Mathieu J M Bertrand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1916538/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Impact of RIPK1 Kinase Inhibition on Atherogenesis: A Genetic and a Pharmacological Approach. Biomedicines, 2022, 10, 1016.	1.4	4
2	Antioxidant and food additive BHA prevents TNF cytotoxicity by acting as a direct RIPK1 inhibitor. Cell Death and Disease, 2021, 12, 699.	2.7	16
3	Immunodominant AH1 Antigen-Deficient Necroptotic, but Not Apoptotic, Murine Cancer Cells Induce Antitumor Protection. Journal of Immunology, 2020, 204, 775-787.	0.4	33
4	Two distinct ubiquitin-binding motifs in A20 mediate its anti-inflammatory and cell-protective activities. Nature Immunology, 2020, 21, 381-387.	7.0	47
5	OTULIN Prevents Liver Inflammation and Hepatocellular Carcinoma by Inhibiting FADD- and RIPK1 Kinase-Mediated Hepatocyte Apoptosis. Cell Reports, 2020, 30, 2237-2247.e6.	2.9	30
6	Respiratory Syncytial Virus Infection Promotes Necroptosis and HMGB1 Release by Airway Epithelial Cells. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1358-1371.	2.5	85
7	RIPK1 Kinase-Dependent Death: A Symphony of Phosphorylation Events. Trends in Cell Biology, 2020, 30, 189-200.	3.6	97
8	Autophosphorylation at serine 166 regulates RIP kinase 1-mediated cell death and inflammation. Nature Communications, 2020, 11, 1747.	5.8	85
9	A20 and Cell Death-driven Inflammation. Trends in Immunology, 2020, 41, 421-435.	2.9	70
10	A20 protects cells from TNF-induced apoptosis through linear ubiquitin-dependent and -independent mechanisms. Cell Death and Disease, 2019, 10, 692.	2.7	60
11	Serine 25 phosphorylation inhibits RIPK1 kinase-dependent cell death in models of infection and inflammation. Nature Communications, 2019, 10, 1729.	5.8	121
12	The E3 ubiquitin ligases HOIP and cIAP1 are recruited to the TNFR2 signaling complex and mediate TNFR2-induced canonical NF-κB signaling. Biochemical Pharmacology, 2018, 153, 292-298.	2.0	27
13	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
14	MK2 puts an additional brake on RIPK1 cytotoxic potential. Cell Death and Differentiation, 2018, 25, 457-459.	5.0	6
15	Type III collagen affects dermal and vascular collagen fibrillogenesis and tissue integrity in a mutant Col3a1 transgenic mouse model. Matrix Biology, 2018, 70, 72-83.	1.5	48
16	N-glycosylation of mouse TRAIL-R restrains TRAIL-induced apoptosis. Cell Death and Disease, 2018, 9, 494.	2.7	13
17	Monitoring RIPK1 Phosphorylation in the TNFR1 Signaling Complex. Methods in Molecular Biology, 2018, 1857, 171-179.	0.4	2
18	RIPK1 protects hepatocytes from Kupffer cells-mediated TNF-induced apoptosis in mouse models of PAMP-induced hepatitis. Journal of Hepatology, 2017, 66, 1205-1213.	1.8	48

MATHIEU J M BERTRAND

#	Article	IF	CITATIONS
19	When PERK inhibitors turn out to be new potent RIPK1 inhibitors: critical issues on the specificity and use of GSK2606414 and GSK2656157. Cell Death and Differentiation, 2017, 24, 1100-1110.	5.0	149
20	MK2 phosphorylation of RIPK1 regulates TNF-mediated cell death. Nature Cell Biology, 2017, 19, 1237-1247.	4.6	159
21	RIPK1 protects hepatocytes from death in Fas-induced hepatitis. Scientific Reports, 2017, 7, 9205.	1.6	12
22	Experimental African trypanosome infection suppresses the development of multiple myeloma in mice by inducing intrinsic apoptosis of malignant plasma cells. Oncotarget, 2017, 8, 52016-52025.	0.8	5
23	An evolutionary perspective on the necroptotic pathway. Trends in Cell Biology, 2016, 26, 721-732.	3.6	137
24	Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity. Cell Reports, 2016, 15, 274-287.	2.9	317
25	Poly-ubiquitination in TNFR1-mediated necroptosis. Cellular and Molecular Life Sciences, 2016, 73, 2165-2176.	2.4	130
26	Polyhydramnios, Transient Antenatal Bartter's Syndrome, and <i>MAGED2</i> Mutations. New England Journal of Medicine, 2016, 374, 1853-1863.	13.9	148
27	The Tumor Suppressor Hace1 Is a Critical Regulator of TNFR1-Mediated Cell Fate. Cell Reports, 2016, 15, 1481-1492.	2.9	46
28	More to Life than NF-κB in TNFR1 Signaling. Trends in Immunology, 2016, 37, 535-545.	2.9	203
29	A real-time fluorometric method for the simultaneous detection of cell death type and rate. Nature Protocols, 2016, 11, 1444-1454.	5.5	50
30	RIPK1 protects from TNF-α-mediated liver damage during hepatitis. Cell Death and Disease, 2016, 7, e2462-e2462.	2.7	61
31	A siRNA screen reveals the prosurvival effect of protein kinase A activation in conditions of unresolved endoplasmic reticulum stress. Cell Death and Differentiation, 2016, 23, 1670-1680.	5.0	12
32	Regulation of RIPK1's cell death function by phosphorylation. Cell Cycle, 2016, 15, 5-6.	1.3	16
33	cIAP2 supports viability of mice lacking cIAP1 and XIAP. EMBO Journal, 2015, 34, 2393-2395.	3.5	22
34	NIK promotes tissue destruction independently of the alternative NF-κB pathway through TNFR1/RIP1-induced apoptosis. Cell Death and Differentiation, 2015, 22, 2020-2033.	5.0	37
35	Endoplasmic reticulum stress induces ligand-independent TNFR1-mediated necroptosis in L929 cells. Cell Death and Disease, 2015, 6, e1587-e1587.	2.7	112
36	Molecular crosstalk between apoptosis, necroptosis, and survival signaling. Molecular and Cellular Oncology, 2015, 2, e975093.	0.3	142

