
Charles A Peloquin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1917798/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Official ATS Statement: Hepatotoxicity of Antituberculosis Therapy. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 935-952.	2.5	939
2	Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clinical Infectious Diseases, 2016, 63, e147-e195.	2.9	916
3	Therapeutic Drug Monitoring in the Treatment of Tuberculosis. Drugs, 2002, 62, 2169-2183.	4.9	362
4	Therapeutic Drug Monitoring in the Treatment of Tuberculosis: An Update. Drugs, 2014, 74, 839-854.	4.9	356
5	Comparative Pharmacokinetics and Pharmacodynamics of the Rifamycin Antibacterials. Clinical Pharmacokinetics, 2001, 40, 327-341.	1.6	292
6	Treatment of Drug-Resistant Tuberculosis. An Official ATS/CDC/ERS/IDSA Clinical Practice Guideline. American Journal of Respiratory and Critical Care Medicine, 2019, 200, e93-e142.	2.5	282
7	Association between Acquired Rifamycin Resistance and the Pharmacokinetics of Rifabutin and Isoniazid among Patients with HIV and Tuberculosis. Clinical Infectious Diseases, 2005, 40, 1481-1491.	2.9	228
8	Aminoglycoside Toxicity: Daily versus Thrice-Weekly Dosing for Treatment of Mycobacterial Diseases. Clinical Infectious Diseases, 2004, 38, 1538-1544.	2.9	218
9	Formulation and Pharmacokinetics of Self-Assembled Rifampicin Nanoparticle Systems for Pulmonary Delivery. Pharmaceutical Research, 2009, 26, 1847-1855.	1.7	217
10	Isoniazid, Rifampin, Ethambutol, and Pyrazinamide Pharmacokinetics and Treatment Outcomes among a Predominantly HIVâ€Infected Cohort of Adults with Tuberculosis from Botswana. Clinical Infectious Diseases, 2009, 48, 1685-1694.	2.9	203
11	Low Isoniazid Concentrations and Outcome of Tuberculosis Treatment with Once-Weekly Isoniazid and Rifapentine. American Journal of Respiratory and Critical Care Medicine, 2003, 167, 1341-1347.	2.5	192
12	Daily Dosing of Rifapentine Cures Tuberculosis in Three Months or Less in the Murine Model. PLoS Medicine, 2007, 4, e344.	3.9	184
13	Sterilizing Activity of Novel TMC207- and PA-824-Containing Regimens in a Murine Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2011, 55, 5485-5492.	1.4	181
14	Population Pharmacokinetics of Levofloxacin, Gatifloxacin, and Moxifloxacin in Adults with Pulmonary Tuberculosis. Antimicrobial Agents and Chemotherapy, 2008, 52, 852-857.	1.4	177
15	The Pharmacokinetics and Pharmacodynamics of Pulmonary <i>Mycobacterium avium</i> Complex Disease Treatment. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 559-565.	2.5	175
16	Pharmacokinetics of Rifampin Under Fasting Conditions, With Food, and With Antacids. Chest, 1999, 115, 12-18.	0.4	163
17	Low Antituberculosis Drug Concentrations in Patients with AIDS. Annals of Pharmacotherapy, 1996, 30, 919-925.	0.9	157
18	Early and Extended Early Bactericidal Activity of Linezolid in Pulmonary Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 1180-1185.	2.5	153

#	Article	IF	CITATIONS
19	Therapeutic Implications of Drug Interactions in the Treatment of Human Immunodeficiency Virusâ€Related Tuberculosis. Clinical Infectious Diseases, 1999, 28, 419-429.	2.9	152
20	Dose-Ranging Comparison of Rifampin and Rifapentine in Two Pathologically Distinct Murine Models of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 4331-4340.	1.4	142
21	Sterilizing Activities of Novel Combinations Lacking First- and Second-Line Drugs in a Murine Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 3114-3120.	1.4	138
22	Serum Concentrations of Antimycobacterial Drugs in Patients with Pulmonary Tuberculosis in Botswana. Clinical Infectious Diseases, 2005, 41, 461-469.	2.9	135
23	Effects of Tuberculosis, Race, and Human Gene <i>SLCO1B1</i> Polymorphisms on Rifampin Concentrations. Antimicrobial Agents and Chemotherapy, 2010, 54, 4192-4200.	1.4	133
24	Malabsorption of Antimycobacterial Medications. New England Journal of Medicine, 1993, 329, 1122-1123.	13.9	118
25	Pharmacokinetic Evaluation of Rifabutin in Combination with Lopinavirâ€Ritonavir in Patients with HIV Infection and Active Tuberculosis. Clinical Infectious Diseases, 2009, 49, 1305-1311.	2.9	118
26	Combination Chemotherapy with the Nitroimidazopyran PA-824 and First-Line Drugs in a Murine Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2006, 50, 2621-2625.	1.4	117
27	Pharmacokinetics of Ethambutol under Fasting Conditions, with Food, and with Antacids. Antimicrobial Agents and Chemotherapy, 1999, 43, 568-572.	1.4	104
28	Effects of Rifampin and Multidrug Resistance Gene Polymorphism on Concentrations of Moxifloxacin. Antimicrobial Agents and Chemotherapy, 2007, 51, 2861-2866.	1.4	103
29	USING THERAPEUTIC DRUG MONITORING TO DOSE THE ANTIMYCOBACTERIAL DRUGS. Clinics in Chest Medicine, 1997, 18, 79-87.	0.8	96
30	Paradoxical Effect of Isoniazid on the Activity of Rifampin-Pyrazinamide Combination in a Mouse Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2009, 53, 4178-4184.	1.4	90
