
Courtney D Dinardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1917959/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A phase 1 study of IDH305 in patients with IDH1R132-mutant acute myeloid leukemia or myelodysplastic syndrome. Journal of Cancer Research and Clinical Oncology, 2023, 149, 1145-1158.	2.5	14
2	Validation of the ALFA-1200 model in older patients with AML treated with intensive chemotherapy. Blood Advances, 2023, 7, 828-831.	5.2	1
3	Enasidenib vs conventional care in older patients with late-stage mutant- <i>IDH2</i> relapsed/refractory AML: a randomized phase 3 trial. Blood, 2023, 141, 156-167.	1.4	27
4	SOHO State of the Art Updates and Next Questions: Harnessing Apoptosis in AML. Clinical Lymphoma, Myeloma and Leukemia, 2022, 22, 133-139.	0.4	4
5	Effective therapy for AML with RUNX1 mutation by cotreatment with inhibitors of protein translation and BCL2. Blood, 2022, 139, 907-921.	1.4	34
6	Prediction of early (4â€week) mortality in acute myeloid leukemia with intensive chemotherapy. American Journal of Hematology, 2022, 97, 68-78.	4.1	25
7	Venetoclax plus azacitidine in Japanese patients with untreated acute myeloid leukemia ineligible for intensive chemotherapy. Japanese Journal of Clinical Oncology, 2022, 52, 29-38.	1.3	10
8	Project 2025: Proposals for the Continued Success of Drug Development in Acute Myeloid Leukemia. Clinical Cancer Research, 2022, 28, 816-820.	7.0	1
9	Venetoclax and hypomethylating agents in older/unfit patients with blastic plasmacytoid dendritic cell neoplasm. American Journal of Hematology, 2022, 97, E62.	4.1	17
10	Acquired WT1 mutations contribute to relapse of NPM1-mutated acute myeloid leukemia following allogeneic hematopoietic stem cell transplant. Bone Marrow Transplantation, 2022, 57, 370-376.	2.4	8
11	Combining Isocitrate Dehydrogenase Inhibitors With Existing Regimens in Acute Myeloid Leukemia. Cancer Journal (Sudbury, Mass), 2022, 28, 21-28.	2.0	3
12	Efficacy and safety of enasidenib and azacitidine combination in patients with IDH2 mutated acute myeloid leukemia and not eligible for intensive chemotherapy. Blood Cancer Journal, 2022, 12, 10.	6.2	48
13	Beyond Survival: The US Food and Drug Administration Confirms Surrogate End Points for Patients With Newly Diagnosed Acute Myeloid Leukemia Treated With Intensive Chemotherapy. Journal of Clinical Oncology, 2022, 40, 811-813.	1.6	1
14	Impact of frontline treatment approach on outcomes in patients with secondary AML with prior hypomethylating agent exposure. Journal of Hematology and Oncology, 2022, 15, 12.	17.0	13
15	Characteristics and outcomes of patients with blastic plasmacytoid dendritic cell neoplasm treated with frontline HCVAD. Blood Advances, 2022, 6, 3027-3035.	5.2	17
16	Efficacy of CDK9 inhibition in therapy of post-myeloproliferative neoplasm (MPN) secondary (s) AML cells. Blood Cancer Journal, 2022, 12, 23.	6.2	4
17	Impact of <i>F LT3</i> Mutation on Outcomes after Venetoclax and Azacitidine for Patients with Treatment-NaÃ ⁻ ve Acute Myeloid Leukemia. Clinical Cancer Research, 2022, 28, 2744-2752.	7.0	43
18	Improved outcomes among newly diagnosed patients with <scp>FMSâ€like tyrosine kinase 3 internal tandem duplication</scp> mutated acute myeloid leukemia treated with contemporary therapy: Revisiting the European LeukemiaNet adverse risk classification. American Journal of Hematology, 2022, 97, 329-337.	4.1	15

#	Article	IF	CITATIONS
19	Effective Menin inhibitor-based combinations against AML with MLL rearrangement or NPM1 mutation (NPM1c). Blood Cancer Journal, 2022, 12, 5.	6.2	49
20	Impact of Venetoclax and Azacitidine in Treatment-NaÃ ⁻ ve Patients with Acute Myeloid Leukemia and <i>IDH1/2</i> Mutations. Clinical Cancer Research, 2022, 28, 2753-2761.	7.0	70
21	Time to blur the blast boundaries. Cancer, 2022, 128, 1568-1570.	4.1	11
22	Activity of decitabine as maintenance therapy in core binding factor acute myeloid leukemia. American Journal of Hematology, 2022, 97, 574-582.	4.1	9
23	Validation of ALFA 1200 score in patients with AML >60 years treated with double nucleoside–based low-intensity therapy. Blood Advances, 2022, 6, 5546-5549.	5.2	1
24	Comparison of Mold Active Triazoles as Primary Antifungal Prophylaxis in Patients With Newly Diagnosed Acute Myeloid Leukemia in the Era of Molecularly Targeted Therapies. Clinical Infectious Diseases, 2022, 75, 1503-1510.	5.8	16
25	Measurable Residual Disease Response and Prognosis in Treatment-NaÃ ⁻ ve Acute Myeloid Leukemia With Venetoclax and Azacitidine. Journal of Clinical Oncology, 2022, 40, 855-865.	1.6	86
26	<scp>Treatmentâ€free</scp> remission in patients with chronic myeloid leukemia following the discontinuation of tyrosine kinase inhibitors. American Journal of Hematology, 2022, 97, 856-864.	4.1	33
27	Prediction of survival with intensive chemotherapy in acute myeloid leukemia. American Journal of Hematology, 2022, 97, 865-876.	4.1	12
28	Venetoclax for Children and Adolescents with Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma. Cancers, 2022, 14, 150.	3.7	30
29	Venetoclax combinations delay the time to deterioration of HRQoL in unfit patients with acute myeloid leukemia. Blood Cancer Journal, 2022, 12, 71.	6.2	12
30	Urgent cytoreduction for newly diagnosed acute myeloid leukemia patients allows acquisition of pretreatment genomic data and enrollment on investigational clinical trials. American Journal of Hematology, 2022, 97, 885-894.	4.1	4
31	A multi-arm phase Ib/II study designed for rapid, parallel evaluation of novel immunotherapy combinations in relapsed/refractory acute myeloid leukemia. Leukemia and Lymphoma, 2022, 63, 2161-2170.	1.3	12
32	Pneumonitis after immune checkpoint inhibitor therapies in patients with acute myeloid leukemia: A retrospective cohort study. Cancer, 2022, 128, 2736-2745.	4.1	8
