of Experimental Zoology, 1989, 251, 47-55.	1.4	21
57	The Role of Nerve Signaling in Limb Genesis and Agenesis During Axolotl Limb Regeneration. Journal of Bone and Joint Surgery - Series A, 2009, 91, 90-98.	3.0	18
58	Characterization of in vitro transcriptional responses of dorsal root ganglia cultured in the presence and absence of blastema cells from regenerating salamander limbs. Regeneration (Oxford,) Tj ETQq0 C	0 ngBT/C	over lø ck 10 Tf
59	Regulation of Axolotl (Ambystoma mexicanum) Limb Blastema Cell Proliferation by Nerves and BMP2 in Organotypic Slice Culture. PLoS ONE, 2015, 10, e0123186.	2.5	16
60	Identification of Heparan-Sulfate Rich Cells in the Loose Connective Tissues of the Axolotl (Ambystoma mexicanum) with the Potential to Mediate Growth Factor Signaling during Regeneration. Regenerative Engineering and Translational Medicine, 2020, 6, 7-17.	2.9	16
61	Environmentally induced limb malformations in mink frogs (Rana septentrionalis). The Journal of Experimental Zoology, 1999, 284, 207-216.	1.4	15
62	Hypothesis: Terminal transverse limb defects with "nubbins―represent a regenerative process during limb development in human fetuses. Birth Defects Research Part A: Clinical and Molecular Teratology, 2012, 94, 129-133.	1.6	13
63	Regulation of Regeneration by Heparan Sulfate Proteoglycans in the Extracellular Matrix. Regenerative Engineering and Translational Medicine, 2017, 3, 192-198.	2.9	10
64	Stability of positional identity of axolotl blastema cells in vitro. Roux's Archives of Developmental Biology, 1993, 202, 170-175.	1.2	9
65	The Axolotl Limb Regeneration Model as a Discovery Tool for Engineering the Stem Cell Niche. Current Stem Cell Reports, 2017, 3, 156-163.	1.6	8
66	Homeobox-Containing Genes in Limb Regeneration. , 2007, , 102-110.		5
67	Mouse limb bud cells respond to retinoic acid in vitro with reduced growth. The Journal of Experimental Zoology, 1992, 263, 406-413.	1.4	4
68	Gain-of-Function Assays in the Axolotl (Ambystoma mexicanum) to Identify Signaling Pathways That Induce and Regulate Limb Regeneration. Methods in Molecular Biology, 2013, 1037, 401-417.	0.9	3
69	Histological image data of limb skeletal tissue from larval and adult Ambystoma mexicanum. Data in Brief, 2016, 8, 1206-1208.	1.0	2
70	Expression of Mmp9 and related matrix metalloproteinase genes during axolotl limb regeneration. Developmental Dynamics, 1999, 216, 2-9.	1.8	1
71	Expression of homeobox genes in limb regeneration. Progress in Clinical and Biological Research, 1993, 383A, 31-40.	0.2	1
72	The small RNA complement of salamander limb regeneration. FASEB Journal, 2012, 26, 952.5.	0.5	0

ARTICLE IF CITATIONS
73 The role of nerves in the regulation of regeneration., 2017,, 113-137. 0