Mitsuhiro Aida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1916877/publications.pdf

Version: 2024-02-01

49 papers

7,847 citations

147801 31 h-index 214800 47 g-index

53 all docs 53 docs citations

53 times ranked 7362 citing authors

#	Article	IF	CITATIONS
1	Expression of the auxin biosynthetic genes <i>YUCCA1</i> and <i>YUCCA4</i> is dependent on the boundary regulators <i>CUP-SHAPED COTYLEDON</i> genes in the <i>Arabidopsis thaliana</i> embryo. Plant Biotechnology, 2022, 39, 37-42.	1.0	4
2	Interpreting Cytokinin Action as Anterograde Signaling and Beyond. Frontiers in Plant Science, 2021, 12, 641257.	3.6	6
3	Postgenital Fusion and Epidermal Cell Fate Control during Gynoecium Development. Cytologia, 2021, 86, 1-2.	0.6	3
4	Visualization and Quantification of Cortical Microtubules in the Apical Region of the <i>Arabidopsis thaliana</i> Embryo. Cytologia, 2021, 86, 181-182.	0.6	0
5	The boundary-expressed <i>EPIDERMAL PATTERNING FACTOR-LIKE2</i> gene encoding a signaling peptide promotes cotyledon growth during <i>Arabidopsis thaliana</i> embryogenesis. Plant Biotechnology, 2021, 38, 317-322.	1.0	5
6	Post-Embryonic Lateral Organ Development and Adaxial—Abaxial Polarity Are Regulated by the Combined Effect of ENHANCER OF SHOOT REGENERATION 1 and WUSCHEL in Arabidopsis Shoots. International Journal of Molecular Sciences, 2021, 22, 10621.	4.1	3
7	A ClearSee-Based Clearing Protocol for 3D Visualization of Arabidopsis thaliana Embryos. Plants, 2021, 10, 190.	3.5	17
8	PUCHI Regulates Giant Cell Morphology During Root-Knot Nematode Infection in Arabidopsis thaliana. Frontiers in Plant Science, 2021, 12, 755610.	3.6	4
9	Genetic interactions between the <i>CUP-SHAPED COTYLEDON</i> and the <i>BELLRINGER</i> genes indicate their overlapping functions in carpel boundary development in <i>Arabidopsis thaliana </i> . Plant Morphology, 2021, 33, 95-100.	0.1	1
10	Establishment of the Embryonic Shoot Meristem Involves Activation of Two Classes of Genes with Opposing Functions for Meristem Activities. International Journal of Molecular Sciences, 2020, 21, 5864.	4.1	10
11	Primed histone demethylation regulates shoot regenerative competency. Nature Communications, 2019, 10, 1786.	12.8	52
12	Coordination of meristem and boundary functions by transcription factors in the SHOOT MERISTEMLESS regulatory network. Development (Cambridge), 2018, 145, .	2.5	41
13	Biosynthesis of volatile terpenes that accumulate in the secretory cavities of young leaves of Japanese pepper (<i>Zanthoxylum piperitum</i>): Isolation and functional characterization of monoterpene and sesquiterpene synthase genes. Plant Biotechnology, 2017, 34, 17-28.	1.0	12
14	A Secreted Peptide and Its Receptors Shape the Auxin Response Pattern and Leaf Margin Morphogenesis. Current Biology, 2016, 26, 2478-2485.	3.9	61
15	Three-Dimensional Imaging of Plant Organs Using a Simple and Rapid Transparency Technique. Plant and Cell Physiology, 2016, 57, 462-472.	3.1	79
16	A conserved role for <i><scp>CUP</scp>â€<scp>SHAPED COTYLEDON</scp></i> genes during ovule development. Plant Journal, 2015, 83, 732-742.	5.7	70
17	The CUP-SHAPED COTYLEDON2 and 3 genes have a post-meristematic effect on Arabidopsis thaliana phyllotaxis. Annals of Botany, 2015, 115, 807-820.	2.9	19
18	Mechanical stress contributes to the expression of the STM homeobox gene in Arabidopsis shoot meristems. ELife, 2015, 4, e07811.	6.0	137