33	Advancing the standard: venetoclax combined with intensive induction and consolidation therapy for acute myeloid leukemia. Therapeutic Advances in Hematology, 2022, 13, 204062072210939.	2.5	10
34	Venetoclax combined with induction chemotherapy in patients with newly diagnosed acute myeloid leukaemia: a post-hoc, propensity score-matched, cohort study. Lancet Haematology,the, 2022, 9, e350-e360.	4.6	26
35	Hypomethylating agent and venetoclax with FLT3 inhibitor "triplet―therapy in older/unfit patients with FLT3 mutated AML. Blood Cancer Journal, 2022, 12, 77.	6.2	33
36	Lenalidomide promotes the development of <i>TP53</i> -mutated therapy-related myeloid neoplasms. Blood, 2022, 140, 1753-1763.	1.4	56

#	Article	IF	CITATIONS
37	Treatment-free remission after ceasing venetoclax-based therapy in patients with acute myeloid leukemia. Blood Advances, 2022, 6, 3879-3883.	5.2	25
38	Long-Term Outcomes among Adolescent and Young Adult Survivors of Acute Leukemia: A Surveillance, Epidemiology, and End Results Analysis. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1176-1184.	2.5	6
39	Timing of response with venetoclax combination treatment in patients with newly diagnosed acute myeloid leukemia. American Journal of Hematology, 2022, 97, .	4.1	5
40	Venetoclax combined with <scp>FLAGâ€IDA</scp> induction and consolidation in newly diagnosed acute myeloid leukemia. American Journal of Hematology, 2022, 97, 1035-1043.	4.1	31
41	Resistance to targeted therapies: delving into FLT3 and IDH. Blood Cancer Journal, 2022, 12, .	6.2	9
42	A dynamic 3â€ f actor survival model for acute myeloid leukemia that accounts for response to induction chemotherapy. American Journal of Hematology, 2022, 97, 1127-1134.	4.1	7
43	Phase II Study of Venetoclax Added to Cladribine Plus Low-Dose Cytarabine Alternating With 5-Azacitidine in Older Patients With Newly Diagnosed Acute Myeloid Leukemia. Journal of Clinical Oncology, 2022, 40, 3848-3857.	1.6	41
44	International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood, 2022, 140, 1200-1228.	1.4	814
45	Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood, 2022, 140, 1345-1377.	1.4	805
46	The Clinical impact of PTPN11 mutations in adults with acute myeloid leukemia. Leukemia, 2021, 35, 691-700.	7.2	37
47	Clinical outcomes and influence of mutation clonal dominance in oligomonocytic and classical chronic myelomonocytic leukemia. American Journal of Hematology, 2021, 96, E50-E53.	4.1	8
48	Ivosidenib or enasidenib combined with intensive chemotherapy in patients with newly diagnosed AML: a phase 1 study. Blood, 2021, 137, 1792-1803.	1.4	123
49	Incidence of tumor lysis syndrome in patients with acute myeloid leukemia undergoing lowâ€intensity induction with venetoclax. American Journal of Hematology, 2021, 96, E65-E68.	4.1	7
50	Venetoclax with decitabine vs intensive chemotherapy in acute myeloid leukemia: A propensity score matched analysis stratified by risk of treatmentâ€related mortality. American Journal of Hematology, 2021, 96, 282-291.	4.1	59
51	Patterns of Resistance Differ in Patients with Acute Myeloid Leukemia Treated with Type I versus Type II FLT3 Inhibitors. Blood Cancer Discovery, 2021, 2, 125-134.	5.0	50
52	The LEukemia Artificial Intelligence Program (LEAP) in chronic myeloid leukemia in chronic phase: A model to improve patient outcomes. American Journal of Hematology, 2021, 96, 241-250.	4.1	19
53	Venetoclax with azacitidine or decitabine in patients with newly diagnosed acute myeloid leukemia: Long term followâ€up from a phase 1b study. American Journal of Hematology, 2021, 96, 208-217.	4.1	95
54	Clinical characteristics and outcomes in patients with acute myeloid leukemia with concurrent FLT3 â€ŧTD and IDH mutations. Cancer, 2021, 127, 381-390.	4.1	10

#	Article	IF	CITATIONS
55	Mutant Isocitrate Dehydrogenase 1 Inhibitor Ivosidenib in Combination With Azacitidine for Newly Diagnosed Acute Myeloid Leukemia. Journal of Clinical Oncology, 2021, 39, 57-65.	1.6	118
56	Phase 2 study of lenalidomide maintenance for patients with highâ€risk acute myeloid leukemia in remission. Cancer, 2021, 127, 1894-1900.	4.1	5
57	A venetoclax bench-to-bedside story. Nature Cancer, 2021, 2, 3-5.	13.2	8
58	Flow cytometric immunophenotypic alterations of persistent clonal haematopoiesis in remission bone marrows of patients with <i>NPM1</i> â€mutated acute myeloid leukaemia. British Journal of Haematology, 2021, 192, 1054-1063.	2.5	28
59	Triplet therapy with venetoclax, FLT3 inhibitor and decitabine for FLT3-mutated acute myeloid leukemia. Blood Cancer Journal, 2021, 11, 25.	6.2	85
60	Acute myeloid leukemia: current progress and future directions. Blood Cancer Journal, 2021, 11, 41.	6.2	313
61	Decitabine and venetoclax for <i><scp>IDH1/2</scp>â€</i> mutated acute myeloid leukemia. American Journal of Hematology, 2021, 96, E154-E157.	4.1	19
62	Nivolumab maintenance in high-risk acute myeloid leukemia patients: a single-arm, open-label, phase II study. Blood Cancer Journal, 2021, 11, 60.	6.2	22
63	Differentiation syndrome with lowerâ€intensity treatments for acute myeloid leukemia. American Journal of Hematology, 2021, 96, 735-746.	4.1	12
64	Acute myeloid leukemia: Treatment and research outlook for 2021 and the MD Anderson approach. Cancer, 2021, 127, 1186-1207.	4.1	74
65	IDH1/IDH2 Inhibition in Acute Myeloid Leukemia. Frontiers in Oncology, 2021, 11, 639387.	2.8	39
66	Mitochondrial metabolism supports resistance to IDH mutant inhibitors in acute myeloid leukemia. Journal of Experimental Medicine, 2021, 218, .	8.5	56
67	EVI1 dysregulation: impact on biology and therapy of myeloid malignancies. Blood Cancer Journal, 2021, 11, 64.	6.2	26
68	Longâ€ŧerm followâ€up of salvage therapy using a combination of inotuzumab ozogamicin and mini–hyper VD with or without blinatumomab in relapsed/refractory Philadelphia chromosome–negative acute lymphoblastic leukemia. Cancer, 2021, 127, 2025-2038.	4.1	24