MATHIEU J M BERTRAND

#	Article	IF	CITATIONS
37	NF-κB-Independent Role of IKKα/IKKβ in Preventing RIPK1 Kinase-Dependent Apoptotic and Necroptotic Cell Death during TNF Signaling. Molecular Cell, 2015, 60, 63-76.	4.5	345
38	IAPs, regulators of innate immunity and inflammation. Seminars in Cell and Developmental Biology, 2015, 39, 106-114.	2.3	77
39	Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death and Differentiation, 2015, 22, 58-73.	5.0	811
40	RIPK1 promotes death receptor-independent caspase-8-mediated apoptosis under unresolved ER stress conditions. Cell Death and Disease, 2014, 5, e1555-e1555.	2.7	41
41	Deficiency in the mitochondrial apoptotic pathway reveals the toxic potential of autophagy under ER stress conditions. Autophagy, 2014, 10, 1921-1936.	4.3	47
42	Caspase-3 and RasGAP: a stress-sensing survival/demise switch. Trends in Cell Biology, 2014, 24, 83-89.	3.6	35
43	Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis. Cell Death and Disease, 2014, 5, e1004-e1004.	2.7	164
44	RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature, 2014, 513, 95-99.	13.7	275
45	MLKL Compromises Plasma Membrane Integrity by Binding to Phosphatidylinositol Phosphates. Cell Reports, 2014, 7, 971-981.	2.9	656
46	RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell Death and Differentiation, 2013, 20, 1381-1392.	5.0	263
47	Intermediate Domain of Receptor-interacting Protein Kinase 1 (RIPK1) Determines Switch between Necroptosis and RIPK1 Kinase-dependent Apoptosis. Journal of Biological Chemistry, 2012, 287, 14863-14872.	1.6	40
48	Loss of Maged1 results in obesity, deficits of social interactions, impaired sexual behavior and severe alteration of mature oxytocin production in the hypothalamus. Human Molecular Genetics, 2012, 21, 4703-4717.	1.4	65
49	RIP1 is required for IAP inhibitor-mediated sensitization of childhood acute leukemia cells to chemotherapy-induced apoptosis. Leukemia, 2012, 26, 1020-1029.	3.3	62
50	The role of the IAP E3 ubiquitin ligases in regulating pattern-recognition receptor signalling. Nature Reviews Immunology, 2012, 12, 833-844.	10.6	62
51	The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress. Biology of the Cell, 2012, 104, 259-270.	0.7	176
52	Smac Mimetic Bypasses Apoptosis Resistance in FADD- or Caspase-8-Deficient Cells by Priming for Tumor Necrosis Factor I±-Induced Necroptosis. Neoplasia, 2011, 13, 971-IN29.	2.3	86
53	NOD-like receptors and the innate immune system: Coping with danger, damage and death. Cytokine and Growth Factor Reviews, 2011, 22, 257-276.	3.2	170
54	The Ripoptosome: Death Decision in the Cytosol. Molecular Cell, 2011, 43, 323-325.	4.5	51

MATHIEU J M BERTRAND

#	Article	IF	CITATIONS
55	cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death and Differentiation, 2011, 18, 656-665.	5.0	294
56	Interaction Patches of Procaspase-1 Caspase Recruitment Domains (CARDs) Are Differently Involved in Procaspase-1 Activation and Receptor-interacting Protein 2 (RIP2)-dependent Nuclear Factor κB Signaling. Journal of Biological Chemistry, 2011, 286, 35874-35882.	1.6	38
57	TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. Cell Death and Disease, 2011, 2, e230-e230.	2.7	195
58	cIAP1/2 Are Direct E3 Ligases Conjugating Diverse Types of Ubiquitin Chains to Receptor Interacting Proteins Kinases 1 to 4 (RIP1–4). PLoS ONE, 2011, 6, e22356.	1.1	91
59	Maged1, a new regulator of skeletal myogenic differentiation and muscle regeneration. BMC Cell Biology, 2010, 11, 57.	3.0	18
60	RIP1's function in NF-κB activation: from master actor to onlooker. Cell Death and Differentiation, 2010, 17, 379-380.	5.0	12
61	ProNGF induces TNFα-dependent death of retinal ganglion cells through a p75 ^{NTR} non-cell-autonomous signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3817-3822.	3.3	112
62	Cellular Inhibitors of Apoptosis cIAP1 and cIAP2 Are Required for Innate Immunity Signaling by the Pattern Recognition Receptors NOD1 and NOD2. Immunity, 2009, 30, 789-801.	6.6	301
63	cIAP1 and cIAP2 Facilitate Cancer Cell Survival by Functioning as E3 Ligases that Promote RIP1 Ubiquitination. Molecular Cell, 2008, 30, 689-700.	4.5	965
64	NRAGE, a p75NTR adaptor protein, is required for developmental apoptosis in vivo. Cell Death and Differentiation, 2008, 15, 1921-1929.	5.0	63
65	Apoptotic sensitivity of murine IAP-deficient cells. Biochemical Journal, 2008, 415, 21-25.	1.7	15