
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1914506/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna. Science, 2010, 329, 930-933.	12.6	1,262
2	Plasmon nano-optical tweezers. Nature Photonics, 2011, 5, 349-356.	31.4	1,247
3	Thermoâ€plasmonics: using metallic nanostructures as nanoâ€sources of heat. Laser and Photonics Reviews, 2013, 7, 171-187.	8.7	1,050
4	Nanoscale Control of Optical Heating in Complex Plasmonic Systems. ACS Nano, 2010, 4, 709-716.	14.6	621
5	Nanoplasmonics for chemistry. Chemical Society Reviews, 2014, 43, 3898.	38.1	578
6	Self-induced back-action optical trapping of dielectric nanoparticles. Nature Physics, 2009, 5, 915-919.	16.7	481
7	Heat generation in plasmonic nanostructures: Influence of morphology. Applied Physics Letters, 2009, 94, .	3.3	463
8	Subkelvin Parametric Feedback Cooling of a Laser-Trapped Nanoparticle. Physical Review Letters, 2012, 109, 103603.	7.8	461
9	Parallel and selective trapping in a patterned plasmonic landscape. Nature Physics, 2007, 3, 477-480.	16.7	455
10	Mapping Intracellular Temperature Using Green Fluorescent Protein. Nano Letters, 2012, 12, 2107-2111.	9.1	370
11	Toward quantum superposition of living organisms. New Journal of Physics, 2010, 12, 033015.	2.9	366
12	Photoinduced Heating of Nanoparticle Arrays. ACS Nano, 2013, 7, 6478-6488.	14.6	351
13	Spectroscopic Mode Mapping of Resonant Plasmon Nanoantennas. Physical Review Letters, 2008, 101, 116805.	7.8	332
14	Nano-optical Trapping of Rayleigh Particles and <i>Escherichia coli</i> Bacteria with Resonant Optical Antennas. Nano Letters, 2009, 9, 3387-3391.	9.1	326
15	Plasmon Near-Field Coupling in Metal Dimers as a Step toward Single-Molecule Sensing. ACS Nano, 2009, 3, 1231-1237.	14.6	325
16	Three-dimensional manipulation with scanning near-field optical nanotweezers. Nature Nanotechnology, 2014, 9, 295-299.	31.5	312
17	Plasmon-Assisted Optofluidics. ACS Nano, 2011, 5, 5457-5462.	14.6	292
18	Applications and challenges of thermoplasmonics. Nature Materials, 2020, 19, 946-958.	27.5	277

#	Article	IF	CITATIONS
19	LSPR Chip for Parallel, Rapid, and Sensitive Detection of Cancer Markers in Serum. Nano Letters, 2014, 14, 2636-2641.	9.1	262
20	Surface Plasmon Radiation Forces. Physical Review Letters, 2006, 96, 238101.	7.8	259
21	Mapping Heat Origin in Plasmonic Structures. Physical Review Letters, 2010, 104, 136805.	7.8	256
22	Direct Measurement of Photon Recoil from a Levitated Nanoparticle. Physical Review Letters, 2016, 116, 243601.	7.8	239
23	Surface Plasmon Optical Tweezers: Tunable Optical Manipulation in the Femtonewton Range. Physical Review Letters, 2008, 100, 186804.	7.8	235
24	Thermal nonlinearities in a nanomechanical oscillator. Nature Physics, 2013, 9, 806-810.	16.7	230
25	Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics. Light: Science and Applications, 2020, 9, 108.	16.6	214
26	Surface-Enhanced Nonlinear Four-Wave Mixing. Physical Review Letters, 2010, 104, 046803.	7.8	201
27	Optical sensing based on plasmon coupling in nanoparticle arrays. Optics Express, 2004, 12, 3422.	3.4	196
28	Optically levitating dielectrics in the quantum regime: Theory and protocols. Physical Review A, 2011, 83, .	2.5	187
29	Extended organization of colloidal microparticles by surface plasmon polariton excitation. Physical Review B, 2006, 73, .	3.2	180
30	Enhanced Optical Trapping and Arrangement of Nano-Objects in a Plasmonic Nanocavity. Nano Letters, 2012, 12, 125-132.	9.1	168
31	On-a-chip Biosensing Based on All-Dielectric Nanoresonators. Nano Letters, 2017, 17, 4421-4426.	9.1	166
32	Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. Optics Express, 2009, 17, 3291.	3.4	157