31	Potent Twice-Weekly Rifapentine-containing Regimens in Murine Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 94-101.	2.5	88
32	Dynamic imaging in patients with tuberculosis reveals heterogeneous drug exposures in pulmonary lesions. Nature Medicine, 2020, 26, 529-534.	15.2	87
33	Tuberculosis pharmacotherapy: strategies to optimize patient care. Expert Opinion on Pharmacotherapy, 2009, 10, 381-401.	0.9	85
34	Comparative Studies Evaluating Mouse Models Used for Efficacy Testing of Experimental Drugs against <i>Mycobacterium tuberculosis</i> . Antimicrobial Agents and Chemotherapy, 2011, 55, 1237-1247.	1.4	85
35	Efficacy and Safety of High-Dose Rifampin in Pulmonary Tuberculosis. A Randomized Controlled Trial. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 657-666.	2.5	83
36	Low Serum Levels of Oral Antimycobacterial Agents in Patients with Disseminated Mycobacterium avium Complex Disease. Journal of Infectious Diseases, 1993, 168, 1559-1562.	1.9	81

#	Article	IF	CITATIONS
37	What is the 'right' dose of rifampin?. International Journal of Tuberculosis and Lung Disease, 2003, 7, 3-5.	0.6	79
38	Pharmacokinetics and relative bioavailability of clofazimine in relation to food, orange juice and antacid. Tuberculosis, 2004, 84, 365-373.	0.8	77
39	Pharmacokinetics and Pharmacodynamics of Linezolid in Obese Patients with Cellulitis. Annals of Pharmacotherapy, 2005, 39, 427-432.	0.9	77
40	PA-824 Exhibits Time-Dependent Activity in a Murine Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2011, 55, 239-245.	1.4	76
41	Pharmacokinetics of Rifapentine at 600, 900, and 1,200 mg during Once-Weekly Tuberculosis Therapy. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 1191-1197.	2.5	75
42	Synthesis and in vitro antimycobacterial activity of B-ring modified diaryl ether InhA inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3029-3033.	1.0	75
43	Noninvasive ¹¹ C-rifampin positron emission tomography reveals drug biodistribution in tuberculous meningitis. Science Translational Medicine, 2018, 10, .	5.8	73
44	The Clinical Pharmacokinetics of Rifampin and Ethambutol in HIV-Infected Persons with Tuberculosis. Clinical Infectious Diseases, 2005, 41, 1638-1647.	2.9	69
45	Pharmacological Issues in the Treatment of Tuberculosis. Annals of the New York Academy of Sciences, 2001, 953b, 157-164.	1.8	66
46	Population Pharmacokinetic Modeling of Pyrazinamide in Children and Adults with Tuberculosis. Pharmacotherapy, 2002, 22, 686-695.	1.2	66
47	Dry Powder Nitroimidazopyran Antibiotic PA-824 Aerosol for Inhalation. Antimicrobial Agents and Chemotherapy, 2009, 53, 1338-1343.	1.4	66
48	Pharmacokinetics of Cycloserine under Fasting Conditions and with High-Fat Meal, Orange Juice, and Antacids. Pharmacotherapy, 2001, 21, 891-897.	1.2	62
49	Linezolid tissue penetration and serum activity against strains of methicillin-resistant Staphylococcus aureus with reduced vancomycin susceptibility in diabetic patients with foot infections. Journal of Antimicrobial Chemotherapy, 2007, 60, 819-823.	1.3	62
50	Pharmacokinetics of Ethionamide Administered under Fasting Conditions or with Orange Juice, Food, or Antacids. Antimicrobial Agents and Chemotherapy, 2001, 45, 810-814.	1.4	59
51	Integrating Pharmacokinetics and Pharmacodynamics in Operational Research to End Tuberculosis. Clinical Infectious Diseases, 2020, 70, 1774-1780.	2.9	59
52	Population Pharmacokinetics of Linezolid in Adults with Pulmonary Tuberculosis. Antimicrobial Agents and Chemotherapy, 2009, 53, 3981-3984.	1.4	57
53	Population Pharmacokinetics of Intravenous and Intramuscular Streptomycin in Patients with Tuberculosis. Pharmacotherapy, 2001, 21, 1037-1045.	1.2	56
54	Paediatric use of second-line anti-tuberculosis agents: A review. Tuberculosis, 2012, 92, 9-17.	0.8	56

#	Article	IF	CITATIONS
55	Analysis of Combination Drug Therapy to Develop Regimens with Shortened Duration of Treatment for Tuberculosis. PLoS ONE, 2014, 9, e101311.	1.1	56
56	Weekly Moxifloxacin and Rifapentine Is More Active Than the Denver Regimen in Murine Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 1457-1462.	2.5	55
57	Repeated Administration of High-Dose Intermittent Rifapentine Reduces Rifapentine and Moxifloxacin Plasma Concentrations. Antimicrobial Agents and Chemotherapy, 2008, 52, 4037-4042.	1.4	54
58	Treatment of Tuberculosis with Rifamycin-containing Regimens in Immune-deficient Mice. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1254-1261.	2.5	54
59	Pharmacokinetic interaction of rifapentine and raltegravir in healthy volunteers. Journal of Antimicrobial Chemotherapy, 2014, 69, 1079-1085.	1.3	54
60	Medications and Monitoring in Nontuberculous Mycobacteria Infections. Clinics in Chest Medicine, 2015, 36, 55-66.	0.8	52
61	Effect of Grapefruit Juice on Clarithromycin Pharmacokinetics. Antimicrobial Agents and Chemotherapy, 1998, 42, 927-929.	1.4	51
62	Contribution of Moxifloxacin or Levofloxacin in Second-Line Regimens with or without Continuation of Pyrazinamide in Murine Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 97-102.	2.5	50
