Amalia Dolga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/191492/publications.pdf

Version: 2024-02-01

79 3,198 32 53 papers citations h-index g-index

87 87 87 87 5231

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	SK-Channel Activation Alters Peripheral Metabolic Pathways in Mice, but Not Lipopolysaccharide-Induced Fever or Inflammation. Journal of Inflammation Research, 2022, Volume 15, 509-531.	3.5	1
2	Pharmacological Inhibition of Epac1 Averts Ferroptosis Cell Death by Preserving Mitochondrial Integrity. Antioxidants, 2022, 11, 314.	5.1	13
3	Enhanced firing of locus coeruleus neurons and SK channel dysfunction are conserved in distinct models of prodromal Parkinson's disease. Scientific Reports, 2022, 12, 3180.	3.3	10
4	Cytochrome c Oxidase Inhibition by ATP Decreases Mitochondrial ROS Production. Cells, 2022, 11, 992.	4.1	8
5	Diesel exhaust particles alter cAMP dynamics in human bronchial epithelial cells. FASEB Journal, 2022, 36, .	0.5	O
6	The Unfolded Protein Response Sensor PERK Mediates Stiffness-Dependent Adaptation in Glioblastoma Cells. International Journal of Molecular Sciences, 2022, 23, 6520.	4.1	4
7	Thiosulfate sulfurtransferase prevents hyperglycemic damage to the zebrafish pronephros in an experimental model for diabetes. Scientific Reports, 2022, 12, .	3.3	3
8	Transcriptomic and epigenomic landscapes of Alzheimer's disease evidence mitochondrial-related pathways. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119326.	4.1	14
9	The tale of proteolysis targeting chimeras (PROTACs) for Leucineâ€Rich Repeat Kinase 2 (LRRK2). ChemMedChem, 2021, 16, 959-965.	3.2	23
10	Mitochondrial dysfunction in neurodegenerative diseases: A focus on iPSC-derived neuronal models. Cell Calcium, 2021, 94, 102362.	2.4	23
11	PEG out through the pores with the help of ESCRTIII. Cell Calcium, 2021, 97, 102422.	2.4	4
12	Plasma hsaâ€mirâ€19b is a potential LevoDopa therapy marker. Journal of Cellular and Molecular Medicine, 2021, 25, 8715-8724.	3.6	5
13	Design, Optimization, and Structural Characterization of an Apoptosis-Inducing Factor Peptide Targeting Human Cyclophilin A to Inhibit Apoptosis Inducing Factor-Mediated Cell Death. Journal of Medicinal Chemistry, 2021, 64, 11445-11459.	6.4	5
14	Human pluripotent stem cells for the modelling and treatment of respiratory diseases. European Respiratory Review, 2021, 30, 210042.	7.1	3
15	A Conserved Role for LRRK2 and Roco Proteins in the Regulation of Mitochondrial Activity. Frontiers in Cell and Developmental Biology, 2021, 9, 734554.	3.7	6
16	The Potential of Ferroptosis-Targeting Therapies for Alzheimer's Disease: From Mechanism to Transcriptomic Analysis. Frontiers in Aging Neuroscience, 2021, 13, 745046.	3.4	24
17	Time-resolved characterization of the mechanisms of toxicity induced by silica and amino-modified polystyrene on alveolar-like macrophages. Archives of Toxicology, 2020, 94, 173-186.	4.2	14
18	SK channel activation potentiates auranofin-induced cell death in glio- and neuroblastoma cells. Biochemical Pharmacology, 2020, 171, 113714.	4.4	16

