Fabrice Gallou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1914879/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved iGAL 2.0 Metric Empowers Pharmaceutical Scientists to Make Meaningful Contributions to United Nations Sustainable Development Goal 12. ACS Sustainable Chemistry and Engineering, 2022, 10, 5148-5162.	6.7	31
2	Phosphine Ligand-Free Bimetallic Ni(0)Pd(0) Nanoparticles as a Catalyst for Facile, General, Sustainable, and Highly Selective 1,4-Reductions in Aqueous Micelles. ACS Applied Materials & Interfaces, 2022, 14, 6754-6761.	8.0	12
3	Lipase-catalyzed esterification in water enabled by nanomicelles. Applications to 1-pot multi-step sequences. Chemical Science, 2022, 13, 1440-1445.	7.4	32
4	Water: An Underestimated Solvent for Amide Bond-Forming Reactions. ACS Sustainable Chemistry and Engineering, 2022, 10, 5299-5306.	6.7	26
5	The Catalytic Formation of Atropisomers and Stereocenters via Asymmetric Suzuki–Miyaura Couplings. ACS Catalysis, 2022, 12, 4918-4937.	11.2	54
6	Allylations of aryl/heteroaryl ketones: neat, clean, and sustainable. Applications to targets in the pharma- and nutraceutical industries. Green Chemistry, 2022, 24, 4909-4914.	9.0	3
7	Sustainable and Benchâ€5table Photoactive Aqueous Nanoaggregates of Cu(II) for ppm Level Cu(I) Catalysis in Water. Advanced Functional Materials, 2022, 32, .	14.9	6
8	Safe, Scalable, Inexpensive, and Mild Nickelâ€Catalyzed Migitaâ€Like Câ^'S Crossâ€Couplings in Recyclable Water. Angewandte Chemie - International Edition, 2021, 60, 3708-3713.	13.8	32
9	Mild and Robust Stille Reactions in Water using Parts Per Million Levels of a Triphenylphosphineâ€Based Palladacycle. Angewandte Chemie - International Edition, 2021, 60, 4158-4163.	13.8	31
10	Mild and Robust Stille Reactions in Water using Parts Per Million Levels of a Triphenylphosphineâ€Based Palladacycle. Angewandte Chemie, 2021, 133, 4204-4209.	2.0	2
11	Lateâ€stage Pdâ€catalyzed Cyanations of Aryl/Heteroaryl Halides in Aqueous Micellar Media. ChemCatChem, 2021, 13, 212-216.	3.7	21
12	Continuous slurry plug flow Fe/ppm Pd nanoparticle-catalyzed Suzuki–Miyaura couplings in water utilizing novel solid handling equipment. Green Chemistry, 2021, 23, 7724-7730.	9.0	17
13	α-Arylation of (hetero)aryl ketones in aqueous surfactant media. Green Chemistry, 2021, 23, 4858-4865.	9.0	22
14	Water as the reaction medium in organic chemistry: from our worst enemy to our best friend. Chemical Science, 2021, 12, 4237-4266.	7.4	263
15	Water-Sculpting of a Heterogeneous Nanoparticle Precatalyst for Mizoroki–Heck Couplings under Aqueous Micellar Catalysis Conditions. Journal of the American Chemical Society, 2021, 143, 3373-3382.	13.7	58
16	Nanochannels in Photoactive Polymeric Cu(I) Compatible for Efficient Micellar Catalysis: Sustainable Aerobic Oxidations of Alcohols in Water. ACS Sustainable Chemistry and Engineering, 2021, 9, 2854-2860.	6.7	14
17	Strategies to Tackle the Waste Water from $\hat{I}\pm$ -Tocopherol-Derived Surfactant Chemistry. Organic Process Research and Development, 2021, 25, 900-915.	2.7	44
18	"TPG-lite― A new, simplified "designer―surfactant for general use in synthesis under micellar catalysis conditions in recyclable water. Tetrahedron, 2021, 87, 132090.	1.9	17

