
Anna S Mitchell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1914625/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diffusion-Weighted Imaging Tractography-Based Parcellation of the Human Parietal Cortex and Comparison with Human and Macaque Resting-State Functional Connectivity. Journal of Neuroscience, 2011, 31, 4087-4100.	3.6	446
2	The mediodorsal thalamus as a higher order thalamic relay nucleus important for learning and decision-making. Neuroscience and Biobehavioral Reviews, 2015, 54, 76-88.	6.1	214
3	What does the mediodorsal thalamus do?. Frontiers in Systems Neuroscience, 2013, 7, 37.	2.5	208
4	Causal effect of disconnection lesions on interhemispheric functional connectivity in rhesus monkeys. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13982-13987.	7.1	195
5	Retrosplenial cortex and its role in spatial cognition. Brain and Neuroscience Advances, 2018, 2, 239821281875709.	3.4	186
6	Advances in Understanding Mechanisms of Thalamic Relays in Cognition and Behavior. Journal of Neuroscience, 2014, 34, 15340-15346.	3.6	139
7	A Neural Circuit Covarying with Social Hierarchy in Macaques. PLoS Biology, 2014, 12, e1001940.	5.6	133
8	The Regulatory Role of the Human Mediodorsal Thalamus. Trends in Cognitive Sciences, 2018, 22, 1011-1025.	7.8	129
9	Dissociable memory effects after medial thalamus lesions in the rat. European Journal of Neuroscience, 2005, 22, 973-985.	2.6	118
10	Cognitive Functions and Neurodevelopmental Disorders Involving the Prefrontal Cortex and Mediodorsal Thalamus. Frontiers in Neuroscience, 2018, 12, 33.	2.8	105
11	Connectivity between the superior colliculus and the amygdala in humans and macaque monkeys: virtual dissection with probabilistic DTI tractography. Journal of Neurophysiology, 2015, 114, 1947-1962.	1.8	100
12	Dissociable Performance on Scene Learning and Strategy Implementation after Lesions to Magnocellular Mediodorsal Thalamic Nucleus. Journal of Neuroscience, 2007, 27, 11888-11895.	3.6	94
13	Neurotoxic Lesions of the Medial Mediodorsal Nucleus of the Thalamus Disrupt Reinforcer Devaluation Effects in Rhesus Monkeys. Journal of Neuroscience, 2007, 27, 11289-11295.	3.6	89
14	Lateral and anterior thalamic lesions impair independent memory systems. Learning and Memory, 2006, 13, 388-396.	1.3	83
15	Ventrolateral prefrontal cortex is required for performance of a strategy implementation task but not reinforcer devaluation effects in rhesus monkeys. European Journal of Neuroscience, 2009, 29, 2049-2059.	2.6	60
16	The Magnocellular Mediodorsal Thalamus is Necessary for Memory Acquisition, But Not Retrieval. Journal of Neuroscience, 2008, 28, 258-263.	3.6	58
17	Spatial Working Memory and the Brainstem Cholinergic Innervation to the Anterior Thalamus. Journal of Neuroscience, 2002, 22, 1922-1928.	3.6	50
18	Combining brain perturbation and neuroimaging in non-human primates. Neurolmage, 2021, 235, 118017.	4.2	50