#	Article	IF	Citations
19	The neuroprotective role of microglial cells against amyloid betaâ€mediated toxicity in organotypic hippocampal slice cultures. Brain Pathology, 2020, 30, 589-602.	4.1	25
20	Protective effect of metformin against palmitate-induced hepatic cell death. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165621.	3.8	45
21	Advanced Modeling of Peripheral Neuro-Effector Communication and -Plasticity. Physiology, 2020, 35, 348-357.	3.1	5
22	Fibroblastâ€specific genomeâ€scale modelling predicts an imbalance in amino acid metabolism in Refsum disease. FEBS Journal, 2020, 287, 5096-5113.	4.7	8
23	Unraveling the role of thiosulfate sulfurtransferase in metabolic diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165716.	3.8	39
24	Calcium-activated potassium channels: implications for aging and age-related neurodegeneration. International Journal of Biochemistry and Cell Biology, 2020, 123, 105748.	2.8	19
25	SK channel-mediated metabolic escape to glycolysis inhibits ferroptosis and supports stress resistance in C. elegans. Cell Death and Disease, 2020, 11, 263.	6.3	34
26	Microglia alterations in neurodegenerative diseases and their modeling with human induced pluripotent stem cell and other platforms. Progress in Neurobiology, 2020, 190, 101805.	5.7	35
27	Interaction of the Psychiatric Risk Gene Cacna1c With Post-weaning Social Isolation or Environmental Enrichment Does Not Affect Brain Mitochondrial Bioenergetics in Rats. Frontiers in Cellular Neuroscience, 2019, 13, 483.	3.7	4
28	Linalool attenuates oxidative stress and mitochondrial dysfunction mediated by glutamate and NMDA toxicity. Biomedicine and Pharmacotherapy, 2019, 118, 109295.	5.6	91
29	Mitochondrial damage by α-synuclein causes cell death in human dopaminergic neurons. Cell Death and Disease, 2019, 10, 865.	6.3	112
30	Human VPS13A is associated with multiple organelles and influences mitochondrial morphology and lipid droplet motility. ELife, 2019, 8, .	6.0	114
31	Metabolic escape to glycolysis through SK channel activation inhibits ferroptosis and increases the life span of C. elegans in conditions of heat stress. FASEB Journal, 2019, 33, 665.7.	0.5	0
32	One protein, different cell fate: the differential outcome of depleting GRP75 during oxidative stress in neurons. Cell Death and Disease, 2018, 9, 32.	6.3	13
33	<i>ACO2</i> homozygous missense mutation associated with complicated hereditary spastic paraplegia. Neurology: Genetics, 2018, 4, e223.	1.9	25
34	Calcium-activated SK potassium channels are key modulators of the pacemaker frequency in locus coeruleus neurons. Molecular and Cellular Neurosciences, 2018, 88, 330-341.	2.2	35
35	The role of Ca2+ in cell death caused by oxidative glutamate toxicity and ferroptosis. Cell Calcium, 2018, 70, 47-55.	2.4	135
36	Mitochondrial Ca2+-activated K+ channels and their role in cell life and death pathways. Cell Calcium, 2018, 69, 101-111.	2.4	52

#	Article	IF	Citations
37	SK channel activation is neuroprotective in conditions of enhanced ER–mitochondrial coupling. Cell Death and Disease, 2018, 9, 593.	6.3	8
38	The VAMPâ€essociated protein VAPB is required for cardiac and neuronal pacemaker channel function. FASEB Journal, 2018, 32, 6159-6173.	0.5	19
39	Targeting pathogen metabolism without collateral damage to the host. Scientific Reports, 2017, 7, 40406.	3.3	42
40	SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake. Cell Death and Differentiation, 2017, 24, 761-773.	11.2	48
41	Small conductance Ca 2+ -activated K + channels in the plasma membrane, mitochondria and the ER: Pharmacology and implications in neuronal diseases. Neurochemistry International, 2017, 109, 13-23.	3.8	31
42	Fibril polymorphism affects immobilized non-amyloid flanking domains of huntingtin exon1 rather than its polyglutamine core. Nature Communications, 2017, 8, 15462.	12.8	81
43	BID links ferroptosis to mitochondrial cell death pathways. Redox Biology, 2017, 12, 558-570.	9.0	245
44	Bcl-xL knockout attenuates mitochondrial respiration and causes oxidative stress that is compensated by pentose phosphate pathway activity. Free Radical Biology and Medicine, 2017, 112, 350-359.	2.9	10
45	Glucose-regulated protein 75 determines ER–mitochondrial coupling and sensitivity to oxidative stress in neuronal cells. Cell Death Discovery, 2017, 3, 17076.	4.7	100
46	Lithium protects hippocampal progenitors, cognitive performance and hypothalamus-pituitary function after irradiation to the juvenile rat brain. Oncotarget, 2017, 8, 34111-34127.	1.8	27
47	Inhibition of HIF-prolyl-4-hydroxylases prevents mitochondrial impairment and cell death in a model of neuronal oxytosis. Cell Death and Disease, 2016, 7, e2214-e2214.	6.3	38
48	Design of a novel thiophene inhibitor of 15-lipoxygenase-1 with both anti-inflammatory and neuroprotective properties. European Journal of Medicinal Chemistry, 2016, 122, 786-801.	5.5	30
49	Activation of SK2 channels preserves ER Ca2+ homeostasis and protects against ER stress-induced cell death. Cell Death and Differentiation, 2016, 23, 814-827.	11.2	37
50	SK channel activation modulates mitochondrial respiration and attenuates neuronal HT-22 cell damage induced by H2O2. Neurochemistry International, 2015, 81, 63-75.	3.8	30
51	The metalloprotease-disintegrin ADAM8 contributes to temozolomide chemoresistance and enhanced invasiveness of human glioblastoma cells. Neuro-Oncology, 2015, 17, 1474-1485.	1.2	48
52	Small-Conductance Ca2+-Activated Potassium Type 2 Channels Regulate the Formation of Contextual Fear Memory. PLoS ONE, 2015, 10, e0127264.	2.5	8
53	\hat{l}_{\pm} 1-antitrypsin modulates microglial-mediated neuroinflammation and protects microglial cells from amyloid- \hat{l}^2 -induced toxicity. Journal of Neuroinflammation, 2014, 11, 165.	7.2	37
54	Inhibition of the AIF/CypA complex protects against intrinsic death pathways induced by oxidative stress. Cell Death and Disease, 2014, 5, e993-e993.	6.3	54