63	Polymyxin Combinations Combat <i>Escherichia coli</i> Harboring <i>mcr-1</i> and <i>bla</i> _{NDM-5} : Preparation for a Postantibiotic Era. MBio, 2017, 8, .	1.8	50
64	Pharmacology of the antimycobacterial drugs. Medical Clinics of North America, 1993, 77, 1253-1262.	1.1	49
65	Comparison of the 'Denver regimen' against acute tuberculosis in the mouse and guinea pig. Journal of Antimicrobial Chemotherapy, 2010, 65, 729-734.	1.3	49
66	The Treatment of Tuberculosis. Clinical Pharmacology and Therapeutics, 2021, 110, 1455-1466.	2.3	49
67	Pharmacokinetics of para-Aminosalicylic Acid Granules under Four Dosing Conditions. Annals of Pharmacotherapy, 2001, 35, 1332-1338.	0.9	48
68	Lung Tissue Concentrations of Pyrazinamide among Patients with Drug-Resistant Pulmonary Tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	48
69	Evaluation of the Drug Interaction between Rifabutin and Efavirenz in Patients with HIV Infection and Tuberculosis. Clinical Infectious Diseases, 2005, 41, 1343-1349.	2.9	46
70	Therapeutic drug management: is it the future of multidrug-resistant tuberculosis treatment?. European Respiratory Journal, 2013, 42, 1449-1453.	3.1	46
71	Therapeutic Drug Monitoring of Antimycobacterial Drugs in Patients with Both Tuberculosis and Advanced Human Immunodeficiency Virus Infection. Pharmacotherapy, 2009, 29, 503-510.	1.2	45
72	The Role of Therapeutic Drug Monitoring in Mycobacterial Infections. Microbiology Spectrum, 2017, 5,	1.2	45

#	Article	IF	CITATIONS
73	Intestinal permeability and malabsorption of rifampin and isoniazid in active pulmonary tuberculosis. Brazilian Journal of Infectious Diseases, 2006, 10, 374-379.	0.3	44
74	Wirelessly observed therapy compared to directly observed therapy to confirm and support tuberculosis treatment adherence: A randomized controlled trial. PLoS Medicine, 2019, 16, e1002891.	3.9	44
75	Early therapeutic monitoring of β-lactams and associated therapy outcomes in critically ill patients. Journal of Antimicrobial Chemotherapy, 2020, 75, 3644-3651.	1.3	44
76	Rifapentine Pharmacokinetics and Tolerability in Children and Adults Treated Once Weekly With Rifapentine and Isoniazid for Latent Tuberculosis Infection. Journal of the Pediatric Infectious Diseases Society, 2014, 3, 132-145.	0.6	40
77	Optimizing the clinical pharmacology of tuberculosis medications. Clinical Pharmacology and Therapeutics, 2015, 98, 387-393.	2.3	40
78	LC-MS/MS for Therapeutic Drug Monitoring of anti-infective drugs. TrAC - Trends in Analytical Chemistry, 2016, 84, 34-40.	5.8	40
79	Population Pharmacokinetics and Bayesian Dose Adjustment to Advance TDM of Anti-TB Drugs. Clinical Pharmacokinetics, 2021, 60, 685-710.	1.6	39
80	Metronidazole Lacks Antibacterial Activity in Guinea Pigs Infected with <i>Mycobacterium tuberculosis</i> . Antimicrobial Agents and Chemotherapy, 2008, 52, 4137-4140.	1.4	38
81	Rifampin vs. rifapentine: what is the preferred rifamycin for tuberculosis?. Expert Review of Clinical Pharmacology, 2017, 10, 1027-1036.	1.3	38
82	Plasma Drug Activity in Patients on Treatment for Multidrug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 782-788.	1.4	37
83	Delamanid Central Nervous System Pharmacokinetics in Tuberculous Meningitis in Rabbits and Humans. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	37
84	Protein Binding of First-Line Antituberculosis Drugs. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	36
85	The Effect of Hemodialysis on Cycloserine, Ethionamide, Para-Aminosalicylate, and Clofazimine. Chest, 1999, 116, 984-990.	0.4	35
86	Pharmacokinetics of First-Line Antituberculosis Drugs Using WHO Revised Dosage in Children With Tuberculosis With and Without HIV Coinfection. Journal of the Pediatric Infectious Diseases Society, 2016, 5, 356-365.	0.6	35
87	Verapamil Increases the Bioavailability and Efficacy of Bedaquiline but Not Clofazimine in a Murine Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	35
88	Meropenem, Cefepime, and Piperacillin Protein Binding in Patient Samples. Therapeutic Drug Monitoring, 2020, 42, 129-132.	1.0	35
89	Rifapentine Is Not More Active than Rifampin against Chronic Tuberculosis in Guinea Pigs. Antimicrobial Agents and Chemotherapy, 2012, 56, 3726-3731.	1.4	34
90	Losartan Rescues Inflammation-related Mucociliary Dysfunction in Relevant Models of Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 313-324.	2.5	34

#	Article	IF	CITATIONS
91	Pharmacodynamics of early, high-dose linezolid against vancomycin-resistant enterococci with elevated MICs and pre-existing genetic mutations. Journal of Antimicrobial Chemotherapy, 2012, 67, 2182-2190.	1.3	33
92	Cavitary Penetration of Levofloxacin among Patients with Multidrug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 3149-3155.	1.4	32
93	Infection Caused by Mycobacterium Tuberculosis. Annals of Pharmacotherapy, 1994, 28, 72-84.	0.9	31