ANNA S MITCHELL

#	Article	IF	CITATIONS
19	Critical role for the mediodorsal thalamus in permitting rapid reward-guided updating in stochastic reward environments. ELife, 2016, 5, .	6.0	50
20	Evidence for Mediodorsal Thalamus and Prefrontal Cortex Interactions during Cognition in Macaques. Cerebral Cortex, 2015, 25, 4519-4534.	2.9	44
21	A Putative Multiple-Demand System in the Macaque Brain. Journal of Neuroscience, 2016, 36, 8574-8585.	3.6	41
22	Orbital Prefrontal Cortex Is Required for Object-in-Place Scene Memory But Not Performance of a Strategy Implementation Task. Journal of Neuroscience, 2007, 27, 11327-11333.	3.6	36
23	Dissociable Roles for Cortical and Subcortical Structures in Memory Retrieval and Acquisition. Journal of Neuroscience, 2008, 28, 8387-8396.	3.6	36
24	The continued need for animals to advance brain research. Neuron, 2021, 109, 2374-2379.	8.1	36
25	Dorsolateral prefrontal lesions do not impair tests of scene learning and decisionâ€making that require frontal–temporal interaction. European Journal of Neuroscience, 2008, 28, 491-499.	2.6	35
26	Considering the Evidence for Anterior and Laterodorsal Thalamic Nuclei as Higher Order Relays to Cortex. Frontiers in Molecular Neuroscience, 2019, 12, 167.	2.9	35
27	Thalamocortical interactions in cognition and disease: The mediodorsal and anterior thalamic nuclei. Neuroscience and Biobehavioral Reviews, 2021, 130, 162-177.	6.1	33
28	Retrosplenial Cortical Contributions to Anterograde and Retrograde Memory in the Monkey. Cerebral Cortex, 2016, 26, 2905-2918.	2.9	32
29	Behavioral and cognitive changes after early postnatal lesions of the rat mediodorsal thalamus. Behavioural Brain Research, 2015, 292, 219-232.	2.2	31
30	Continued need for non-human primate neuroscience research. Current Biology, 2018, 28, R1186-R1187.	3.9	25
31	Neurotoxic lesions of ventrolateral prefrontal cortex impair object-in-place scene memory. European Journal of Neuroscience, 2007, 25, 2514-2522.	2.6	23
32	Preserved extrastriate visual network in a monkey with substantial, naturally occurring damage to primary visual cortex. ELife, 2019, 8, .	6.0	19
33	Perseverative interference with object-in-place scene learning in rhesus monkeys with bilateral ablation of ventrolateral prefrontal cortex. Learning and Memory, 2008, 15, 126-132.	1.3	18
34	International primate neuroscience research regulation, public engagement and transparency opportunities. NeuroImage, 2021, 229, 117700.	4.2	17
35	Macaque parvocellular mediodorsal thalamus: dissociable contributions to learning and adaptive decisionâ€making. European Journal of Neuroscience, 2019, 49, 1041-1054.	2.6	16

 $_{36}$ Effective chair training methods for neuroscience research involving rhesus macaques (Macaca) Tj ETQq0 0 0 rgBT $_{2.5}^{10}$ verlock 10 Tf 50 62

ANNA S MITCHELL

#	Article	IF	CITATIONS
37	Evidence for two distinct thalamocortical circuits in retrosplenial cortex. Neurobiology of Learning and Memory, 2021, 185, 107525.	1.9	16
38	Corticocortical and Thalamocortical Changes in Functional Connectivity and White Matter Structural Integrity after Reward-Guided Learning of Visuospatial Discriminations in Rhesus Monkeys. Journal of Neuroscience, 2020, 40, 7887-7901.	3.6	14
39	Functional reorganisation and recovery following cortical lesions: A preliminary study in macaque monkeys. Neuropsychologia, 2018, 119, 382-391.	1.6	11
40	Openness about animal research increases public support. Nature Neuroscience, 2022, 25, 401-403.	14.8	7
41	Adaptability to changes in temporal structure is fornix-dependent. Learning and Memory, 2015, 22, 354-359.	1.3	6
42	Protective cranial implant caps for macaques. Journal of Neuroscience Methods, 2021, 348, 108992.	2.5	6
43	Corticoâ€thalamocortical interactions for learning, memory and decisionâ€making. Journal of Physiology, 2023, 601, 25-35.	2.9	5
44	Mediodorsal Thalamus Is Critical for Updating during Extradimensional Shifts But Not Reversals in the Attentional Set-Shifting Task. ENeuro, 2022, 9, ENEURO.0162-21.2022.	1.9	4
45	Frontopolar cortex shapes brain network structure across prefrontal and posterior cingulate cortex. Progress in Neurobiology, 2022, , 102314.	5.7	2
46	Dissociable memory effects after medial thalamus lesions in the rat. European Journal of Neuroscience, 2005, 22, 1263-1263.	2.6	0