#	Article	IF	Citations
19	The CUC1 and CUC2 genes promote carpel margin meristem formation during Arabidopsis gynoecium development. Frontiers in Plant Science, 2014, 5, 165.	3.6	77
20	Heterotrimeric G proteins control stem cell proliferation through <scp>CLAVATA</scp> signaling in <i>Arabidopsis</i> . EMBO Reports, 2014, 15, 1202-1209.	4.5	92
21	An integrative model of the control of ovule primordia formation. Plant Journal, 2013, 76, 446-455.	5.7	105
22	Interactions of CUP-SHAPED COTYLEDON and SPATULA Genes Control Carpel Margin Development in Arabidopsis thaliana. Plant and Cell Physiology, 2012, 53, 1134-1143.	3.1	56
23	Environmental risk assessment and field performance of rose (Rosa×hybrida) genetically modified for delphinidin production. Plant Biotechnology, 2011, 28, 251-261.	1.0	21
24	CUPâ€SHAPED COTYLEDON1 transcription factor activates the expression of <i>LSH4</i> and <i>LSH3</i> two members of the ALOG gene family, in shoot organ boundary cells. Plant Journal, 2011, 66, 1066-1077.	5.7	118
25	Establishment of the embryonic shoot apical meristem in Arabidopsis thaliana. Journal of Plant Research, 2011, 124, 211-219.	2.4	8
26	Arabidopsis AUXIN RESPONSE FACTOR6 and 8 Regulate Jasmonic Acid Biosynthesis and Floral Organ Development via Repression of Class 1 KNOX Genes. Plant and Cell Physiology, 2010, 51, 164-175.	3.1	179
27	gorgon, a Novel Missense Mutation in the SHOOT MERISTEMLESS Gene, Impairs Shoot Meristem Homeostasis in Arabidopsis. Plant and Cell Physiology, 2010, 51, 621-634.	3.1	21
28	A Role for <i>Arabidopsis PUCHI</i> in Floral Meristem Identity and Bract Suppression Â. Plant Cell, 2009, 21, 1360-1372.	6.6	74
29	Identification of novel meristem factors involved in shoot regeneration through the analysis of temperatureâ€sensitive mutants of Arabidopsis. Plant Journal, 2009, 57, 1027-1039.	5.7	34
30	Constitutive activation of a CCâ€NB‣RR protein alters morphogenesis through the cytokinin pathway in Arabidopsis. Plant Journal, 2008, 55, 14-27.	5.7	82
31	NAC Family Proteins NARS1/NAC2 and NARS2/NAM in the Outer Integument Regulate Embryogenesis in <i>Arabidopsis</i> . Plant Cell, 2008, 20, 2631-2642.	6.6	141
32	The Auxin-Regulated AP2/EREBP Gene <i>PUCHI</i> Is Required for Morphogenesis in the Early Lateral Root Primordium of <i>Arabidopsis</i> I>. Plant Cell, 2007, 19, 2156-2168.	6.6	168
33	Morphogenesis and Patterning at the Organ Boundaries in the Higher Plant Shoot Apex. Plant Molecular Biology, 2006, 60, 915-928.	3.9	93
34	Genetic control of shoot organ boundaries. Current Opinion in Plant Biology, 2006, 9, 72-77.	7.1	130
35	Arabidopsis CUP-SHAPED COTYLEDON3 Regulates Postembryonic Shoot Meristem and Organ Boundary Formation. Plant Cell, 2006, 18, 2946-2957.	6.6	315
36	A role for chromatin remodeling in regulation of CUC gene expression in the Arabidopsis cotyledon boundary. Development (Cambridge), 2006, 133, 3223-3230.	2.5	107

3

#	Article	IF	CITATIONS
37	The Balance between the MIR164A and CUC2 Genes Controls Leaf Margin Serration in Arabidopsis. Plant Cell, 2006, 18, 2929-2945.	6.6	513
38	The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, 2005, 433, 39-44.	27.8	1,789
39	PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis. Development (Cambridge), 2004, 131, 5021-5030.	2.5	231
40	The NAC domain mediates functional specificity of CUP-SHAPED COTYLEDON proteins. Plant Journal, 2004, 40, 462-473.	5.7	67
41	The PLETHORA Genes Mediate Patterning of the Arabidopsis Root Stem Cell Niche. Cell, 2004, 119, 109-120.	28.9	1,022
42	Pattern Formation during Dicotyledonous Plant Embryogenesis., 2003,, 139-152.		1
43	Roles of <i>PIN-FORMED1 </i> and <i>MONOPTEROS </i> ii> in pattern formation of the apical region of the <i>Arabidopsis </i> ii> embryo. Development (Cambridge), 2002, 129, 3965-3974.	2.5	191
44	Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development (Cambridge), 2002, 129, 3965-74.	2.5	87
45	Involvement of CUP-SHAPED COTYLEDON Genes in Gynoecium and Ovule Development in Arabidopsis thaliana. Plant and Cell Physiology, 2000, 41, 60-67.	3.1	130
46	A critical role of sterols in embryonic patterning and meristem programming revealed by the <i>fackel </i> mutants of <i>Arabidopsis thaliana </i> Genes and Development, 2000, 14, 1485-1497.	5.9	178
47	Transgenic Tobacco Over-Expressing a Homeobox Gene Shows a Developmental Interaction between Leaf Morphogenesis and Phyllotaxy. Plant and Cell Physiology, 1999, 40, 657-667.	3.1	11
48	Shoot Apical Meristem Formation during Higher Plant Embryogenesis. Plant Morphology, 1999, 11, 2-13.	0.1	0
49	Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant Plant Cell, 1997, 9, 841-857.	6.6	1,272