94	Population Pharmacokinetics of Linezolid in Tuberculosis Patients: Dosing Regimen Simulation and Target Attainment Analysis. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	31
95	Front-Loaded Linezolid Regimens Result in Increased Killing and Suppression of the Accessory Gene Regulator System of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2012, 56, 3712-3719.	1.4	29
96	Potent Rifamycin-Sparing Regimen Cures Guinea Pig Tuberculosis as Rapidly as the Standard Regimen. Antimicrobial Agents and Chemotherapy, 2013, 57, 3910-3916.	1.4	29
97	Limited Sampling Strategy and Target Attainment Analysis for Levofloxacin in Patients with Tuberculosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 3800-3807.	1.4	29
98	Population Pharmacokinetics of Pyrazinamide in Patients with Tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	29
99	Activity of the Fluoroquinolone DC-159a in the Initial and Continuation Phases of Treatment of Murine Tuberculosis. Antimicrobial Agents and Chemotherapy, 2011, 55, 1781-1783.	1.4	28
100	Outcomes and Use of Therapeutic Drug Monitoring in Multidrug-Resistant Tuberculosis Patients Treated in Virginia, 2009-2014. Tuberculosis and Respiratory Diseases, 2015, 78, 78.	0.7	28
101	Pharmacokinetics of the First-Line Antituberculosis Drugs in Ghanaian Children with Tuberculosis with or without HIV Coinfection. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	28
102	Prediction and In Vitro Evaluation of Selected Protease Inhibitor Antiviral Drugs as Inhibitors of Carboxylesterase 1: A Potential Source of Drug-Drug Interactions. Pharmaceutical Research, 2012, 29, 972-982.	1.7	27
103	Therapeutic drug monitoring in patients with tuberculosis and concurrent medical problems. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 23-39.	1.5	27
104	Serum Concentrations of the Antimycobacterial Drugs. Chest, 1998, 113, 1154-1155.	0.4	26
105	Pharmacokinetics and Dosing of Levofloxacin in Children Treated for Active or Latent Multidrug-resistant Tuberculosis, Federated States of Micronesia and Republic of the Marshall Islands. Pediatric Infectious Disease Journal, 2016, 35, 414-421.	1.1	26
106	Effect of Genetic Variation of NAT2 on Isoniazid and SLCO1B1 and CES2 on Rifampin Pharmacokinetics in Ghanaian Children with Tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	26
107	Pharmacokinetics of First-Line Drugs Among Children With Tuberculosis in Rural Tanzania. Journal of the Pediatric Infectious Diseases Society, 2020, 9, 14-20.	0.6	26
108	Mycobacterium avium Complex Infection. Clinical Pharmacokinetics, 1997, 32, 132-144.	1.6	25

#	Article	IF	CITATIONS
109	Clearance of Linezolid via Continuous Venovenous Hemodiafiltration. American Journal of Kidney Diseases, 2006, 47, e83-e86.	2.1	25
110	Population Pharmacokinetic Model and Limited Sampling Strategies for Personalized Dosing of Levofloxacin in Tuberculosis Patients. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	25
111	Population Pharmacokinetics and Target Attainment of Cefepime in Critically III Patients and Guidance for Initial Dosing. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	25
112	Serum Concentrations of Rifampin, Isoniazid, and Intestinal Absorption, Permeability in Patients with Multidrug Resistant Tuberculosis. American Journal of Tropical Medicine and Hygiene, 2009, 81, 322-329.	0.6	25
113	Multidrug-Resistant Tuberculous Meningitis: Clinical Problems and Concentrations of Second-Line Antituberculous Medications. Annals of Pharmacotherapy, 1999, 33, 1184-1188.	0.9	24
114	Evaluation of the Adequacy of WHO Revised Dosages of the First-Line Antituberculosis Drugs in Children with Tuberculosis Using Population Pharmacokinetic Modeling and Simulations. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	24
115	Cycloserine Population Pharmacokinetics and Pharmacodynamics in Patients with Tuberculosis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	24
116	Novel 6-Month Treatment for Drug-Resistant Tuberculosis, United States. Emerging Infectious Diseases, 2021, 27, 332-334.	2.0	24
117	Therapeutic Drug Monitoring in Non-Tuberculosis Mycobacteria Infections. Clinical Pharmacokinetics, 2021, 60, 711-725.	1.6	23
118	Lack of Effect of Zafirlukast on the Pharmacokinetics of Azithromycin, Clarithromycin, and 14-Hydroxyclarithromycin in Healthy Volunteers. Antimicrobial Agents and Chemotherapy, 1999, 43, 1152-1155.	1.4	22
119	Concomitant Use of Voriconazole and Rifabutin in a Patient with Multiple Infections. Pharmacotherapy, 2008, 28, 1076-1080.	1.2	22
120	Controversies in the Management of <i>Mycobacterium Avium</i> Complex Infection in AIDS Patients. Annals of Pharmacotherapy, 1993, 27, 928-937.	0.9	21
121	The Role of Advanced Generation Macrolides in the Prophylaxis and Treatment of Mycobacterium avium Complex (MAC) Infections. Drugs, 1997, 54, 69-80.	4.9	21
122	Pharmacokinetics of Ethionamide Delivered in Spray-Dried Microparticles to the Lungs of Guinea Pigs. Journal of Pharmaceutical Sciences, 2017, 106, 331-337.	1.6	21