69	Outcomes of patients with IDH1-mutant relapsed or refractory acute myeloid leukemia receiving ivosidenib who proceeded to hematopoietic stem cell transplant. Leukemia, 2021, 35, 3278-3281.	7.2	10
70	Clinical, genomic, and transcriptomic differences between myelodysplastic syndrome/myeloproliferative neoplasm with ring sideroblasts and thrombocytosis (<scp>MDS/MPNâ€RSâ€T</scp>) and myelodysplastic syndrome with ring sideroblasts (<scp>MDSâ€RS</scp>). American Journal of Hematology, 2021, 96, E246-E249.	4.1	9
71	Impact of splicing mutations in acute myeloid leukemia treated with hypomethylating agents combined with venetoclax. Blood Advances, 2021, 5, 2173-2183.	5.2	35
72	Single-center experience with venetoclax combinations in patients with newly diagnosed and relapsed AML evolving from MPNs. Blood Advances, 2021, 5, 2156-2164.	5.2	33

#	Article	IF	CITATIONS
73	A phase I/II study of the combination of quizartinib with azacitidine or low-dose cytarabine for the treatment of patients with acute myeloid leukemia and myelodysplastic syndrome. Haematologica, 2021, 106, 2121-2130.	3.5	34
74	Duration of cytopenias with concomitant venetoclax and azole antifungals in acute myeloid leukemia. Cancer, 2021, 127, 2489-2499.	4.1	34
75	Clinicopathologic correlates and natural history of atypical chronic myeloid leukemia. Cancer, 2021, 127, 3113-3124.	4.1	5
76	Prognostic factors for progression in patients with Philadelphia chromosomeâ€positive acute lymphoblastic leukemia in complete molecular response within 3 months of therapy with tyrosine kinase inhibitors. Cancer, 2021, 127, 2648-2656.	4.1	33
77	Outcome of patients with chronic myeloid leukemia in lymphoid blastic phase and Philadelphia chromosome–positive acute lymphoblastic leukemia treated with hyper VAD and dasatinib. Cancer, 2021, 127, 2641-2647.	4.1	15
78	Prognostic value of measurable residual disease after venetoclax and decitabine in acute myeloid leukemia. Blood Advances, 2021, 5, 1876-1883.	5.2	56
79	Activity of venetoclax-based therapy in chronic myelomonocytic leukemia. Leukemia, 2021, 35, 1494-1499.	7.2	16
80	De novo acute myeloid leukemia: A populationâ€based study of outcome in the United States based on the Surveillance, Epidemiology, and End Results (SEER) database, 1980 to 2017. Cancer, 2021, 127, 2049-2061.	4.1	79
81	Autologous CD33-CAR-T cells for treatment of relapsed/refractory acute myelogenous leukemia. Leukemia, 2021, 35, 3282-3286.	7.2	61
82	Superior efficacy of co-targeting GFI1/KDM1A and BRD4 against AML and post-MPN secondary AML cells. Blood Cancer Journal, 2021, 11, 98.	6.2	24
83	Leukemia stemness and co-occurring mutations drive resistance to IDH inhibitors in acute myeloid leukemia. Nature Communications, 2021, 12, 2607.	12.8	61
84	<scp>FLT3</scp> inhibitor based induction and allogeneic stem cell transplant in complete remission 1 improve outcomes in patients with newly diagnosed <scp>Acute Myeloid Leukemia</scp> with very low <scp>FLT3</scp> allelic burden. American Journal of Hematology, 2021, 96, E275-E279.	4.1	3
85	Longâ€term results of lowâ€intensity chemotherapy with clofarabine or cladribine combined with lowâ€dose cytarabine alternating with decitabine in older patients with newly diagnosed acute myeloid leukemia. American Journal of Hematology, 2021, 96, 914-924.	4.1	13
86	Immunotherapy in Acute Myeloid Leukemia: Where We Stand. Frontiers in Oncology, 2021, 11, 656218.	2.8	63
87	Central nervous system involvement in blastic plasmacytoid dendritic cell neoplasm. Blood, 2021, 138, 1373-1377.	1.4	31
88	Acute myeloid leukemia with IDH1 and IDH2 mutations: 2021 treatment algorithm. Blood Cancer Journal, 2021, 11, 107.	6.2	73
89	A phase 1b/2 study of azacitidine with PD‣1 antibody avelumab in relapsed/refractory acute myeloid leukemia. Cancer, 2021, 127, 3761-3771.	4.1	34
90	Postâ€ŧransplantation donorâ€derived Sezary syndrome in a patient with <scp>A91V <i>PRF1</i></scp> variant hemophagocytic lymphohistiocytosis. American Journal of Hematology, 2021, 96, E350-E353.	4.1	2

#	Article	IF	CITATIONS
91	A Case-Based Approach to Understanding Complex Genetic Information in an Evolving Landscape. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2021, 41, e328-e338.	3.8	2
92	Potential Biomarkers for Treatment Response to the BCL-2 Inhibitor Venetoclax: State of the Art and Future Directions. Cancers, 2021, 13, 2974.	3.7	12
93	Therapeutic implications of menin inhibition in acute leukemias. Leukemia, 2021, 35, 2482-2495.	7.2	76
94	Clonal dynamics and clinical implications of postremission clonal hematopoiesis in acute myeloid leukemia. Blood, 2021, 138, 1733-1739.	1.4	19
95	Outcomes in patients with newly diagnosed <i>TP53</i> â€mutated acute myeloid leukemia with or without venetoclaxâ€based therapy. Cancer, 2021, 127, 3541-3551.	4.1	40
96	Outcomes of <i>TP53</i> â€mutant acute myeloid leukemia with decitabine and venetoclax. Cancer, 2021, 127, 3772-3781.	4.1	80
97	The RUNX1 database (RUNX1db): establishment of an expert curated RUNX1 registry and genomics database as a public resource for familial platelet disorder with myeloid malignancy. Haematologica, 2021, 106, 3004-3007.	3.5	29
98	Final results of a phase 2 clinical trial of LCL161, an oral SMAC mimetic for patients with myelofibrosis. Blood Advances, 2021, 5, 3163-3173.	5.2	17
99	Venetoclax plus intensive chemotherapy with cladribine, idarubicin, and cytarabine in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: a cohort from a single-centre, single-arm, phase 2 trial. Lancet Haematology,the, 2021, 8, e552-e561.	4.6	81
100	Development of <scp><i>TP53</i></scp> mutations over the course of therapy for acute myeloid leukemia. American Journal of Hematology, 2021, 96, 1420-1428.	4.1	10
