List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/191492/publications.pdf Version: 2024-02-01

ΔΜΑΙΙΑ ΠΟΙ CA

#	Article	IF	CITATIONS
1	BID links ferroptosis to mitochondrial cell death pathways. Redox Biology, 2017, 12, 558-570.	9.0	245
2	Statins: Mechanisms of neuroprotection. Progress in Neurobiology, 2009, 88, 64-75.	5.7	225
3	Inflammation and NF-κB in Alzheimer's Disease and Diabetes. Journal of Alzheimer's Disease, 2009, 16, 809-821.	2.6	157
4	The role of Ca2+ in cell death caused by oxidative glutamate toxicity and ferroptosis. Cell Calcium, 2018, 70, 47-55.	2.4	135
5	Human VPS13A is associated with multiple organelles and influences mitochondrial morphology and lipid droplet motility. ELife, 2019, 8, .	6.0	114
6	Mitochondrial damage by α-synuclein causes cell death in human dopaminergic neurons. Cell Death and Disease, 2019, 10, 865.	6.3	112
7	Glucose-regulated protein 75 determines ER–mitochondrial coupling and sensitivity to oxidative stress in neuronal cells. Cell Death Discovery, 2017, 3, 17076.	4.7	100
8	Linalool attenuates oxidative stress and mitochondrial dysfunction mediated by glutamate and NMDA toxicity. Biomedicine and Pharmacotherapy, 2019, 118, 109295.	5.6	91
9	Impedance measurement for real time detection of neuronal cell death. Journal of Neuroscience Methods, 2012, 203, 69-77.	2.5	88
10	Fibril polymorphism affects immobilized non-amyloid flanking domains of huntingtin exon1 rather than its polyglutamine core. Nature Communications, 2017, 8, 15462.	12.8	81
11	Mitochondrial Small Conductance SK2 Channels Prevent Glutamate-induced Oxytosis and Mitochondrial Dysfunction. Journal of Biological Chemistry, 2013, 288, 10792-10804.	3.4	80
12	TNFâ€Î±â€mediates neuroprotection against glutamateâ€induced excitotoxicity via NFâ€ÎºBâ€dependent upâ€re of K _{Ca} 2.2 channels. Journal of Neurochemistry, 2008, 107, 1158-1167.	gulation	77
13	Neuronal AKAP150 coordinates PKA and Epac-mediated PKB/Akt phosphorylation. Cellular Signalling, 2008, 20, 1715-1724.	3.6	76
14	Interleukin-6 Upregulates Neuronal Adenosine A1 Receptors: Implications for Neuromodulation and Neuroprotection. Neuropsychopharmacology, 2008, 33, 2237-2250.	5.4	63
15	Lovastatin Induces Neuroprotection Through Tumor Necrosis Factor Receptor 2 Signaling Pathways. Journal of Alzheimer's Disease, 2008, 13, 111-122.	2.6	56
16	Subcellular expression and neuroprotective effects of SK channels in human dopaminergic neurons. Cell Death and Disease, 2014, 5, e999-e999.	6.3	56
17	Inhibition of the AIF/CypA complex protects against intrinsic death pathways induced by oxidative stress. Cell Death and Disease, 2014, 5, e993-e993.	6.3	54
18	Mitochondrial Ca2+-activated K+ channels and their role in cell life and death pathways. Cell Calcium, 2018, 69, 101-111.	2.4	52

#	Article	IF	CITATIONS
19	KCa2 channels activation prevents [Ca2+]i deregulation and reduces neuronal death following glutamate toxicity and cerebral ischemia. Cell Death and Disease, 2011, 2, e147-e147.	6.3	49
20	Trifluoperazine rescues human dopaminergic cells from wild-type α-synuclein-induced toxicity. Neurobiology of Aging, 2014, 35, 1700-1711.	3.1	48
21	The metalloprotease-disintegrin ADAM8 contributes to temozolomide chemoresistance and enhanced invasiveness of human glioblastoma cells. Neuro-Oncology, 2015, 17, 1474-1485.	1.2	48
22	SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake. Cell Death and Differentiation, 2017, 24, 761-773.	11.2	48
23	Protective effect of metformin against palmitate-induced hepatic cell death. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165621.	3.8	45
24	Targeting pathogen metabolism without collateral damage to the host. Scientific Reports, 2017, 7, 40406.	3.3	42
25	A-kinase anchoring protein 150 in the mouse brain is concentrated in areas involved in learning and memory. Brain Research, 2007, 1145, 97-107.	2.2	41
26	Unraveling the role of thiosulfate sulfurtransferase in metabolic diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165716.	3.8	39
27	Inhibition of HIF-prolyl-4-hydroxylases prevents mitochondrial impairment and cell death in a model of neuronal oxytosis. Cell Death and Disease, 2016, 7, e2214-e2214.	6.3	38
28	KBP interacts with SCG10, linking Goldberg–Shprintzen syndrome to microtubule dynamics and neuronal differentiation. Human Molecular Genetics, 2010, 19, 3642-3651.	2.9	37
29	α 1-antitrypsin modulates microglial-mediated neuroinflammation and protects microglial cells from amyloid-β-induced toxicity. Journal of Neuroinflammation, 2014, 11, 165.	7.2	37
30	Activation of SK2 channels preserves ER Ca2+ homeostasis and protects against ER stress-induced cell death. Cell Death and Differentiation, 2016, 23, 814-827.	11.2	37
31	Activation of <i>KCNN3</i> /SK3/K _{Ca} 2.3 channels attenuates enhanced calcium influx and inflammatory cytokine production in activated microglia. Glia, 2012, 60, 2050-2064.	4.9	36
32	Protective Roles for Potassium SK/KCa2 Channels in Microglia and Neurons. Frontiers in Pharmacology, 2012, 3, 196.	3.5	35
33	Regulators of mitochondrial Ca2+ homeostasis in cerebral ischemia. Cell and Tissue Research, 2014, 357, 395-405.	2.9	35
34	Calcium-activated SK potassium channels are key modulators of the pacemaker frequency in locus coeruleus neurons. Molecular and Cellular Neurosciences, 2018, 88, 330-341.	2.2	35
35	Microglia alterations in neurodegenerative diseases and their modeling with human induced pluripotent stem cell and other platforms. Progress in Neurobiology, 2020, 190, 101805.	5.7	35
36	SK channel-mediated metabolic escape to glycolysis inhibits ferroptosis and supports stress resistance in C. elegans. Cell Death and Disease, 2020, 11, 263.	6.3	34