#	Article	IF	Citations
55	Regulators of mitochondrial Ca2+ homeostasis in cerebral ischemia. Cell and Tissue Research, 2014, 357, 395-405.	2.9	35
56	RNA Editing in the Central Cavity as a Mechanism to Regulate Surface Expression of the Voltage-gated Potassium Channel Kv1.1. Journal of Biological Chemistry, 2014, 289, 26762-26771.	3.4	12
57	The serine protease inhibitor TLCK attenuates intrinsic death pathways in neurons upstream of mitochondrial demise. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 1545-1558.	4.9	11
58	Subcellular expression and neuroprotective effects of SK channels in human dopaminergic neurons. Cell Death and Disease, 2014, 5, e999-e999.	6.3	56
59	Novel ⟨i⟩N⟨ i⟩-Phenyl–Substituted Thiazolidinediones Protect Neural Cells against Glutamate- and tBid-Induced Toxicity. Journal of Pharmacology and Experimental Therapeutics, 2014, 350, 273-289.	2.5	14
60	Trifluoperazine rescues human dopaminergic cells from wild-type \hat{l}_{\pm} -synuclein-induced toxicity. Neurobiology of Aging, 2014, 35, 1700-1711.	3.1	48
61	Mitochondrial Small Conductance SK2 Channels Prevent Glutamate-induced Oxytosis and Mitochondrial Dysfunction. Journal of Biological Chemistry, 2013, 288, 10792-10804.	3.4	80
62	AIF depletion provides neuroprotection through a preconditioning effect. Apoptosis: an International Journal on Programmed Cell Death, 2012, 17, 1027-1038.	4.9	27
63	Activation of <i>KCNN3</i> /SK3/K _{Ca} 2.3 channels attenuates enhanced calcium influx and inflammatory cytokine production in activated microglia. Glia, 2012, 60, 2050-2064.	4.9	36
64	KCa2 and KCa3 Channels in Learning and Memory Processes, and Neurodegeneration. Frontiers in Pharmacology, 2012, 3, 107.	3.5	31
65	Protective Roles for Potassium SK/KCa2 Channels in Microglia and Neurons. Frontiers in Pharmacology, 2012, 3, 196.	3.5	35
66	Impedance measurement for real time detection of neuronal cell death. Journal of Neuroscience Methods, 2012, 203, 69-77.	2.5	88
67	Statins — increasing or reducing the risk of Parkinson's disease?. Experimental Neurology, 2011, 228, 1-4.	4.1	11
68	KCa2 channels activation prevents [Ca2+]i deregulation and reduces neuronal death following glutamate toxicity and cerebral ischemia. Cell Death and Disease, 2011, 2, e147-e147.	6.3	49
69	KBP interacts with SCG10, linking Goldberg–Shprintzen syndrome to microtubule dynamics and neuronal differentiation. Human Molecular Genetics, 2010, 19, 3642-3651.	2.9	37
70	Pretreatment with Lovastatin Prevents N-Methyl-D-Aspartate-Induced Neurodegeneration in the Magnocellular Nucleus Basalis and Behavioral Dysfunction. Journal of Alzheimer's Disease, 2009, 17, 327-336.	2.6	32
71	Statins: Mechanisms of neuroprotection. Progress in Neurobiology, 2009, 88, 64-75.	5.7	225
72	Inflammation and NF-lºB in Alzheimer's Disease and Diabetes. Journal of Alzheimer's Disease, 2009, 16, 809-821.	2.6	157

#	Article	IF	CITATION
73	Identification and characterization of a novel, shorter isoform of the small conductance Ca ²⁺ â€activated K ⁺ channel SK2. Journal of Neurochemistry, 2008, 106, 2312-2321.	3.9	21
74	TNFâ€Î±â€mediates neuroprotection against glutamateâ€induced excitotoxicity via NFâ€ÎºBâ€dependent upâ€re of K _{Ca} 2.2 channels. Journal of Neurochemistry, 2008, 107, 1158-1167.	gulation	77
75	Neuronal AKAP150 coordinates PKA and Epac-mediated PKB/Akt phosphorylation. Cellular Signalling, 2008, 20, 1715-1724.	3.6	76
76	Interleukin-6 Upregulates Neuronal Adenosine A1 Receptors: Implications for Neuromodulation and Neuroprotection. Neuropsychopharmacology, 2008, 33, 2237-2250.	5.4	63
77	Lovastatin Induces Neuroprotection Through Tumor Necrosis Factor Receptor 2 Signaling Pathways. Journal of Alzheimer's Disease, 2008, 13, 111-122.	2.6	56
78	A-kinase anchoring protein 150 in the mouse brain is concentrated in areas involved in learning and memory. Brain Research, 2007, 1145, 97-107.	2.2	41
79	Cholinergic cells in the nucleus basalis of mice express the N-methyl-d-aspartate-receptor subunit NR2C and its replacement by the NR2B subunit enhances frontal and amygdaloid acetylcholine levels. Genes, Brain and Behavior, 2006, 5, 552-560.	2.2	10