## Zhaosheng Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1916239/publications.pdf Version: 2024-02-01



ZHAOSHENC YU

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A direct-forcing fictitious domain method for particulate flows. Journal of Computational Physics, 2007, 227, 292-314.                                                           | 3.8 | 188       |
| 2  | A DLM/FD method for fluid/flexible-body interactions. Journal of Computational Physics, 2005, 207, 1-27.                                                                         | 3.8 | 151       |
| 3  | A fictitious domain method for particulate flows with heat transfer. Journal of Computational Physics, 2006, 217, 424-452.                                                       | 3.8 | 140       |
| 4  | Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a<br>low Reynolds number. Journal of Fluid Mechanics, 2012, 693, 319-344.        | 3.4 | 118       |
| 5  | Viscoelastic mobility problem of a system of particles. Journal of Non-Newtonian Fluid Mechanics, 2002, 104, 87-124.                                                             | 2.4 | 91        |
| 6  | Inertial migration of spherical particles in circular Poiseuille flow at moderately high Reynolds<br>numbers. Physics of Fluids, 2008, 20, .                                     | 4.0 | 89        |
| 7  | A fictitious domain method for dynamic simulation of particle sedimentation in Bingham fluids.<br>Journal of Non-Newtonian Fluid Mechanics, 2007, 145, 78-91.                    | 2.4 | 78        |
| 8  | Numerical simulation of particle sedimentation in shear-thinning fluids with a fictitious domain method. Journal of Non-Newtonian Fluid Mechanics, 2006, 136, 126-139.           | 2.4 | 76        |
| 9  | Discontinuous Galerkin spectral element lattice Boltzmann method on triangular element.<br>International Journal for Numerical Methods in Fluids, 2003, 42, 1249-1261.           | 1.6 | 67        |
| 10 | Dynamic simulation of sphere motion in a vertical tube. Journal of Fluid Mechanics, 2004, 518, 61-93.                                                                            | 3.4 | 67        |
| 11 | Lattice Boltzmann simulation of particle-laden turbulent channel flow. Computers and Fluids, 2016, 124, 226-236.                                                                 | 2.5 | 65        |
| 12 | Rotation of a spheroid in a Couette flow at moderate Reynolds numbers. Physical Review E, 2007, 76, 026310.                                                                      | 2.1 | 62        |
| 13 | Hydrodynamic performance of a fishlike undulating foil in the wake of a cylinder. Physics of Fluids, 2010, 22, .                                                                 | 4.0 | 40        |
| 14 | Equilibrium positions of the elasto-inertial particle migration in rectangular channel flow of<br>Oldroyd-B viscoelastic fluids. Journal of Fluid Mechanics, 2019, 868, 316-340. | 3.4 | 38        |
| 15 | Numerical studies of the effects of large neutrally buoyant particles on the flow instability and transition to turbulence in pipe flow. Physics of Fluids, 2013, 25, 043305.    | 4.0 | 37        |
| 16 | Flow Modulation by Finite-Size Neutrally Buoyant Particles in a Turbulent Channel Flow. Journal of<br>Fluids Engineering, Transactions of the ASME, 2016, 138, .                 | 1.5 | 35        |
| 17 | Modulation of turbulence intensity by heavy finite-size particles in upward channel flow. Journal of Fluid Mechanics, 2021, 913, .                                               | 3.4 | 30        |
| 18 | Effects of finite-size neutrally buoyant particles on the turbulent flows in a square duct. Physics of Fluids, 2017, 29, .                                                       | 4.0 | 25        |

ZHAOSHENG YU

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A parallel fictitious domain method for the interface-resolved simulation of particle-laden flows and<br>its application to the turbulent channel flow. Engineering Applications of Computational Fluid<br>Mechanics, 2016, 10, 160-170. | 3.1 | 24        |
| 20 | Numerical simulations of particle migration in rectangular channel flow of Giesekus viscoelastic fluids. Journal of Non-Newtonian Fluid Mechanics, 2018, 262, 142-148.                                                                   | 2.4 | 24        |
| 21 | Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles. Physical Review E, 2017, 96, 033102.                                                                           | 2.1 | 22        |
| 22 | Interface-resolved direct numerical simulations of the interactions between spheroidal particles and upward vertical turbulent channel flows. Journal of Fluid Mechanics, 2020, 891, .                                                   | 3.4 | 22        |
| 23 | Direct numerical simulation of particulate flows with a fictitious domain method. International<br>Journal of Multiphase Flow, 2010, 36, 127-134.                                                                                        | 3.4 | 21        |
| 24 | Interface-resolved direct numerical simulations of the interactions between neutrally buoyant spheroidal particles and turbulent channel flows. Physics of Fluids, 2018, 30, .                                                           | 4.0 | 21        |
| 25 | Effects of the collision model in interface-resolved simulations of particle-laden turbulent channel flows. Physics of Fluids, 2020, 32, .                                                                                               | 4.0 | 19        |
| 26 | Effects of the particle deformability on the critical separation diameter in the deterministic lateral displacement device. Journal of Fluid Mechanics, 2014, 743, 60-74.                                                                | 3.4 | 18        |
| 27 | On the polydisperse particle migration and formation of chains in a square channel flow of non-Newtonian fluids. Journal of Fluid Mechanics, 2022, 936, .                                                                                | 3.4 | 17        |
| 28 | Discrete element method–computational fluid dynamics analyses of flexible fibre fluidization. Journal of Fluid Mechanics, 2021, 910, .                                                                                                   | 3.4 | 16        |
| 29 | Interface-resolved numerical simulations of particle-laden turbulent flows in a vertical channel filled with Bingham fluids. Journal of Fluid Mechanics, 2020, 883, .                                                                    | 3.4 | 15        |
| 30 | CXCR4-dependent macrophage-to-fibroblast signaling contributes to cardiac diastolic dysfunction in<br>heart failure with preserved ejection fraction. International Journal of Biological Sciences, 2022, 18,<br>1271-1287.              | 6.4 | 14        |
| 31 | Numerical simulations of the motion of ellipsoids in planar Couette flow of Giesekus viscoelastic fluids. Microfluidics and Nanofluidics, 2019, 23, 1.                                                                                   | 2.2 | 13        |
| 32 | Interface-resolved numerical simulations of particle-laden turbulent channel flows with spanwise rotation. Physics of Fluids, 2020, 32, 013303.                                                                                          | 4.0 | 11        |
| 33 | Turbulence modulation by finite-size heavy particles in a downward turbulent channel flow. Physics of Fluids, 2021, 33, .                                                                                                                | 4.0 | 11        |
| 34 | Transport of finite-size particles in a turbulent Couette flow: The effect of particle shape and inertia.<br>International Journal of Multiphase Flow, 2018, 107, 168-181.                                                               | 3.4 | 10        |
| 35 | Discrete Element Method Investigation of Binary Granular Flows with Different Particle Shapes.<br>Energies, 2020, 13, 1841.                                                                                                              | 3.1 | 9         |
| 36 | Frictional granular flows of rod and disk mixtures with particle shape distributions. Physics of Fluids, 2021, 33, 093303.                                                                                                               | 4.0 | 9         |