#	Article	IF	CITATIONS
37	Pretreatment with Lovastatin Prevents N-Methyl-D-Aspartate-Induced Neurodegeneration in the Magnocellular Nucleus Basalis and Behavioral Dysfunction. Journal of Alzheimer's Disease, 2009, 17, 327-336.	2.6	32
38	KCa2 and KCa3 Channels in Learning and Memory Processes, and Neurodegeneration. Frontiers in Pharmacology, 2012, 3, 107.	3.5	31
39	Small conductance Ca 2+ -activated K + channels in the plasma membrane, mitochondria and the ER: Pharmacology and implications in neuronal diseases. Neurochemistry International, 2017, 109, 13-23.	3.8	31
40	SK channel activation modulates mitochondrial respiration and attenuates neuronal HT-22 cell damage induced by H2O2. Neurochemistry International, 2015, 81, 63-75.	3.8	30
41	Design of a novel thiophene inhibitor of 15-lipoxygenase-1 with both anti-inflammatory and neuroprotective properties. European Journal of Medicinal Chemistry, 2016, 122, 786-801.	5.5	30
42	AIF depletion provides neuroprotection through a preconditioning effect. Apoptosis: an International Journal on Programmed Cell Death, 2012, 17, 1027-1038.	4.9	27
43	Lithium protects hippocampal progenitors, cognitive performance and hypothalamus-pituitary function after irradiation to the juvenile rat brain. Oncotarget, 2017, 8, 34111-34127.	1.8	27
44	<i>ACO2</i> homozygous missense mutation associated with complicated hereditary spastic paraplegia. Neurology: Genetics, 2018, 4, e223.	1.9	25
45	The neuroprotective role of microglial cells against amyloid betaâ€mediated toxicity in organotypic hippocampal slice cultures. Brain Pathology, 2020, 30, 589-602.	4.1	25
46	The Potential of Ferroptosis-Targeting Therapies for Alzheimer's Disease: From Mechanism to Transcriptomic Analysis. Frontiers in Aging Neuroscience, 2021, 13, 745046.	3.4	24
47	The tale of proteolysis targeting chimeras (PROTACs) for Leucineâ€Rich Repeat Kinase 2 (LRRK2). ChemMedChem, 2021, 16, 959-965.	3.2	23
48	Mitochondrial dysfunction in neurodegenerative diseases: A focus on iPSC-derived neuronal models. Cell Calcium, 2021, 94, 102362.	2.4	23
49	Identification and characterization of a novel, shorter isoform of the small conductance Ca ²⁺ â€activated K ⁺ channel SK2. Journal of Neurochemistry, 2008, 106, 2312-2321.	3.9	21
50	The VAMPâ€associated protein VAPB is required for cardiac and neuronal pacemaker channel function. FASEB Journal, 2018, 32, 6159-6173.	0.5	19
51	Calcium-activated potassium channels: implications for aging and age-related neurodegeneration. International Journal of Biochemistry and Cell Biology, 2020, 123, 105748.	2.8	19
52	SK channel activation potentiates auranofin-induced cell death in glio- and neuroblastoma cells. Biochemical Pharmacology, 2020, 171, 113714.	4.4	16
53	Novel <i>N</i> -Phenyl–Substituted Thiazolidinediones Protect Neural Cells against Glutamate- and tBid-Induced Toxicity. Journal of Pharmacology and Experimental Therapeutics, 2014, 350, 273-289.	2.5	14
54	Time-resolved characterization of the mechanisms of toxicity induced by silica and amino-modified polystyrene on alveolar-like macrophages. Archives of Toxicology, 2020, 94, 173-186.	4.2	14