33	Enhancing the Nonlinear Optical Response Using Multifrequency Gold-Nanowire Antennas. Physical Review Letters, 2012, 108, 217403.	7.8	154
34	Electromagnetic coupling between a metal nanoparticle grating and a metallic surface. Optics Letters, 2005, 30, 3404.	3.3	151
35	Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nature Nanotechnology, 2014, 9, 358-364.	31.5	151
36	Multipolar radiation of quantum emitters with nanowire optical antennas. Nature Communications, 2013, 4, 1750.	12.8	148

#	Article	IF	CITATIONS
37	Thermoplasmonics modeling: A Green's function approach. Physical Review B, 2010, 82, .	3.2	146
38	Imaging the Local Density of States of Optical Corrals. Physical Review Letters, 2002, 88, 097402.	7.8	145
39	High-order-harmonic generation from inhomogeneous fields. Physical Review A, 2012, 85, .	2.5	143
40	Levitodynamics: Levitation and control of microscopic objects in vacuum. Science, 2021, 374, eabg3027.	12.6	142
41	Coupling of individual quantum emitters to channel plasmons. Nature Communications, 2015, 6, 7883.	12.8	140
42	Enantiomer-Selective Molecular Sensing Using Racemic Nanoplasmonic Arrays. Nano Letters, 2018, 18, 6279-6285.	9.1	137
43	Three-dimensional optical manipulation of a single electron spin. Nature Nanotechnology, 2013, 8, 175-179.	31.5	127
44	Enhancement of high harmonic generation by confining electron motion in plasmonic nanostrutures. Optics Express, 2012, 20, 26261.	3.4	126
45	Pentacene thin-film transistors with polymeric gate dielectric. Organic Electronics, 2004, 5, 67-71.	2.6	125
46	Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis. Lab on A Chip, 2009, 9, 193-195.	6.0	118
47	Surfaceâ€plasmonâ€based optical manipulation. Laser and Photonics Reviews, 2008, 2, 47-57.	8.7	112
48	Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy. Physical Review B, 2008, 78, .	3.2	110
49	Enhanced optical forces between coupled resonant metal nanoparticles. Optics Letters, 2007, 32, 1156.	3.3	107
50	Enhanced Chiral Sensing with Dielectric Nanoresonators. Nano Letters, 2020, 20, 585-591.	9.1	106
51	Active Control of Surface Plasmon Waveguides with a Phase Change Material. ACS Photonics, 2015, 2, 669-674.	6.6	104
52	Direct measurement of Kramers turnover with a levitated nanoparticle. Nature Nanotechnology, 2017, 12, 1130-1133.	31.5	102
53	Controlling the Optical Near Field of Nanoantennas with Spatial Phase-Shaped Beams. Nano Letters, 2009, 9, 3608-3611.	9.1	95
54	Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field. Optics Letters, 2005, 30, 1009.	3.3	94

#	Article	IF	CITATIONS
55	Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers. Optics Express, 2008, 16, 16104.	3.4	92
56	Design and properties of dielectric surface plasmon Bragg mirrors. Optics Express, 2010, 18, 14496.	3.4	92
57	Unraveling the optomechanical nature of plasmonic trapping. Light: Science and Applications, 2016, 5, e16092-e16092.	16.6	90
58	Imaging of Plasmonic Heating in a Living Organism. ACS Nano, 2013, 7, 8666-8672.	14.6	89
59	Free-Space Excitation of Propagating Surface Plasmon Polaritons by Nonlinear Four-Wave Mixing. Physical Review Letters, 2009, 103, 266802.	7.8	88
60	Fractal plasmonics: subdiffraction focusing and broadband spectral response by a Sierpinski nanocarpet. Optics Express, 2011, 19, 3612.	3.4	87
61	Electrically Driven Varifocal Silicon Metalens. ACS Photonics, 2018, 5, 4497-4503.	6.6	85
62	Optically levitated nanoparticle as a model system for stochastic bistable dynamics. Nature Communications, 2017, 8, 15141.	12.8	84
63	Plasmonic Nanoparticle Networks for Light and Heat Concentration. ACS Nano, 2012, 6, 3434-3440.	14.6	82