123	Dose optimization of moxifloxacin and linezolid against tuberculosis using mathematical modeling and simulation. International Journal of Antimicrobial Agents, 2019, 53, 275-283.	1.1	21
124	Antituberculosis therapy for 2012 and beyond. Expert Opinion on Pharmacotherapy, 2012, 13, 511-526.	0.9	19
125	Protein Binding of Rifapentine and Its 25-Desacetyl Metabolite in Patients with Pulmonary Tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 4904-4910.	1.4	19
126	Early Bactericidal Activity of AZD5847 in Patients with Pulmonary Tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 6591-6599.	1.4	19

#	Article	IF	CITATIONS
127	Limited Sampling Strategies Using Linear Regression and the Bayesian Approach for Therapeutic Drug Monitoring of Moxifloxacin in Tuberculosis Patients. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	19
128	Cycloserine and Linezolid for Tuberculosis Meningitis: Pharmacokinetic Evidence of Potential Usefulness. Clinical Infectious Diseases, 2022, 75, 682-689.	2.9	19
129	High-dose rifampin improves bactericidal activity without increased intracerebral inflammation in animal models of tuberculous meningitis. Journal of Clinical Investigation, 2022, 132, .	3.9	19
130	Therapeutic Drug Monitoring of the Antimycobacterial Drugs. Clinics in Laboratory Medicine, 1996, 16, 717-729.	0.7	18
131	Oral Cimetidine Prolongs Clarithromycin Absorption. Antimicrobial Agents and Chemotherapy, 1998, 42, 1578-1580.	1.4	18
132	The pharmacological challenges of treating tuberculosis and HIV coinfections. Expert Review of Clinical Pharmacology, 2017, 10, 213-223.	1.3	18
133	Increased Doses Lead to Higher Drug Exposures of Levofloxacin for Treatment of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	18
134	Linezolid Kills Acid-Phase and Nonreplicative-Persister-Phase Mycobacterium tuberculosis in a Hollow-Fiber Infection Model. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	18
135	Voriconazole Monitoring in Children with Invasive Fungal Infections. Journal of Pediatric Pharmacology and Therapeutics, 2015, 20, 17-23.	0.3	18
136	HUMAN VITREOUS DISTRIBUTION OF LINEZOLID AFTER A SINGLE ORAL DOSE. Retina, 2005, 25, 619-624.	1.0	17
137	An optimized background regimen design to evaluate the contribution of levofloxacin to multidrug-resistant tuberculosis treatment regimens: study protocol for a randomized controlled trial. Trials, 2017, 18, 563.	0.7	17
138	Moxifloxacin target site concentrations in patients with pulmonary TB utilizing microdialysis: a clinical pharmacokinetic study. Journal of Antimicrobial Chemotherapy, 2018, 73, 477-483.	1.3	17
139	A Pharmacology Perspective on Simultaneous Tuberculosis and Hepatitis C Treatment. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	17
140	A Systematic Review and Meta-analysis of Isoniazid Pharmacokinetics in Healthy Volunteers and Patients with Tuberculosis. Clinical Therapeutics, 2020, 42, e220-e241.	1.1	17
141	Serum concentrations of rifampin, isoniazid, and intestinal absorption, permeability in patients with multidrug resistant tuberculosis. American Journal of Tropical Medicine and Hygiene, 2009, 81, 322-9.	0.6	17
142	Evaluation of the Adequacy of the 2010 Revised World Health Organization Recommended Dosages of the First-line Antituberculosis Drugs for Children. Pediatric Infectious Disease Journal, 2018, 37, 43-51.	1.1	16
143	Determination of Rifampin Concentrations by Urine Colorimetry and Mobile Phone Readout for Personalized Dosing in Tuberculosis Treatment. Journal of the Pediatric Infectious Diseases Society, 2021, 10, 104-111.	0.6	16
144	Dynamic PET-facilitated modeling and high-dose rifampin regimens for <i>Staphylococcus aureus</i> orthopedic implant–associated infections. Science Translational Medicine, 2021, 13, eabl6851.	5.8	16

#	Article	IF	CITATIONS
145	Comparison of Linezolid Activities under Aerobic and Anaerobic Conditions against Methicillin-Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 2003, 47, 398-399.	1.4	15
146	The Clinical Pharmacokinetics of Pyrazinamide in HIVâ€Infected Persons with Tuberculosis. Clinical Infectious Diseases, 2004, 38, 556-564.	2.9	15
147	Clinical Evaluation of the Nelfinavir-Rifabutin Interaction in Patients with Tuberculosis and Human Immunodeficiency Virus Infection. Pharmacotherapy, 2007, 27, 793-800.	1.2	15
148	Fluoroquinolones in Drug-Resistant Tuberculosis: Culture Conversion and Pharmacokinetic/Pharmacodynamic Target Attainment To Guide Dose Selection. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	15
149	Isoniazid and Rifapentine Treatment Eradicates Persistent Mycobacterium tuberculosis in Macaques. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 469-477.	2.5	15
150	Optimising pyrazinamide for the treatment of tuberculosis. European Respiratory Journal, 2021, 58, 2002013.	3.1	15
151	Use of Therapeutic Drug Monitoring in Tuberculosis Patients. Chest, 2004, 126, 1722-1724.	0.4	14