#	Article	IF	CITATIONS
55	Transcriptomic and epigenomic landscapes of Alzheimer's disease evidence mitochondrial-related pathways. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119326.	4.1	14
56	One protein, different cell fate: the differential outcome of depleting GRP75 during oxidative stress in neurons. Cell Death and Disease, 2018, 9, 32.	6.3	13
57	Pharmacological Inhibition of Epac1 Averts Ferroptosis Cell Death by Preserving Mitochondrial Integrity. Antioxidants, 2022, 11, 314.	5.1	13
58	RNA Editing in the Central Cavity as a Mechanism to Regulate Surface Expression of the Voltage-gated Potassium Channel Kv1.1. Journal of Biological Chemistry, 2014, 289, 26762-26771.	3.4	12
59	Statins — increasing or reducing the risk of Parkinson's disease?. Experimental Neurology, 2011, 228, 1-4.	4.1	11
60	The serine protease inhibitor TLCK attenuates intrinsic death pathways in neurons upstream of mitochondrial demise. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 1545-1558.	4.9	11
61	Cholinergic cells in the nucleus basalis of mice express the N-methyl-d-aspartate-receptor subunit NR2C and its replacement by the NR2B subunit enhances frontal and amygdaloid acetylcholine levels. Genes, Brain and Behavior, 2006, 5, 552-560.	2.2	10
62	Bcl-xL knockout attenuates mitochondrial respiration and causes oxidative stress that is compensated by pentose phosphate pathway activity. Free Radical Biology and Medicine, 2017, 112, 350-359.	2.9	10
63	Enhanced firing of locus coeruleus neurons and SK channel dysfunction are conserved in distinct models of prodromal Parkinson's disease. Scientific Reports, 2022, 12, 3180.	3.3	10
64	SK channel activation is neuroprotective in conditions of enhanced ER–mitochondrial coupling. Cell Death and Disease, 2018, 9, 593.	6.3	8
65	Fibroblastâ€specific genomeâ€scale modelling predicts an imbalance in amino acid metabolism in Refsum disease. FEBS Journal, 2020, 287, 5096-5113.	4.7	8
66	Small-Conductance Ca2+-Activated Potassium Type 2 Channels Regulate the Formation of Contextual Fear Memory. PLoS ONE, 2015, 10, e0127264.	2.5	8
67	Cytochrome c Oxidase Inhibition by ATP Decreases Mitochondrial ROS Production. Cells, 2022, 11, 992.	4.1	8
68	A Conserved Role for LRRK2 and Roco Proteins in the Regulation of Mitochondrial Activity. Frontiers in Cell and Developmental Biology, 2021, 9, 734554.	3.7	6
69	Advanced Modeling of Peripheral Neuro-Effector Communication and -Plasticity. Physiology, 2020, 35, 348-357.	3.1	5
70	Plasma hsaâ€mirâ€19b is a potential LevoDopa therapy marker. Journal of Cellular and Molecular Medicine, 2021, 25, 8715-8724.	3.6	5
71	Design, Optimization, and Structural Characterization of an Apoptosis-Inducing Factor Peptide Targeting Human Cyclophilin A to Inhibit Apoptosis Inducing Factor-Mediated Cell Death. Journal of Medicinal Chemistry, 2021, 64, 11445-11459.	6.4	5
72	Interaction of the Psychiatric Risk Gene Cacna1c With Post-weaning Social Isolation or Environmental Enrichment Does Not Affect Brain Mitochondrial Bioenergetics in Rats. Frontiers in Cellular Neuroscience, 2019, 13, 483.	3.7	4

#	Article	IF	CITATIONS
73	PEG out through the pores with the help of ESCRTIII. Cell Calcium, 2021, 97, 102422.	2.4	4
74	The Unfolded Protein Response Sensor PERK Mediates Stiffness-Dependent Adaptation in Glioblastoma Cells. International Journal of Molecular Sciences, 2022, 23, 6520.	4.1	4
75	Human pluripotent stem cells for the modelling and treatment of respiratory diseases. European Respiratory Review, 2021, 30, 210042.	7.1	3
76	Thiosulfate sulfurtransferase prevents hyperglycemic damage to the zebrafish pronephros in an experimental model for diabetes. Scientific Reports, 2022, 12, .	3.3	3
77	SK-Channel Activation Alters Peripheral Metabolic Pathways in Mice, but Not Lipopolysaccharide-Induced Fever or Inflammation. Journal of Inflammation Research, 2022, Volume 15, 509-531.	3.5	1
78	Metabolic escape to glycolysis through SK channel activation inhibits ferroptosis and increases the life span of C. elegans in conditions of heat stress. FASEB Journal, 2019, 33, 665.7.	0.5	0
79	Diesel exhaust particles alter cAMP dynamics in human bronchial epithelial cells. FASEB Journal, 2022, 36, .	0.5	Ο