#	Article	IF	CITATIONS
19	Photoassisted Charge Transfer Between DMF and Substrate: Facile and Selective <i>N</i> , <i>N</i> â€Dimethylamination of Fluoroarenes. ChemSusChem, 2021, 14, 2704-2709.	6.8	5
20	Organic synthesis in Aqueous Multiphase Systems — Challenges and opportunities ahead of us. Current Opinion in Colloid and Interface Science, 2021, 56, 101506.	7.4	28
21	Micelle enabled C(sp ²)–C(sp ³) cross-electrophile coupling in water <i>via</i> synergistic nickel and copper catalysis. Chemical Communications, 2021, 57, 7629-7632.	4.1	7
22	Nanomicelle-enhanced, asymmetric ERED-catalyzed reductions of activated olefins. Applications to 1-pot chemo- and bio-catalysis sequences in water. Chemical Communications, 2021, 57, 11847-11850.	4.1	35
23	High Turnover Pd/C Catalyst for Nitro Group Reductions in Water. One-Pot Sequences and Syntheses of Pharmaceutical Intermediates. Organic Letters, 2021, 23, 8114-8118.	4.6	20
24	Fostering Research Synergies between Chemists in Swiss Academia and at Novartis. Chimia, 2021, 75, 936.	0.6	1
25	A Sustainable 1-Pot, 3-Step Synthesis of Boscalid Using Part per Million Level Pd Catalysis in Water. Organic Process Research and Development, 2020, 24, 101-105.	2.7	33
26	Surfactant Technology: With New Rules, Designing New Sequences Is Required!. Organic Process Research and Development, 2020, 24, 841-849.	2.7	47
27	A General Kilogram Scale Protocol for Suzuki–Miyaura Cross-Coupling in Water with TPGS-750-M Surfactant. Organic Process Research and Development, 2020, 24, 1536-1542.	2.7	40
28	Simple Synthesis of Amides via Their Acid Chlorides in Aqueous TPGS-750-M. Organic Process Research and Development, 2020, 24, 1543-1548.	2.7	23
29	Environmentally responsible, safe, and chemoselective catalytic hydrogenation of olefins: ppm level Pd catalysis in recyclable water at room temperature. Green Chemistry, 2020, 22, 6055-6061.	9.0	30
30	Sustainability as a Trigger for Innovation!. Chimia, 2020, 74, 538.	0.6	13
31	N ₂ Phos – an easily made, highly effective ligand designed for ppm level Pd-catalyzed Suzuki–Miyaura cross couplings in water. Chemical Science, 2020, 11, 5205-5212.	7.4	29
32	Continuous flow Suzuki–Miyaura couplings in water under micellar conditions in a CSTR cascade catalyzed by Fe/ppm Pd nanoparticles. Green Chemistry, 2020, 22, 3441-3444.	9.0	24
33	Nickel Nanoparticle Catalyzed Mono―and Diâ€Reductions of <i>gem</i> â€Dibromocyclopropanes Under Mild, Aqueous Micellar Conditions. Angewandte Chemie - International Edition, 2020, 59, 17587-17593.	13.8	10
34	Sustainable Palladium-Catalyzed Tsuji–Trost Reactions Enabled by Aqueous Micellar Catalysis. Organic Letters, 2020, 22, 4949-4954.	4.6	23
35	Nickel Nanoparticle Catalyzed Mono―and Diâ€Reductions of gem â€Dibromocyclopropanes Under Mild, Aqueous Micellar Conditions. Angewandte Chemie, 2020, 132, 17740-17746.	2.0	4
36	Development of a Robust Protocol for the Synthesis of 6-Hydroxybenzofuran-3-carboxylic Acid. Organic Process Research and Development, 2020, 24, 861-866.	2.7	1

#	Article	lF	CITATIONS
37	Optimized Synthesis of 7-Azaindazole by a Diels–Alder Cascade and Associated Process Safety. Organic Process Research and Development, 2020, 24, 776-786.	2.7	6
38	A new, <i>substituted</i> palladacycle forÂppm level Pd-catalyzed Suzuki–Miyaura cross couplings in water. Chemical Science, 2019, 10, 8825-8831.	7.4	56