152	The potent bactericidal activity of streptomycin in the guinea pig model of tuberculosis ceases due to the presence of persisters. Journal of Antimicrobial Chemotherapy, 2010, 65, 2172-2175.	1.3	14
153	Clofazimine Crystals in the Cytoplasm of Pulmonary Macrophages. Annals of Pharmacotherapy, 1999, 33, 250-250.	0.9	13
154	Treatment of a Tuberculous Empyema with Simultaneous Oral and Intrapleural Antituberculosis Drugs. Canadian Respiratory Journal, 2008, 15, 241-243.	0.8	13
155	Preliminary Pharmacokinetic Study of Repeated Doses of Rifampin and Rifapentine in Guinea Pigs. Antimicrobial Agents and Chemotherapy, 2013, 57, 1535-1537.	1.4	13
156	Therapeutic drug monitoring and the conservative management of chronic tuberculous empyema: case report and review of the literature. BMC Infectious Diseases, 2015, 15, 327.	1.3	13
157	Urine colorimetry to detect Low rifampin exposure during tuberculosis therapy: a proof-of-concept study. BMC Infectious Diseases, 2016, 16, 242.	1.3	13
158	Intestinal barrier function and serum concentrations of rifampin, isoniazid and pyrazinamide in patients with pulmonary tuberculosis. Brazilian Journal of Infectious Diseases, 2009, 13, 210-217.	0.3	12
159	The pharmacokinetics of a single oral or rectal dose of concurrently administered isoniazid, rifampin, pyrazinamide, and ethambutol in Asian elephants (<i>Elephas maximus</i>). Journal of Veterinary Pharmacology and Therapeutics, 2014, 37, 472-479.	0.6	12
160	Pharmacokinetic Modeling, Simulation, and Development of a Limited Sampling Strategy of Cycloserine in Patients with Multidrug-/Extensively Drug-Resistant Tuberculosis. Clinical Pharmacokinetics, 2020, 59, 899-910.	1.6	12
161	Using Machine Learning To Define the Impact of Beta-Lactam Early and Cumulative Target Attainment on Outcomes in Intensive Care Unit Patients with Hospital-Acquired and Ventilator-Associated Pneumonia. Antimicrobial Agents and Chemotherapy, 2022, 66, .	1.4	12
162	Poor Absorption of High-Dose Posaconazole in Pediatric Bone Marrow Transplant Patients. Annals of Pharmacotherapy, 2012, 46, e22-e22.	0.9	11

#	Article	IF	CITATIONS
163	Elevated Plasma Moxifloxacin Concentrations and SLCO1B1 g.â^'11187G>A Polymorphism in Adults with Pulmonary Tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	11
164	Activity of Moxifloxacin against <i>Mycobacterium tuberculosis</i> in Acid Phase and Nonreplicative-Persister Phenotype Phase in a Hollow-Fiber Infection Model. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	11
165	Building Optimal Three-Drug Combination Chemotherapy Regimens. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	11
166	The Funnel: a Screening Technique for Identifying Optimal Two-Drug Combination Chemotherapy Regimens. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	11
167	Long-term and per rectum disposition of Clarithromycin in the desert tortoise (Gopherus agassizii). Journal of the American Association for Laboratory Animal Science, 2008, 47, 41-5.	0.6	11
168	Practices of therapeutic drug monitoring in tuberculosis: an international survey. European Respiratory Journal, 2022, 59, 2102787.	3.1	11
169	Posaconazole Pharmacokinetics in a 2â€Yearâ€Old Boy with Rhinoâ€Cerebralâ€Orbital Zygomycosis. Pharmacotherapy, 2013, 33, e1-8.	1.2	10
170	Voriconazole pharmacokinetics following HSCT: results from the BMT CTN 0101 trial. Journal of Antimicrobial Chemotherapy, 2016, 71, 2234-2240.	1.3	10
171	Population pharmacokinetic drug–drug interaction pooled analysis of existing data for rifabutin and HIV PIs. Journal of Antimicrobial Chemotherapy, 2016, 71, 1330-1340.	1.3	10
172	A comparison of linezolid lung tissue concentrations among patients with drug-resistant tuberculosis. European Respiratory Journal, 2018, 51, 1702166.	3.1	10
173	Beta-Lactams Dosing in Critically III Patients with Gram-Negative Bacterial Infections: A PK/PD Approach. Antibiotics, 2021, 10, 1154.	1.5	10
174	Pharmacokinetics of bedaquiline, delamanid and clofazimine in patients with multidrug-resistant tuberculosis. Journal of Antimicrobial Chemotherapy, 2021, 76, 1019-1024.	1.3	10
175	Comment: Intravenous Streptomycin. Annals of Pharmacotherapy, 1993, 27, 1546-1547.	0.9	9
176	Levofloxacin for Drug-Resistant Mycobacterium Tuberculosis. Annals of Pharmacotherapy, 1998, 32, 268-269.	0.9	9
177	Population Pharmacokinetics/Pharmacodynamics of 3,4â€Diaminopyridine Free Base in Patients With Lambertâ€Eaton Myasthenia. CPT: Pharmacometrics and Systems Pharmacology, 2017, 6, 625-634.	1.3	9
178	Population Pharmacokinetics and Significant Under-Dosing of Anti-Tuberculosis Medications in People with HIV and Critical Illness. Antibiotics, 2021, 10, 739.	1.5	9
179	Linezolid stability in peritoneal dialysis solutions. Peritoneal Dialysis International, 2002, 22, 419-22.	1.1	9
180	Cefepime Precision Dosing Tool: from Standard to Precise Dose Using Nonparametric Population Pharmacokinetics. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0204621.	1.4	9