ZHAOSHENG YU

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Hydrodynamics of an inertial squirmer and squirmer dumbbell in a tube. Journal of Fluid Mechanics, 2022, 939, .                                                                                                    | 3.4 | 9         |
| 38 | Particle migration in bounded shear flow of Giesekus fluids. Journal of Non-Newtonian Fluid<br>Mechanics, 2020, 276, 104233.                                                                                       | 2.4 | 8         |
| 39 | Three-dimensional roll-up of a viscoelastic mixing layer. Journal of Fluid Mechanics, 2004, 500, 29-53.                                                                                                            | 3.4 | 7         |
| 40 | Effects of finite-size neutrally buoyant particles on the turbulent channel flow at a Reynolds number of 395. Applied Mathematics and Mechanics (English Edition), 2019, 40, 293-304.                              | 3.6 | 7         |
| 41 | Elasto-inertial particle migration in a confined simple shear-flow of Giesekus viscoelastic fluids.<br>Particulate Science and Technology, 2021, 39, 726-737.                                                      | 2.1 | 6         |
| 42 | Dynamic Simulation of Shear-induced Particle Migration in a Two-dimensional Circular Couette<br>Device. Chinese Journal of Chemical Engineering, 2007, 15, 333-338.                                                | 3.5 | 5         |
| 43 | Migration of spherical particles in a confined shear flow of Giesekus fluid. Rheologica Acta, 2019, 58, 639-646.                                                                                                   | 2.4 | 5         |
| 44 | A fictitious domain method for particulate flows of arbitrary density ratio. Computers and Fluids, 2019, 193, 104293.                                                                                              | 2.5 | 5         |
| 45 | Drag model from interface-resolved simulations of particle sedimentation in a periodic domain and vertical turbulent channel flows. Journal of Fluid Mechanics, 2022, 944, .                                       | 3.4 | 5         |
| 46 | Numerical studies on the dynamics of an open triangle in a vertically oscillatory flow. Journal of Fluid Mechanics, 2016, 788, 381-406.                                                                            | 3.4 | 4         |
| 47 | Investigation of the interactions between two contact fibers in the fiber suspensions. Journal of<br>Materials Science, 2003, 38, 1499-1505.                                                                       | 3.7 | 3         |
| 48 | A fictitious domain method for particulate flows. Journal of Hydrodynamics, 2006, 18, 482-486.                                                                                                                     | 3.2 | 3         |
| 49 | Turbulent channel flow of a binary mixture of neutrally buoyant ellipsoidal particles. Physics of Fluids, 2022, 34, .                                                                                              | 4.0 | 3         |
| 50 | Model of interfacial term in turbulent kinetic energy equation and computation of dissipation rate for particle-laden flows. Physics of Fluids, 2022, 34, .                                                        | 4.0 | 3         |
| 51 | The stress-microstructure relationship in an evolving mixing layer of fiber suspensions. Acta<br>Mechanica Sinica/Lixue Xuebao, 2005, 21, 16-23.                                                                   | 3.4 | 2         |
| 52 | Particle trajectory and orientation evolution of ellipsoidal particles in bounded shear flow of<br>Giesekus fluids. Korea Australia Rheology Journal, 2021, 33, 343-355.                                           | 1.7 | 2         |
| 53 | Lubrication Force Saturation Matters for the Critical Separation Size of the Non-Colloidal Spherical<br>Particle in the Deterministic Lateral Displacement Device. Applied Sciences (Switzerland), 2022, 12, 2733. | 2.5 | 2         |
| 54 | A fictitious domain method for particulate flows. Journal of Hydrodynamics, 2006, 18, 471-475.                                                                                                                     | 3.2 | 0         |