39	Microballs Containing Ni(0)Pd(0) Nanoparticles for Highly Selective Micellar Catalysis in Water. ACS Catalysis, 2019, 9, 7520-7526.	11.2	41
40	Reactivity of Carbenes in Aqueous Nanomicelles Containing Palladium Nanoparticles. ACS Catalysis, 2019, 9, 10963-10970.	11.2	30
41	The PMI Predictor app to enable green-by-design chemical synthesis. Nature Sustainability, 2019, 2, 1034-1040.	23.7	36
42	Environmental Metrics to Drive a Cultural Change: Our Green Eco-Label. Chimia, 2019, 73, 730.	0.6	23
43	Fe-Catalyzed Reductive Couplings of Terminal (Hetero)Aryl Alkenes and Alkyl Halides under Aqueous Micellar Conditions. Journal of the American Chemical Society, 2019, 141, 17117-17124.	13.7	41
44	New Semi-Automated Computer-Based System for Assessing the Purge of Mutagenic Impurities. Organic Process Research and Development, 2019, 23, 2470-2481.	2.7	16
45	Insights on Bimetallic Micellar Nanocatalysis for Buchwald–Hartwig Aminations. ACS Catalysis, 2019, 9, 10389-10397.	11.2	59
46	ppm Pd-catalyzed, Cu-free Sonogashira couplings in water using commercially available catalyst precursors. Chemical Science, 2019, 10, 3481-3485.	7.4	52
47	Bridging the gap between transition metal- and bio-catalysis via aqueous micellar catalysis. Nature Communications, 2019, 10, 2169.	12.8	154
48	Organopolymer with dual chromophores and fast charge-transfer properties for sustainable photocatalysis. Nature Communications, 2019, 10, 1837.	12.8	22
49	Sustainability Challenges in Peptide Synthesis and Purification: From R&D to Production. Journal of Organic Chemistry, 2019, 84, 4615-4628.	3.2	256
50	Coolade. A Lowâ€Foaming Surfactant for Organic Synthesis in Water. ChemSusChem, 2019, 12, 3159-3165.	6.8	36
51	Shielding Effect of Micelle for Highly Effective and Selective Monofluorination of Indoles in Water. ChemSusChem, 2019, 12, 3037-3042.	6.8	42
52	Sonogashira Couplings Catalyzed by Fe Nanoparticles Containing ppm Levels of Reusable Pd, under Mild Aqueous Micellar Conditions. ACS Catalysis, 2019, 9, 2423-2431.	11.2	78
53	<i>N</i> , <i>C</i> -Disubstituted Biarylpalladacycles as Precatalysts for ppm Pd-Catalyzed Cross Couplings in Water under Mild Conditions. ACS Catalysis, 2019, 9, 11647-11657.	11.2	42
54	Sustainable and Affordable Chemistry. ChemCatChem, 2019, 11, 5660-5661.	3.7	3

#	Article	IF	CITATIONS
55	SustainableÂppm level palladium-catalyzed aminations in nanoreactors under mild, aqueous conditions. Chemical Science, 2019, 10, 10556-10561.	7.4	46
56	Structure of Nanoparticles Derived from Designer Surfactant TPGSâ€750â€M in Water, As Used in Organic Synthesis. Chemistry - A European Journal, 2018, 24, 6778-6786.	3.3	76
57	PQS-enabled visible-light iridium photoredox catalysis in water at room temperature. Green Chemistry, 2018, 20, 1233-1237.	9.0	86
58	Sustainable HandaPhos- <i>ppm</i> Palladium Technology for Copper-Free Sonogashira Couplings in Water under Mild Conditions. Organic Letters, 2018, 20, 542-545.	4.6	63
59	Micelle-Enabled Photoassisted Selective Oxyhalogenation of Alkynes in Water under Mild Conditions. Journal of Organic Chemistry, 2018, 83, 7366-7372.	3.2	60
60	<i>N</i> Butylpyrrolidinone as Alternative Solvent for Solid-Phase Peptide Synthesis. Organic Process Research and Development, 2018, 22, 494-503.	2.7	86