101	Tenâ€day decitabine with venetoclax versus intensive chemotherapy in relapsed or refractory acute myeloid leukemia: A propensity scoreâ€matched analysis. Cancer, 2021, 127, 4213-4220.	4.1	24
102	Oral Abstract: AML-204: Venetoclax Combined with FLAG-IDA Induction and Consolidation in Newly Diagnosed Acute Myeloid Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S201.	0.4	1
103	Predictors of outcomes in adults with acute myeloid leukemia and KMT2A rearrangements. Blood Cancer Journal, 2021, 11, 162.	6.2	32
104	Outcomes of acute lymphoblastic leukemia with <i>KMT2A</i> (<i>MLL</i>) rearrangement: the MD Anderson experience. Blood Advances, 2021, 5, 5415-5419.	5.2	24
105	Association of unbalanced translocation der(1;7) with germline GATA2 mutations. Blood, 2021, 138, 2441-2445.	1.4	12
106	Prognostic impact of conventional cytogenetics in acute myeloid leukemia treated with venetoclax and decitabine. Leukemia and Lymphoma, 2021, , 1-5.	1.3	2
107	Gilteritinib combination therapies in pediatric patients with <i>FLT3</i> -mutated acute myeloid leukemia. Blood Advances, 2021, 5, 5215-5219.	5.2	9
108	IDH Mutated AML: Beyond Enasidenib and Ivosidenib Monotherapy. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S110-S111.	0.4	0

#	Article	IF	CITATIONS
109	Venetoclax Combined With FLAG-IDA Induction and Consolidation in Newly Diagnosed and Relapsed or Refractory Acute Myeloid Leukemia. Journal of Clinical Oncology, 2021, 39, 2768-2778.	1.6	173
110	6-month follow-up of VIALE-C demonstrates improved and durable efficacy in patients with untreated AML ineligible for intensive chemotherapy. Blood Cancer Journal, 2021, 11, 163.	6.2	17
111	Enasidenib plus azacitidine versus azacitidine alone in patients with newly diagnosed, mutant-IDH2 acute myeloid leukaemia (AG221-AML-005): a single-arm, phase 1b and randomised, phase 2 trial. Lancet Oncology, The, 2021, 22, 1597-1608.	10.7	90
112	Harnessing the benefits of available targeted therapies in acute myeloid leukaemia. Lancet Haematology,the, 2021, 8, e922-e933.	4.6	27
113	Cigarette Smoke or Cigarette Condensate Exposure Accelerates Growth of FLT3-ITD AML Models, Induces Oxidative Stress, and Alters DNA Methylation. Blood, 2021, 138, 3331-3331.	1.4	0
114	Venetoclax Combined with FLAC-IDA Induction and Consolidation in Newly Diagnosed Acute Myeloid Leukemia. Blood, 2021, 138, 701-701.	1.4	4
115	Hematopoiesis under telomere attrition at the single-cell resolution. Nature Communications, 2021, 12, 6850.	12.8	15
116	Concomitant targeting of BCL2 with venetoclax and MAPK signaling with cobimetinib in acute myeloid leukemia models. Haematologica, 2020, 105, 697-707.	3.5	78
117	Successful lenalidomide treatment in high risk myelodysplastic syndrome with germline <i>DDX41</i> mutation. American Journal of Hematology, 2020, 95, 227-229.	4.1	29
118	Response Kinetics and Clinical Benefits of Nonintensive AML Therapies in the Absence of Morphologic Response. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, e66-e75.	0.4	10
119	Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nature Communications, 2020, 11, 5327.	12.8	208
120	Outcomes with sequential FLT3-inhibitor-based therapies in patients with AML. Journal of Hematology and Oncology, 2020, 13, 132.	17.0	18
121	10-day decitabine with venetoclax for newly diagnosed intensive chemotherapy ineligible, and relapsed or refractory acute myeloid leukaemia: a single-centre, phase 2 trial. Lancet Haematology,the, 2020, 7, e724-e736.	4.6	201
122	Consensus minimum hemoglobin level above which patients with myelodysplastic syndromes can safely forgo transfusions. Leukemia and Lymphoma, 2020, 61, 2900-2904.	1.3	10
123	Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. New England Journal of Medicine, 2020, 383, 617-629.	27.0	1,407
124	Hyper-CVAD regimen in combination with ofatumumab as frontline therapy for adults with Philadelphia chromosome-negative B-cell acute lymphoblastic leukaemia: a single-arm, phase 2 trial. Lancet Haematology,the, 2020, 7, e523-e533.	4.6	43
125	Safety and efficacy of BAY1436032 in IDH1-mutant AML: phase I study results. Leukemia, 2020, 34, 2903-2913.	7.2	38
126	Outcome of patients with IDH1/2-mutated post–myeloproliferative neoplasm AML in the era of IDH inhibitors. Blood Advances, 2020, 4, 5336-5342.	5.2	37

#	Article	IF	CITATIONS
127	New directions for emerging therapies in acute myeloid leukemia: the next chapter. Blood Cancer Journal, 2020, 10, 107.	6.2	96
128	Hereditary Hematologic Malignancies. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, S27-S29.	0.4	2
129	Clonal evolution and treatment outcomes in hematopoietic neoplasms arising in patients with germline <i>RUNX1</i> mutations. American Journal of Hematology, 2020, 95, E313-E315.	4.1	4
130	Accurate germline RUNX1 variant interpretation and its clinical significance. Blood Advances, 2020, 4, 6199-6203.	5.2	13
131	Prognostic impact of complete remission with MRD negativity in patients with relapsed or refractory AML. Blood Advances, 2020, 4, 6117-6126.	5.2	29
132	Prognostic and therapeutic impacts of mutant <i>TP53</i> variant allelic frequency in newly diagnosed acute myeloid leukemia. Blood Advances, 2020, 4, 5681-5689.	5.2	105
133	Venetoclax-Based Combinations in Acute Myeloid Leukemia: Current Evidence and Future Directions. Frontiers in Oncology, 2020, 10, 562558.	2.8	49
134	Impact of <scp><i>CD33</i></scp> and <scp><i>ABCB1</i></scp> single nucleotide polymorphisms in patients with acute myeloid leukemia and advanced myeloid malignancies treated with decitabine plus gemtuzumab ozogamicin. American Journal of Hematology, 2020, 95, E225-E228.	4.1	9
135	Characteristics and outcomes of patients with therapy-related acute myeloid leukemia with normal karyotype. Blood Cancer Journal, 2020, 10, 47.	6.2	17
136	Molecular mechanisms mediating relapse following ivosidenib monotherapy in IDH1-mutant relapsed or refractory AML. Blood Advances, 2020, 4, 1894-1905.	5.2	129