#	Article	IF	CITATIONS
181	Implementation of a β-lactam therapeutic drug monitoring program: Experience from a large academic medical center. American Journal of Health-System Pharmacy, 2022, 79, 1586-1591.	0.5	9
182	Pharmacokinetic Evaluation of Aconiazide, A Potentially Less Toxic Isoniazid Prodrug. Pharmacotherapy, 1994, 14, 415-423.	1.2	9
183	Rifamycin Treatment of Tuberculosis in a Patient Receiving Atenolol: Less Interaction with Rifabutin than with Rifampin. Clinical Infectious Diseases, 2003, 37, 607-607.	2.9	8
184	Population pharmacokinetics of efavirenz in HIV and TB/HIV coinfected children: the significance of genotype-guided dosing. Journal of Antimicrobial Chemotherapy, 2019, 74, 2698-2706.	1.3	8
185	Pharmacokinetics of tedizolid, sutezolid, and sutezolid-M1 in non-human primates. European Journal of Pharmaceutical Sciences, 2020, 151, 105421.	1.9	8
186	Rifampin Stability. Therapeutic Drug Monitoring, 1998, 20, 450-451.	1.0	8
187	Pharmacokinetics of Antituberculosis Medications Delivered via Percutaneous Gastrojejunostomy Tube. Chest, 2002, 121, 281-284.	0.4	7
188	Training a Drug to Do New Tricks: Insights on Stability of Meropenem Administered as a Continuous Infusion. Microbiology Insights, 2018, 11, 117863611880454.	0.9	7
189	Cefepime Population Pharmacokinetics and Target Attainment in Critically III Patients on Continuous Renal Replacement Therapy. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	7
190	Therapeutic Drug Monitoring in Antituberculosis Chemotherapy. Therapeutic Drug Monitoring, 1999, 21, 426-427.	1.0	7
191	Tuberculosis therapy for 2016 and beyond. Expert Opinion on Pharmacotherapy, 2016, 17, 1859-1872.	0.9	6
192	Population Pharmacokinetics of AZD-5847 in Adults with Pulmonary Tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	6
193	Effect of Rifampin-Isoniazid-Containing Antituberculosis Therapy on Efavirenz Pharmacokinetics in HIV-Infected Children 3 to 14 Years Old. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	6
194	Ethionamide Population Pharmacokinetic Model and Target Attainment in Multidrug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	6
195	Using precision dosing to minimize cefepime-induced neurotoxicity: The challenge of targets. Journal of Infection and Chemotherapy, 2021, 27, 929-930.	0.8	6
196	Evaluating the effect of clofazimine against Mycobacterium tuberculosis given alone or in combination with pretomanid, bedaquiline or linezolid. International Journal of Antimicrobial Agents, 2022, 59, 106509.	1.1	6
197	Enteropathogen spectrum and effect on antimycobacterial pharmacokinetics among children with tuberculosis in rural Tanzania: a prospective cohort study. Lancet Microbe, The, 2022, 3, e408-e416.	3.4	6
198	Quinolones and Tuberculosis. Annals of Pharmacotherapy, 1996, 30, 1034-1035.	0.9	5

#	Article	IF	CITATIONS
199	Drugs for Tuberculosis. , 2018, , 221-253.		5
200	The Pharmacokinetics of Moxifloxacin in Cerebrospinal Fluid Following Intravenous Administration. Pediatric Infectious Disease Journal, 2020, 39, e183-e184.	1.1	5
201	Variable linezolid exposure and response and the role of therapeutic drug monitoring: Case series. Clinical Case Reports (discontinued), 2020, 8, 1126-1129.	0.2	5
202	Recent Advances: Antiinfectives. Annals of Pharmacotherapy, 1995, 29, 1035-1040.	0.9	4
203	Concomitant Use of Carbamazepine and Rifampin in a Patient With <i>Mycobacterium avium</i> Complex and Seizure Disorder. Journal of Pharmacy Technology, 2014, 30, 93-96.	0.5	4
204	Population pharmacokinetics of rifampin in the treatment of <i><scp>M</scp>ycobacterium tuberculosis</i> in <scp>A</scp> sian elephants. Journal of Veterinary Pharmacology and Therapeutics, 2015, 38, 137-143.	0.6	4
205	Pharmacokinetics of Levofloxacin in Children Treated for Exposure to Drug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	4
206	Pharmacokinetics of Efavirenz 600Âmg Once Daily During Pregnancy and Post Partum in Ghanaian Women Living With HIV. Clinical Therapeutics, 2020, 42, 1818-1825.	1.1	4
207	Dose Fractionation of Moxifloxacin for Treatment of Tuberculosis: Impact of Dosing Interval and Elimination Half-Life on Microbial Kill and Resistance Suppression. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	4
208	Pharmacogenetic predictors of nevirapine pharmacokinetics in Ghanaian children living with HIV with or without TB coinfection. Infection, Genetics and Evolution, 2021, 92, 104856.	1.0	4
209	Building Optimal Three-Drug Combination Chemotherapy Regimens To Eradicate Mycobacterium tuberculosis in Its Slow-Growth Acid Phase. Antimicrobial Agents and Chemotherapy, 2021, 65, e0069321.	1.4	4
210	Administration and monitoring of clofazimine for NTM infections in children with and without cystic fibrosis. Journal of Cystic Fibrosis, 2022, 21, 348-352.	0.3	4
211	Applying Cefepime Population Pharmacokinetics to Critically III Patients Receiving Continuous Renal Replacement Therapy. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0161121.	1.4	4