61	Inspiring process innovation <i>via</i> an improved green manufacturing metric: iGAL. Green Chemistry, 2018, 20, 2206-2211.	9.0	69
62	Micelle-enabled clean and selective sulfonylation of polyfluoroarenes in water under mild conditions. Green Chemistry, 2018, 20, 1784-1790.	9.0	65
63	Development of a cyclosporin A derivative with excellent anti-hepatitis C virus potency. Bioorganic and Medicinal Chemistry, 2018, 26, 957-969.	3.0	4
64	Synergistic effects in Fe nanoparticles doped with ppm levels of (Pd + Ni). A new catalyst for sustainable nitro group reductions. Green Chemistry, 2018, 20, 130-135.	9.0	63
65	Key Green Chemistry research areas from a pharmaceutical manufacturers' perspective revisited. Green Chemistry, 2018, 20, 5082-5103.	9.0	384
66	Soft and dispersed interface-rich aqueous systems that promote and guide chemical reactions. Nature Reviews Chemistry, 2018, 2, 306-327.	30.2	92
67	Microtiter Plate (MTP) Reaction Screening and Optimization of Surfactant Chemistry: Examples of Suzuki–Miyaura and Buchwald–Hartwig Cross-Couplings in Water. Organic Process Research and Development, 2018, 22, 1453-1457.	2.7	22
68	Organometallic Processes in Water. Topics in Organometallic Chemistry, 2018, , 199-216.	0.7	8
69	ï€â€Allylpalladium Species in Micelles of Flâ€750â€M for Sustainable and General Suzukiâ€Miyaura Couplings of Unactivated Quinoline Systems in Water. ChemCatChem, 2018, 10, 4229-4233.	3.7	42
70	Micelle-Enabled Suzuki–Miyaura Cross-Coupling of Heteroaryl Boronate Esters. Journal of Organic Chemistry, 2018, 83, 7523-7527.	3.2	31
71	EvanPhos: a ligand for ppm level Pd-catalyzed Suzuki–Miyaura couplings in either organic solvent or water. Green Chemistry, 2018, 20, 3436-3443.	9.0	51
72	Synthesis of Functionalized 1,3-Butadienes via Pd-Catalyzed Cross-Couplings of Substituted Allenic Esters in Water at Room Temperature. Organic Letters, 2018, 20, 4719-4722.	4.6	22

#	Article	IF	CITATIONS
73	Forewords BMC. Bioorganic and Medicinal Chemistry, 2018, 26, 4329.	3.0	0
74	<i>>B</i> -Alkyl sp ³ –sp ² Suzuki–Miyaura Couplings under Mild Aqueous Micellar Conditions. Organic Letters, 2018, 20, 2902-2905.	4.6	35
75	Copper-Catalyzed Oxidative Cleavage of Electron-Rich Olefins in Water at Room Temperature. Organic Letters, 2018, 20, 5094-5097.	4.6	34
76	S _N Ar Reactions in Aqueous Nanomicelles: From Milligrams to Grams with No Dipolar Aprotic Solvents Needed. Organic Process Research and Development, 2017, 21, 218-221.	2.7	40
77	Sustainable and Scalable Fe/ppm Pd Nanoparticle Nitro Group Reductions in Water at Room Temperature. Organic Process Research and Development, 2017, 21, 247-252.	2.7	46
78	Fe/ppm Cu nanoparticles as a recyclable catalyst for click reactions in water at room temperature. Green Chemistry, 2017, 19, 2506-2509.	9.0	41
79	Switching from organic solvents to water at an industrial scale. Current Opinion in Green and Sustainable Chemistry, 2017, 7, 13-17.	5.9	27
80	Effects of Co-solvents on Reactions Run under Micellar Catalysis Conditions. Organic Letters, 2017, 19, 194-197.	4.6	94
81	Micelle-Enabled Palladium Catalysis for Convenient sp ² -sp ³ Coupling of Nitroalkanes with Aryl Bromides in Water Under Mild Conditions. ACS Catalysis, 2017, 7, 7245-7250.	11.2	87