137	Impact of numerical variation, allele burden, mutation length and co-occurring mutations on the efficacy of tyrosine kinase inhibitors in newly diagnosed FLT3- mutant acute myeloid leukemia. Blood Cancer Journal, 2020, 10, 48.	6.2	22
138	Salvage Therapy Outcomes in a Historical Cohort of Patients With Relapsed or Refractory Acute Myeloid Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, e871-e882.	0.4	10
139	Clinico-pathologic characteristics and outcomes of the World Health Organization (WHO) provisional entity de novo acute myeloid leukemia with mutated RUNX1. Modern Pathology, 2020, 33, 1678-1689.	5.5	16
140	Phase 2 study of hyper MAD with liposomal vincristine for patients with newly diagnosed acute lymphoblastic leukemia. American Journal of Hematology, 2020, 95, 734-739.	4.1	10
141	Venetoclax in acute myeloid leukemia – current and future directions. Leukemia and Lymphoma, 2020, 61, 1313-1322.	1.3	31
142	A phase 1/2 study of ruxolitinib and decitabine in patients with post-myeloproliferative neoplasm acute myeloid leukemia. Leukemia, 2020, 34, 2489-2492.	7.2	37
143	Outcomes of acute myeloid leukemia with myelodysplasia related changes depend on diagnostic criteria and therapy. American Journal of Hematology, 2020, 95, 612-622.	4.1	51
144	Posttransplantation cyclophosphamide improves transplantation outcomes in patients with AML/MDS who are treated with checkpoint inhibitors. Cancer, 2020, 126, 2193-2205.	4.1	33

#	Article	IF	CITATIONS
145	Advances in the Treatment of Acute Myeloid Leukemia: New Drugs and New Challenges. Cancer Discovery, 2020, 10, 506-525.	9.4	212
146	Clinical value of event-free survival in acute myeloid leukemia. Blood Advances, 2020, 4, 1690-1699.	5.2	4
147	Mechanistic basis and efficacy of targeting the β-catenin–TCF7L2–JMJD6–c-Myc axis to overcome resistance to BET inhibitors. Blood, 2020, 135, 1255-1269.	1.4	27
148	Clinical pharmacokinetics and pharmacodynamics of ivosidenib in patients with advanced hematologic malignancies with an IDH1 mutation. Cancer Chemotherapy and Pharmacology, 2020, 85, 959-968.	2.3	15
149	Venetoclax and BCR-ABL Tyrosine Kinase Inhibitor Combinations: Outcome in Patients with Philadelphia Chromosome-Positive Advanced Myeloid Leukemias. Acta Haematologica, 2020, 143, 567-573.	1.4	53
150	How I treat acute myeloid leukemia in the era of new drugs. Blood, 2020, 135, 85-96.	1.4	172
151	Ivosidenib induces deep durable remissions in patients with newly diagnosed IDH1-mutant acute myeloid leukemia. Blood, 2020, 135, 463-471.	1.4	266
152	Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML. Blood, 2020, 135, 791-803.	1.4	412
153	Outcomes of older patients with NPM1-mutated AML: current treatments and the promise of venetoclax-based regimens. Blood Advances, 2020, 4, 1311-1320.	5.2	106
154	Next-Generation Sequencing of DDX41 in Myeloid Neoplasms Leads to Increased Detection of Germline Alterations. Frontiers in Oncology, 2020, 10, 582213.	2.8	33
155	Results of Venetoclax and Azacitidine Combination in Chemotherapy Ineligible Untreated Patients with Acute Myeloid Leukemia with <i>FLT3</i> Mutations. Blood, 2020, 136, 8-10.	1.4	11
156	Interim Analysis of the Phase 1b/2 Study of the BCL-2 Inhibitor Venetoclax in Combination with Standard Intensive AML Induction/Consolidation Therapy with FLAG-IDA in Patients with Newly Diagnosed or Relapsed/Refractory AML. Blood, 2020, 136, 18-20.	1.4	17
157	Results of Venetoclax and Azacitidine Combination in Chemotherapy Ineligible Untreated Patients with Acute Myeloid Leukemia with <i>IDH 1/2</i>	1.4	28
158	Venetoclax, FLT3 Inhibitor and Decitabine in FLT3mut Acute Myeloid Leukemia: Subgroup Analysis of a Phase II Trial. Blood, 2020, 136, 53-55.	1.4	8
159	Ten-Day Decitabine with Venetoclax Versus Intensive Chemotherapy in Relapsed or Refractory Acute Myeloid Leukemia: A Propensity Score Matched Analysis. Blood, 2020, 136, 30-33.	1.4	3
160	Outcomes of TP53-Mutant Acute Myeloid Leukemia with Venetoclax and Decitabine. Blood, 2020, 136, 33-36.	1.4	12
161	Cladribine, Idarubicin, Cytarabine (ara-C), and Venetoclax in Treating Patients with Acute Myeloid Leukemia and High-Risk Myelodysplastic Syndrome. Blood, 2020, 136, 7-9.	1.4	5
162	Phase II Study of CPX-351 Plus Venetoclax in Patients with Acute Myeloid Leukemia (AML). Blood, 2020, 136, 20-22.	1.4	8

#	Article	IF	CITATIONS
163	Phase II Study of Venetoclax Added to Cladribine + Low Dose AraC (LDAC) Alternating with 5-Azacytidine Demonstrates High Rates of Minimal Residual Disease (MRD) Negative Complete Remissions (CR) and Excellent Tolerability in Older Patients with Newly Diagnosed Acute Myeloid Leukemia (AML). Blood, 2020, 136, 17-19.	1.4	10
164	Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: a phase 3 randomized placebo-controlled trial. Blood, 2020, 135, 2137-2145.	1.4	470
165	Sorafenib plus intensive chemotherapy improves survival in patients with newly diagnosed, FLT3â€internal tandem duplication mutation–positive acute myeloid leukemia. Cancer, 2019, 125, 3755-3766.	4.1	38
166	Acute Myeloid Leukemia: from Mutation Profiling to Treatment Decisions. Current Hematologic Malignancy Reports, 2019, 14, 386-394.	2.3	34
167	Clinical applicability of proposed algorithm for identifying individuals at risk for hereditary hematologic malignancies. Leukemia and Lymphoma, 2019, 60, 3020-3027.	1.3	4
168	Idarubicin, cytarabine, and nivolumab in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: a single-arm, phase 2 study. Lancet Haematology,the, 2019, 6, e480-e488.	4.6	103
169	Venetoclax for the treatment of newly diagnosed acute myeloid leukemia in patients who are ineligible for intensive chemotherapy. Therapeutic Advances in Hematology, 2019, 10, 204062071988282.	2.5	52