212	Another trial for the TARGET trial. Intensive Care Medicine, 2022, 48, 774-775.	3.9	4
213	Pharmacokinetic-Pharmacodynamic Determinants of Clinical Outcomes for Rifampin-Resistant Tuberculosis: A Multisite Prospective Cohort Study. Clinical Infectious Diseases, 2023, 76, 497-505.	2.9	4
214	Meropenem Population Pharmacokinetics and Simulations in Plasma, Cerebrospinal Fluid, and Brain Tissue. Antimicrobial Agents and Chemotherapy, 2022, 66, .	1.4	4
215	Amikacin Dosing and Monitoring in Spinal Cord Injury Patients: Variation in Clinical Practice Between Spinal Injury Units and Differences in Experts' Recommendations. Scientific World Journal, The, 2006, 6, 187-199.	0.8	3
216	Reply to "Contradictory Results with High-Dosage Rifamycin in Mice and Humans― Antimicrobial Agents and Chemotherapy, 2013, 57, 1104-1105.	1.4	3

#	Article	IF	CITATIONS
217	Pharmacokinetics and pharmacodynamics of isoniazid in patients with intermediate resistance. International Journal of Tuberculosis and Lung Disease, 2017, 21, 121-123.	0.6	3
218	Reply to Alffenaar et al. Clinical Infectious Diseases, 2017, 64, 105-106.	2.9	3
219	Pharmacokinetics of tuberculosis drugs in HIV-infected patients from Irkutsk, Russian Federation: redefining drug activity. European Respiratory Journal, 2018, 51, 1800109.	3.1	3
220	Evaluation of super-boosted lopinavir/ritonavir in combination with rifampicin in HIV-1-infected patients with tuberculosis. International Journal of Antimicrobial Agents, 2020, 55, 105840.	1.1	3
221	Fighting Tuberculosis with Old Weapons. DICP: the Annals of Pharmacotherapy, 1990, 24, 883-884.	0.2	2
222	Clarification: Controversies in the Management of <i>Mycobacterium Avium</i> Complex Infection in AIDS. Annals of Pharmacotherapy, 1994, 28, 808-808.	0.9	2
223	Advice on treatment of Mycobacterium avium complex infection. American Journal of Health-System Pharmacy, 1997, 54, 1208-1209.	0.5	2
224	Antituberculosis Drugs and Hepatotoxicity. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 858a-859.	2.5	2
225	Bile and Gallbladder Tissue Concentrations of Moxifloxacin in Patients with Acute Cholecystitis. Annals of Pharmacotherapy, 2010, 44, 1346-1347.	0.9	2
226	The Role of Therapeutic Drug Monitoring in Mycobacterial Infections. , 2017, , 119-127.		2
227	Effect of First-Line Antituberculosis Therapy on Nevirapine Pharmacokinetics in Children Younger than Three Years Old. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	2
228	Developing New Drugs for Mycobacterium tuberculosis Therapy: What Information Do We Get from Preclinical Animal Models?. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	2
229	Early vigabatrin augmenting GABA-ergic pathways in post-anoxic status epilepticus (VIGAB-STAT) phase IIa clinical trial study protocol. Neurological Research and Practice, 2022, 4, 4.	1.0	2
230	Rifapentine for the treatment of latent tuberculosis. Expert Review of Clinical Pharmacology, 2016, 9, 1253-1261.	1.3	1
231	Steady-state pharmacokinetics of oral linezolid suspension in a premature infant with osteomyelitis. Journal of Antimicrobial Chemotherapy, 2016, 71, 1738-1738.	1.3	1
232	Stability of Second-Line Tuberculosis Medications Mixed With Milk or Yogurt. Clinical Infectious Diseases, 2017, 65, 704-705.	2.9	1
233	Comment on: The case for â€ [~] conservative pharmacotherapy'. Journal of Antimicrobial Chemotherapy, 2021, 76, 1951-1952.	1.3	1
234	Mycobacterium tuberculosis Infection among Asian Elephants in Captivity. Emerging Infectious Diseases, 2017, 23, 513-516.	2.0	1

#	Article	IF	CITATIONS
235	Comment on "Meropenem, Cefepime, and Piperacillin Protein Binding in Patient Samples― Therapeutic Drug Monitoring, 2020, 42, 910-910.	1.0	1
236	Advice on treatment of drug-resistant tuberculosis. American Journal of Health-System Pharmacy, 1997, 54, 700-700.	0.5	0
237	Chapter 12 Antimicrobial therapy. Principles of Medical Biology, 1998, 9, 175-198.	0.1	0
238	Reply to Srivastava et al., "pH Conditions under Which Pyrazinamide Works in Humans― Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	0
239	Reply to Chang et al., "Pyrazinamide Is a Two-Edged Sword: Do WHO Guidelines Matter?― Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	0
240	Reply to te Brake et al.: Conflicting Findings on an Intermediate Dose of Rifampicin for Pulmonary Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1167-1168.	2.5	0
241	Roger W. Jelliffe, M.D. (1929–2020). Clinical Pharmacokinetics, 2020, 59, 1063-1063.	1.6	0
242	Aminoglycoside use in intensive care units and aminoglycoside nephrotoxicity. Comment letter 2. Antimicrobial Agents and Chemotherapy, 2010, 54, 2750-1; author reply 2752.	1.4	0
243	952: BETA-LACTAM EXPOSURE IN ICU PATIENTS AND ASSOCIATED OUTCOMES: A PROSPECTIVE OBSERVATIONAL STUDY. Critical Care Medicine, 2022, 50, 473-473.	0.4	0
244	708: USE OF BETA-LACTAM THERAPEUTIC DRUG MONITORING IN THE PEDIATRIC INTENSIVE CARE UNIT. Critical Care Medicine, 2022, 50, 348-348.	0.4	0