82	Micellar catalysis-enabled sustainableÂppm Au-catalyzed reactions in water at room temperature. Chemical Science, 2017, 8, 6354-6358.	7.4	44
83	A consortium-driven framework to guide the implementation of ICH M7 Option 4 control strategies. Regulatory Toxicology and Pharmacology, 2017, 90, 22-28.	2.7	23
84	Carbonyl Iron Powder: A Reagent for Nitro Group Reductions under Aqueous Micellar Catalysis Conditions. Organic Letters, 2017, 19, 6518-6521.	4.6	54
85	A Micellar Catalysis Strategy for Suzuki–Miyaura Cross-Couplings of 2-Pyridyl MIDA Boronates: <i>No Copper</i> , in Water, Very Mild Conditions. ACS Catalysis, 2017, 7, 8331-8337.	11.2	52
86	A deeper shade of green: inspiring sustainable drug manufacturing. Green Chemistry, 2017, 19, 281-285.	9.0	88
87	Organometallic Catalysis and Sustainability: From Origin to Date. Johnson Matthey Technology Review, 2017, 61, 231-245.	1.0	13
88	Safe and Selective Nitro Group Reductions Catalyzed by Sustainable and Recyclable Fe/ppm Pd Nanoparticles in Water at Room Temperature. Angewandte Chemie - International Edition, 2016, 55, 8979-8983.	13.8	121
89	HandaPhos: A General Ligand Enabling Sustainable ppm Levels of Palladium atalyzed Cross ouplings in Water at Room Temperature. Angewandte Chemie - International Edition, 2016, 55, 4914-4918. 	13.8	138
90	Evolution of Solvents in Organic Chemistry. ACS Sustainable Chemistry and Engineering, 2016, 4, 5838-5849.	6.7	199

#	Article	IF	CITATIONS
91	A General and Practical Alternative to Polar Aprotic Solvents Exemplified on an Amide Bond Formation. Organic Process Research and Development, 2016, 20, 1388-1391.	2.7	60
92	Selective Amidation of Unprotected Amino Alcohols Using Surfactant-in-Water Technology: A Highly Desirable Alternative to Reprotoxic Polar Aprotic Solvents. Organic Process Research and Development, 2016, 20, 1104-1107.	2.7	42
93	HandaPhos: A General Ligand Enabling Sustainable ppm Levels of Palladium-Catalyzed Cross-Couplings in Water at Room Temperature. Angewandte Chemie, 2016, 128, 4998-5002.	2.0	20
94	Surfactant technology applied toward an active pharmaceutical ingredient: more than a simple green chemistry advance. Green Chemistry, 2016, 18, 14-19.	9.0	126
95	A Novel Cathode Material for Cathodic Dehalogenation of 1,1â€Dibromo Cyclopropane Derivatives. Chemistry - A European Journal, 2015, 21, 13878-13882.	3.3	74
96	Amide and Peptide Bond Formation in Water at Room Temperature. Organic Letters, 2015, 17, 3968-3971.	4.6	115
97	Nucleophilic Aromatic Substitution Reactions in Water Enabled by Micellar Catalysis. Organic Letters, 2015, 17, 4734-4737.	4.6	109
98	Sustainable Fe–ppm Pd nanoparticle catalysis of Suzuki-Miyaura cross-couplings in water. Science, 2015, 349, 1087-1091.	12.6	265
99	Development of a Practical Process for the Opening of Macrocyclic Cyclosporin A and Amino Acid Deletion. Organic Process Research and Development, 2014, 18, 1763-1770.	2.7	5
100	Hydrogenation of Esters to Alcohols with a Wellâ€Defined Iron Complex. Angewandte Chemie - International Edition, 2014, 53, 8722-8726.	13.8	269
101	Transforming Suzuki–Miyaura Cross-Couplings of MIDA Boronates into a Green Technology: No Organic Solvents. Journal of the American Chemical Society, 2013, 135, 17707-17710.	13.7	119