64	Observation of nitrogen vacancy photoluminescence from an optically levitated nanodiamond. Optics Letters, 2013, 38, 2976.	3.3	81
65	Plasmonic Waveguide-Integrated Nanowire Laser. Nano Letters, 2017, 17, 747-754.	9.1	80
66	Optimal Feedback Cooling of a Charged Levitated Nanoparticle with Adaptive Control. Physical Review Letters, 2019, 122, 223602.	7.8	77
67	Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy. Applied Physics Letters, 2007, 91, 243102.	3.3	76
68	Hidden progress: broadband plasmonic invisibility. Optics Express, 2010, 18, 15757.	3.4	72
69	Excitation Enhancement of a Quantum Dot Coupled to a Plasmonic Antenna. Advanced Materials, 2012, 24, OP314-20.	21.0	72
70	Coupling localized and extended plasmons to improve the light extraction through metal films. Optics Express, 2007, 15, 10533.	3.4	70
71	Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains. Physical Review B, 2004, 69, .	3.2	68
72	Near-field optical transmittance of metal particle chain waveguides. Optics Express, 2004, 12, 6141.	3.4	68

#	Article	IF	CITATIONS
73	Self-induced back-action optical trapping in nanophotonic systems. New Journal of Physics, 2015, 17, 123008.	2.9	67
74	Tunable and free-form planar optics. Nature Photonics, 2019, 13, 649-656.	31.4	66
75	Nonlinear Dark-Field Microscopy. Nano Letters, 2010, 10, 5076-5079.	9.1	62
76	Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol. Analytical and Bioanalytical Chemistry, 2008, 391, 1813-1820.	3.7	61
77	Mirror-Image-Induced Magnetic Modes. ACS Nano, 2013, 7, 664-668.	14.6	61
78	Self-Calibrating On-Chip Localized Surface Plasmon Resonance Sensing for Quantitative and Multiplexed Detection of Cancer Markers in Human Serum. ACS Sensors, 2018, 3, 1376-1384.	7.8	58
79	Shaping and manipulation of light fields with bottom-up plasmonic structures. New Journal of Physics, 2008, 10, 105016.	2.9	56
80	Enhanced nonlinear response from metal surfaces. Optics Express, 2011, 19, 1777.	3.4	54
81	Nonlinear Mode Coupling and Synchronization of a Vacuum-Trapped Nanoparticle. Physical Review Letters, 2014, 112, 103603.	7.8	53
82	Light-Assisted Solvothermal Chemistry Using Plasmonic Nanoparticles. ACS Omega, 2016, 1, 2-8.	3.5	53
83	Accurate Mass Measurement of a Levitated Nanomechanical Resonator for Precision Force-Sensing. Nano Letters, 2019, 19, 6711-6715.	9.1	53
84	Performance of electro-optical plasmonic ring resonators at telecom wavelengths. Optics Express, 2012, 20, 2354.	3.4	52
85	Plasmon-Assisted Delivery of Single Nano-Objects in an Optical Hot Spot. Nano Letters, 2013, 13, 4299-4304.	9.1	52
86	Motion Control and Optical Interrogation of a Levitating Single Nitrogen Vacancy in Vacuum. Nano Letters, 2018, 18, 3956-3961.	9.1	52
87	Cooling and manipulation of a levitated nanoparticle with an optical fiber trap. Applied Physics Letters, 2015, 107, .	3.3	51
88	Growth of plasmonic gold nanostructures by electron beam induced deposition. Applied Physics Letters, 2007, 91, 121112.	3.3	50
89	Cumulative plasmon field enhancement in finite metal particle chains. Optics Letters, 2005, 30, 1882.	3.3	49
90	Deterministic Optical-Near-Field-Assisted Positioning of Nitrogen-Vacancy Centers. Nano Letters, 2014, 14, 1520-1525.	9.1	49

#	Article	IF	CITATIONS
91	Plasmon-Based Biofilm Inhibition on Surgical Implants. Nano Letters, 2019, 19, 2524-2529.	9.1	49
92	Tunable optical sorting and manipulation of nanoparticles via plasmon excitation. Optics Letters, 2006, 31, 2054.	3.3	48
93	In vivo testing of gold nanoparticles using the Caenorhabditis elegans model organism. Acta Biomaterialia, 2017, 53, 598-609.	8.3	46