170	Phase 1/2 study of DFPâ€10917 administered by continuous intravenous infusion in patients with recurrent or refractory acute myeloid leukemia. Cancer, 2019, 125, 1665-1673.	4.1	5
171	Myeloid malignancies with somaticGATA2mutations can be associated with an immunodeficiency phenotype. Leukemia and Lymphoma, 2019, 60, 2025-2033.	1.3	15
172	Venetoclax-based therapies for acute myeloid leukemia. Best Practice and Research in Clinical Haematology, 2019, 32, 145-153.	1.7	113
173	Unrecognized fluid overload during induction therapy increases morbidity in patients with acute promyelocytic leukemia. Cancer, 2019, 125, 3219-3224.	4.1	14
174	Prognostic significance of baseline <i>FLT3</i> â€ITD mutant allele level in acute myeloid leukemia treated with intensive chemotherapy with/without sorafenib. American Journal of Hematology, 2019, 94, 984-991.	4.1	32
175	Hereditary myeloid malignancies. Best Practice and Research in Clinical Haematology, 2019, 32, 163-176.	1.7	35
176	RUNX1-targeted therapy for AML expressing somatic or germline mutation in RUNX1. Blood, 2019, 134, 59-73.	1.4	75
177	<i>DDX41</i> mutations in myeloid neoplasms are associated with male gender, <i>TP53</i> mutations and highâ€risk disease. American Journal of Hematology, 2019, 94, 757-766.	4.1	86
178	Intensive chemotherapy is more effective than hypomethylating agents for the treatment of younger patients with myelodysplastic syndrome and elevated bone marrow blasts. American Journal of Hematology, 2019, 94, E188-E190.	4.1	4
179	Enasidenib, an inhibitor of mutant IDH2 proteins, induces durable remissions in older patients with newly diagnosed acute myeloid leukemia. Leukemia, 2019, 33, 2575-2584.	7.2	164
180	Janus kinase 2 variants associated with the transformation of myeloproliferative neoplasms into acute myeloid leukemia. Cancer, 2019, 125, 1855-1866.	4.1	21

#	Article	IF	CITATIONS
181	NPM1 mutations define a specific subgroup of MDS and MDS/MPN patients with favorable outcomes with intensive chemotherapy. Blood Advances, 2019, 3, 922-933.	5.2	84
182	ClinGen Myeloid Malignancy Variant Curation Expert Panel recommendations for germline RUNX1 variants. Blood Advances, 2019, 3, 2962-2979.	5.2	110
183	Which novel agents hold the greatest promise in AML?. Best Practice and Research in Clinical Haematology, 2019, 32, 101106.	1.7	2
184	Germline Genetic Predisposition to Myeloid Neoplasia From GATA2 Gene Mutations: Lessons Learned From Two Cases. JCO Precision Oncology, 2019, 3, 1-5.	3.0	3
185	Persistent <i>IDH1/2</i> mutations in remission can predict relapse in patients with acute myeloid leukemia. Haematologica, 2019, 104, 305-311.	3.5	56
186	Ultra-Rapid Reporting of GENomic Targets (URGENTseq). Journal of Molecular Diagnostics, 2019, 21, 89-98.	2.8	23
187	Advances in patient care through increasingly individualized therapy. Nature Reviews Clinical Oncology, 2019, 16, 73-74.	27.6	33
188	Treatment with a 5-day versus a 10-day schedule of decitabine in older patients with newly diagnosed acute myeloid leukaemia: a randomised phase 2 trial. Lancet Haematology,the, 2019, 6, e29-e37.	4.6	84
189	Efficacy, Safety, and Biomarkers of Response to Azacitidine and Nivolumab in Relapsed/Refractory Acute Myeloid Leukemia: A Nonrandomized, Open-Label, Phase II Study. Cancer Discovery, 2019, 9, 370-383.	9.4	380
190	Superior efficacy of cotreatment with BET protein inhibitor and BCL2 or MCL1 inhibitor against AML blast progenitor cells. Blood Cancer Journal, 2019, 9, 4.	6.2	57
191	Tyrosine kinase inhibitor discontinuation in patients with chronic myeloid leukemia: a single-institution experience. Journal of Hematology and Oncology, 2019, 12, 1.	17.0	257
192	Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood, 2019, 133, 7-17.	1.4	1,254
193	A phase II study of omacetaxine mepesuccinate for patients with higherâ€risk myelodysplastic syndrome and chronic myelomonocytic leukemia after failure of hypomethylating agents. American Journal of Hematology, 2019, 94, 74-79.	4.1	10
194	Validation of the 2017 European LeukemiaNet classification for acute myeloid leukemia with <i>NPM1 </i> and <i>FLT3</i> â€internal tandem duplication genotypes. Cancer, 2019, 125, 1091-1100.	4.1	50
195	Molecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenib. Blood, 2019, 133, 676-687.	1.4	262
196	Venetoclax Combined with Cladribine + Low Dose AraC (LDAC) Alternating with 5-Azacytidine Produces High Rates of Minimal Residual Disease (MRD) Negative Complete Remissions (CR) in Older Patients with Newly Diagnosed Acute Myeloid Leukemia (AML). Blood, 2019, 134, 2647-2647.	1.4	11
197	High Rate of IDH1 Mutation Clearance and Measurable Residual Disease Negativity in Patients with IDH1-Mutant Newly Diagnosed Acute Myeloid Leukemia Treated with Ivosidenib (AG-120) and Azacitidine. Blood, 2019, 134, 2706-2706.	1.4	10
198	Ivosidenib (AG-120) in Patients with IDH1-Mutant Relapsed/Refractory Myelodysplastic Syndrome: Updated Enrollment of a Phase 1 Dose Escalation and Expansion Study. Blood, 2019, 134, 4254-4254.	1.4	17

#	Article	IF	CITATIONS
199	Long-Term Safety and Efficacy of Hyper-CVAD Plus Ponatinib As Frontline Therapy for Adults with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Blood, 2019, 134, 283-283.	1.4	34
200	Outcomes after Stem Cell Transplant in Older Patients with Acute Myeloid Leukemia Treated with Venetoclax-Based Therapies. Blood, 2019, 134, 264-264.	1.4	21
201	Ten-Day Decitabine with Venetoclax (DEC10-VEN) in Acute Myeloid Leukemia: Updated Results of a Phase II Trial. Blood, 2019, 134, 2637-2637.	1.4	15
202	Outcomes in Molecular Subgroups and Resistance Patterns with Ten-Day Decitabine and Venetoclax (DEC10-VEN) in Acute Myeloid Leukemia. Blood, 2019, 134, 645-645.	1.4	9
203	Enasidenib Plus Azacitidine Significantly Improves Complete Remission and Overall Response Compared with Azacitidine Alone in Patients with Newly Diagnosed Acute Myeloid Leukemia (AML) with Isocitrate Dehydrogenase 2 (IDH2) Mutations: Interim Phase II Results from an Ongoing, Randomized Study. Blood, 2019, 134, 643-643.	1.4	37