102	Green Chemistry Articles of Interest to the Pharmaceutical Industry. Organic Process Research and Development, 2013, 17, 615-626.	2.7	11
103	Development of a Robust and Sustainable Process for Nucleoside Formation. Organic Process Research and Development, 2013, 17, 390-396.	2.7	16
104	Comparative performance evaluation and systematic screening of solvents in a range of Grignard reactions. Green Chemistry, 2013, 15, 1880.	9.0	85
105	A Streamlined Synthesis of Androstadiene C-17 Ester Derivatives. Chimia, 2011, 65, 877-882.	0.6	1
106	A rapid and practical entry into cis-1,4-aminocyclohexanols. Tetrahedron Letters, 2010, 51, 1419-1422.	1.4	4
107	A practical non-cryogenic process for the selective functionalization of bromoaryls. Tetrahedron Letters, 2008, 49, 5024-5027.	1.4	24
108	Organometallic methods for the synthesis and functionalization of azaindoles. Chemical Society Reviews, 2007, 36, 1120.	38.1	187

#	Article	IF	CITATIONS
109	Practical Stereoselective Synthesis of an α-Trifluoromethyl-α-alkyl Epoxide via a Diastereoselective Trifluoromethylation Reaction. Journal of Organic Chemistry, 2007, 72, 292-294.	3.2	38
110	Direct conversion of primary and secondary carboxylic acids to trifluoromethyl ketones. Tetrahedron Letters, 2007, 48, 189-192.	1.4	29
111	Activation of TMSCN by N-Heterocyclic Carbenes for Facile Cyanosilylation of Carbonyl Compounds. Journal of Organic Chemistry, 2006, 71, 1273-1276.	3.2	186
112	Efficient Large-Scale Synthesis of BILN 2061, a Potent HCV Protease Inhibitor, by a Convergent Approach Based on Ring-Closing Metathesis. Journal of Organic Chemistry, 2006, 71, 7133-7145.	3.2	161
113	A Practical Method for the Removal of Ruthenium Byproducts by Supercritical Fluid Extraction. Organic Process Research and Development, 2006, 10, 937-940.	2.7	41
114	N-Heterocyclic Carbene Catalyzed Trifluoromethylation of Carbonyl Compounds. Organic Letters, 2005, 7, 2193-2196.	4.6	129
115	A Novel One-Step Synthesis of 2-Substituted 6-Azaindoles from 3-Amino-4-picoline and Carboxylic Esters. Journal of Organic Chemistry, 2005, 70, 6512-6514.	3.2	20
116	C4â€~-Spiroalkylated Nucleosides Having Sulfur Incorporated at the Apex Position. Journal of Organic Chemistry, 2003, 68, 8625-8634.	3.2	28
117	Syntheses and properties of some exo,exo-bis(isodicyclopentadienyl)titanium low-valent complexes. Journal of Organometallic Chemistry, 2002, 656, 81-88.	1.8	22
118	Total Asymmetric Synthesis of the Putative Structure of the Cytotoxic Diterpenoid (â^)-Sclerophytin A and of the Authentic Natural Sclerophytins A and B. Journal of the American Chemical Society, 2001, 123, 9021-9032.	13.7	103
119	Enantioselective Syntheses of Authentic Sclerophytin A, Sclerophytin B, and Cladiell-11-ene-3,6,7-triol. Organic Letters, 2001, 3, 135-137.	4.6	55
120	A Convenient Method for Removing All Highly-Colored Byproducts Generated during Olefin Metathesis Reactions. Organic Letters, 2000, 2, 1259-1261.	4.6	156
121	Propensity of 4-Methoxy-4-vinyl-2-cyclopentenones Housed in Tri- and Tetracyclic Frameworks for Deep-Seated Photochemical Rearrangement. Journal of the American Chemical Society, 2000, 122, 9610-9620.	13.7	22
122	New Photorearrangements of 2-Cyclopentenones. The Genesis and Fate of Cyclopropylcarbinyl Biradical Intermediates. Journal of the American Chemical Society, 2000, 122, 1540-1541.	13.7	12