204	Characteristics and Clinical Outcomes of Patients with Acute Lymphoblastic Leukemia with KMT2A (MLL) Rearrangement. Blood, 2019, 134, 2582-2582.	1.4	2
205	Venetoclax Dosing in Combination with Antifungal Agents: Real World Experience in Patients with Acute Myeloid Leukemia. Blood, 2019, 134, 2640-2640.	1.4	12
206	Single-agent and combination biologics in acute myeloid leukemia. Hematology American Society of Hematology Education Program, 2019, 2019, 548-556.	2.5	22
207	Improving the detection of patients with inherited predispositions to hematologic malignancies using nextâ€generation sequencingâ€based leukemia prognostication panels. Cancer, 2018, 124, 2704-2713.	4.1	39
208	Results of second salvage therapy in 673 adults with acute myelogenous leukemia treated at a single institution since 2000. Cancer, 2018, 124, 2534-2540.	4.1	23
209	Inotuzumab ozogamicin in combination with low-intensity chemotherapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukaemia: a single-arm, phase 2 study. Lancet Oncology, The, 2018, 19, 240-248.	10.7	192
210	Outcomes with lower intensity therapy in <i>TP53</i> -mutated acute myeloid leukemia. Leukemia and Lymphoma, 2018, 59, 2238-2241.	1.3	20
211	Differentiation Syndrome Associated With Enasidenib, a Selective Inhibitor of Mutant Isocitrate Dehydrogenase 2. JAMA Oncology, 2018, 4, 1106.	7.1	157
212	Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study. Lancet Oncology, The, 2018, 19, 216-228.	10.7	551
213	The role of <i>IDH</i> mutations in acute myeloid leukemia. Future Oncology, 2018, 14, 979-993.	2.4	100
214	Clinical experience with the <scp>BCL</scp> 2â€inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies. American Journal of Hematology, 2018, 93, 401-407.	4.1	336
215	A phase II trial of ruxolitinib in combination with azacytidine in myelodysplastic syndrome/myeloproliferative neoplasms. American Journal of Hematology, 2018, 93, 277-285.	4.1	54
216	Characterization of IDH1 p.R132H Mutant Clones Using Mutation-specific Antibody in Myeloid Neoplasms. American Journal of Surgical Pathology, 2018, 42, 569-577.	3.7	9

#	Article	IF	CITATIONS
217	Clearance of Somatic Mutations at Remission and the Risk of Relapse in Acute Myeloid Leukemia. Journal of Clinical Oncology, 2018, 36, 1788-1797.	1.6	156
218	Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: long-term follow-up of a single-centre, phase 2 study. Lancet Haematology,the, 2018, 5, e618-e627.	4.6	190
219	Mutational landscape of myelodysplastic/myeloproliferative neoplasm–unclassifiable. Blood, 2018, 132, 2100-2103.	1.4	40
220	Cytogenetic and Molecular Drivers of Outcome with Venetoclax-Based Combination Therapies in Treatment-NaÃ⁻ve Elderly Patients with Acute Myeloid Leukemia (AML). Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, S202.	0.4	5
221	SOHO State of the Art Update and Next Questions: IDH Therapeutic Targeting in AML. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, 769-772.	0.4	16
222	A phase 2 study of ruxolitinib in combination with azacitidine in patients with myelofibrosis. Blood, 2018, 132, 1664-1674.	1.4	62
223	Ivosidenib in <i>IDH1</i> -Mutated Acute Myeloid Leukemia. New England Journal of Medicine, 2018, 379, 1186-1186.	27.0	19
224	Durable Remissions with Ivosidenib in <i>IDH1</i> -Mutated Relapsed or Refractory AML. New England Journal of Medicine, 2018, 378, 2386-2398.	27.0	1,092
225	The role of enasidenib in the treatment of mutant IDH2 acute myeloid leukemia. Therapeutic Advances in Hematology, 2018, 9, 163-173.	2.5	50
226	Integrative genomic analysis of adult mixed phenotype acute leukemia delineates lineage associated molecular subtypes. Nature Communications, 2018, 9, 2670.	12.8	79
227	Evolving Treatment Strategies for Elderly Leukemia Patients with IDH Mutations. Cancers, 2018, 10, 187.	3.7	27
228	Cladribine and low-dose cytarabine alternating with decitabine as front-line therapy for elderly patients with acute myeloid leukaemia: a phase 2 single-arm trial. Lancet Haematology,the, 2018, 5, e411-e421.	4.6	66
229	Ivosidenib or Enasidenib Combined with Induction and Consolidation Chemotherapy in Patients with Newly Diagnosed AML with an IDH1 or IDH2 Mutation Is Safe, Effective, and Leads to MRD-Negative Complete Remissions. Blood, 2018, 132, 560-560.	1.4	51
230	Interim Analysis of Phase II Study of Venetoclax with 10-Day Decitabine (DEC10-VEN) in Acute Myeloid Leukemia and Myelodysplastic Syndrome. Blood, 2018, 132, 286-286.	1.4	19
231	Venetoclax in Combination with FLAG-IDA Chemotherapy (FLAG-V-I) for Fit, Relapsed/Refractory AML Patients: Interim Results of a Phase 1b/2 Dose Escalation and Expansion Study. Blood, 2018, 132, 4048-4048.	1.4	17
232	Outcomes with Subsequent FLT3-Inhibitor (FLT3i) Based Therapies in FLT3-Mutated (mu) Patients (pts) Refractory/Relapsed (R/R) to One or More Prior FLT3 Inhibitor Based Therapies: A Single Center Experience. Blood, 2018, 132, 663-663.	1.4	7
233	Impact of achievement of complete cytogenetic response on outcome in patients with myelodysplastic syndromes treated with hypomethylating agents. American Journal of Hematology, 2017, 92, 351-358.	4.1	13
234	Management of Venetoclax-Posaconazole Interaction in Acute Myeloid Leukemia Patients: Evaluation of Dose Adjustments. Clinical Therapeutics, 2017, 39, 359-367.	2.5	152

#	Article	IF	CITATIONS
235	Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study. Lancet Oncology, The, 2017, 18, 100-111.	10.7	296
236	Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood, 2017, 130, 722-731.	1.4	1,173
237	Long-term outcome of acute promyelocytic leukemia treated with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab. Blood, 2017, 129, 1275-1283.	1.4	214
238	Targeting IDH1 and IDH2 Mutations in Acute Myeloid Leukemia. Current Hematologic Malignancy Reports, 2017, 12, 537-546.	2.3	31
239	Safety and Efficacy of Blinatumomab in Combination With a Tyrosine Kinase Inhibitor for the Treatment of Relapsed Philadelphia Chromosome-positive Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, 897-901.	0.4	127
240	A randomized phase 2 study of idarubicin and cytarabine with clofarabine or fludarabine in patients with newly diagnosed acute myeloid leukemia. Cancer, 2017, 123, 4430-4439.	4.1	37
241	Bone marrow pathologic abnormalities in familial platelet disorder with propensity for myeloid malignancy and germline RUNX1 mutation. Haematologica, 2017, 102, 1661-1670.	3.5	64
242	BET protein bromodomain inhibitor-based combinations are highly active against post-myeloproliferative neoplasm secondary AML cells. Leukemia, 2017, 31, 678-687.	7.2	77
243	Persistence of minimal residual disease assessed by multiparameter flow cytometry is highly prognostic in younger patients with acute myeloid leukemia. Cancer, 2017, 123, 426-435.	4.1	63
244	Novel Therapeutics in Acute Myeloid Leukemia. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 495-503.	3.8	12
245	Treated secondary acute myeloid leukemia: a distinct high-risk subset of AML with adverse prognosis. Blood Advances, 2017, 1, 1312-1323.	5.2	83
246	Clinical Outcomes and Co-Occurring Mutations in Patients with RUNX1-Mutated Acute Myeloid Leukemia. International Journal of Molecular Sciences, 2017, 18, 1618.	4.1	37
247	The Combination of Quizartinib with Azacitidine or Low Dose Cytarabine Is Highly Active in Patients (Pts) with FLT3-ITD Mutated Myeloid Leukemias: Interim Report of a Phase I/II Trial. Blood, 2017, 130, 723-723.	1.4	35
248	Phase 2 Study of Combination of Cytarabine, Idarubicin, and Nivolumab for Initial Therapy of Patients with Newly Diagnosed Acute Myeloid Leukemia. Blood, 2017, 130, 815-815.	1.4	11
249	Hereditary Predispositions to Myelodysplastic Syndrome. International Journal of Molecular Sciences, 2016, 17, 838.	4.1	58
250	Interactions and relevance of blast percentage and treatment strategy among younger and older patients with acute myeloid leukemia (<scp>AML</scp>) and myelodysplastic syndrome (<scp>MDS</scp>). American Journal of Hematology, 2016, 91, 227-232.	4.1	46
251	Mutations in AML: prognostic and therapeutic implications. Hematology American Society of Hematology Education Program, 2016, 2016, 348-355.	2.5	136
252	Efficacy and Biological Correlates of Response in a Phase II Study of Venetoclax Monotherapy in Patients with Acute Myelogenous Leukemia. Cancer Discovery, 2016, 6, 1106-1117.	9.4	799

#	Article	IF	CITATIONS
253	<i>TP53</i> mutations in newly diagnosed acute myeloid leukemia: Clinicomolecular characteristics, response to therapy, and outcomes. Cancer, 2016, 122, 3484-3491.	4.1	200
254	Evaluation of Patients and Families With Concern for Predispositions to Hematologic Malignancies Within the Hereditary Hematologic Malignancy Clinic (HHMC). Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, 417-428.e2.	0.4	74
255	Evidence for Clinical Differentiation and Differentiation Syndrome in Patients With Acute Myeloid Leukemia and IDH1 Mutations Treated With the Targeted Mutant IDH1 Inhibitor, AG-120. Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, 460-465.	0.4	84
256	Clofarabine Plus Low-Dose Cytarabine Is as Effective as and Less Toxic Than Intensive Chemotherapy in Elderly AML Patients. Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, 163-168.e2.	0.4	18
257	A Phase I Study of IDH305 in Patients with Advanced Malignancies Including Relapsed/Refractory AML and MDS That Harbor IDH1R132 Mutations. Blood, 2016, 128, 1073-1073.	1.4	46
258	Myelodysplastic Syndromes with NPM1 Mutations May Constitute a Unique Entity Associated with Improved Outcomes When Treated with AML-like Chemotherapy. Blood, 2016, 128, 3171-3171.	1.4	2
259	Enasidenib (AG-221), a Potent Oral Inhibitor of Mutant Isocitrate Dehydrogenase 2 (IDH2) Enzyme, Induces Hematologic Responses in Patients with Myelodysplastic Syndromes (MDS). Blood, 2016, 128, 343-343.	1.4	44
260	Targeting isocitrate dehydrogenase (IDH) in cancer. Discovery Medicine, 2016, 21, 373-80.	0.5	92
261	Getting a handle on hereditary CEBPA mutations. Blood, 2015, 126, 1156-1158.	1.4	41
262	Identification of a Novel Fusion Gene,IRF2BP2-RARA, in Acute Promyelocytic Leukemia. Journal of the National Comprehensive Cancer Network: JNCCN, 2015, 13, 19-22.	4.9	46
263	Characteristics, clinical outcome, and prognostic significance of <scp>IDH</scp> mutations in <scp>AML</scp> . American Journal of Hematology, 2015, 90, 732-736.	4.1	242
264	Bone marrow necrosis in acute leukemia: Clinical characteristic and outcome. American Journal of Hematology, 2015, 90, 769-773.	4.1	27
265	Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a single-centre, phase 2 study. Lancet Oncology, The, 2015, 16, 1547-1555.	10.7	245
266	Detectable FLT3-ITD or RAS mutation at the time of transformation from MDS to AML predicts for very poor outcomes. Leukemia Research, 2015, 39, 1367-1374.	0.8	48
267	Phase II Study of Cladribine, Idarubicin, and Cytarabine (araC) in Patients with Acute Myeloid Leukemia (AML). Blood, 2015, 126, 2541-2541.	1.4	7
268	Safety and Efficacy of AC-221, a Potent Inhibitor of Mutant IDH2 That Promotes Differentiation of Myeloid Cells in Patients with Advanced Hematologic Malignancies: Results of a Phase 1/2 Trial. Blood, 2015, 126, 323-323.	1.4	57
269	Atypical chronic myeloid leukemia is clinically distinct from unclassifiable myelodysplastic/myeloproliferative neoplasms. Blood, 2014, 123, 2645-2651.	1.4	192
270	Serum 2-hydroxyglutarate levels predict isocitrate dehydrogenase mutations and clinical outcome in acute myeloid leukemia. Blood, 2013, 121, 4917-4924.	1.4	175