94	Quantitative detection of doping substances by a localised surface plasmon sensor. Biosensors and Bioelectronics, 2006, 21, 1345-1349.	10.1	45
95	Deterministic Subwavelength Control of Light Confinement in Nanostructures. Physical Review Letters, 2010, 105, 216802.	7.8	44
96	Charge distribution induced inside complex plasmonic nanoparticles. Optics Express, 2010, 18, 3035.	3.4	44
97	Near-Field Mapping of Plasmonic Antennas by Multiphoton Absorption in Poly(methyl methacrylate). Nano Letters, 2012, 12, 4864-4868.	9.1	42
98	Overcoming Diffusion-Limited Biosensing by Electrothermoplasmonics. ACS Photonics, 2018, 5, 3673-3679.	6.6	42
99	Above-threshold ionization by few-cycle spatially inhomogeneous fields. Physical Review A, 2012, 86, .	2.5	41
100	Unravelling the Role of Electric and Magnetic Dipoles in Biosensing with Si Nanoresonators. ACS Nano, 2019, 13, 4582-4588.	14.6	41
101	Light-induced manipulation with surface plasmons. Journal of Optics, 2008, 10, 093001.	1.5	40
102	Transformation plasmonics. Nanophotonics, 2012, 1, 51-64.	6.0	39
103	Deterministic temperature shaping using plasmonic nanoparticle assemblies. Nanoscale, 2014, 6, 8984-8989.	5.6	39
104	Optimum morphology of gold nanorods for light-induced hyperthermia. Nanoscale, 2018, 10, 2632-2638.	5.6	39
105	Fast and Transparent Adaptive Lens Based on Plasmonic Heating. ACS Photonics, 2015, 2, 355-360.	6.6	37
106	Local observation of plasmon focusingâ€ïn Talbot carpets. Optics Express, 2009, 17, 23772.	3.4	36
107	Strong optomechanical coupling at room temperature by coherent scattering. Nature Communications, 2021, 12, 276.	12.8	35
108	Optically-programmable nonlinear photonic component for dielectric-loaded plasmonic circuitry. Optics Express, 2011, 19, 25222.	3.4	34

#	Article	IF	CITATIONS
109	On-a-chip surface plasmon tweezers. Applied Physics Letters, 2011, 99, .	3.3	34
110	Long-range optofluidic control with plasmon heating. Nature Communications, 2021, 12, 2001.	12.8	34
111	Fast optical modulation of the fluorescence from a single nitrogen–vacancy centre. Nature Physics, 2013, 9, 785-789.	16.7	31
112	Extraordinary All-Dielectric Light Enhancement over Large Volumes. Nano Letters, 2010, 10, 4450-4455.	9.1	30
113	Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths. Applied Physics Letters, 2011, 98, 161102.	3.3	30
114	Trapping and manipulation of individual nanoparticles in a planar Paul trap. Applied Physics Letters, 2016, 109, .	3.3	30
115	In Situ LSPR Sensing of Secreted Insulin in Organ-on-Chip. Biosensors, 2021, 11, 138.	4.7	30
116	Resolved-Sideband Cooling of a Levitated Nanoparticle in the Presence of Laser Phase Noise. Physical Review Letters, 2019, 123, 153601.	7.8	29
117	Plasmons offer a helping hand. Nature Nanotechnology, 2010, 5, 762-763.	31.5	28
118	Near-field observation of evanescent light wave coupling in subwavelength optical waveguides. Europhysics Letters, 2002, 57, 191-197.	2.0	27
119	Quantitative absorption spectroscopy of nano-objects. Physical Review B, 2012, 86, .	3.2	26
120	White and Brightly Colored 3D Printing Based on Resonant Photothermal Sensitizers. Nano Letters, 2018, 18, 6660-6664.	9.1	26
121	Analysis of the angular acceptance of surface plasmon Bragg mirrors. Optics Letters, 2007, 32, 2704.	3.3	25
122	Nonlinear plasmonics at planar metal surfaces. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 3497-3509.	3.4	25
123	Treatment of Hepatic Fibrosis in Mice Based on Targeted Plasmonic Hyperthermia. ACS Nano, 2021, 15, 7547-7562.	14.6	25
124	Ionic Species Affect the Self-Propulsion of Urease-Powered Micromotors. Research, 2020, 2020, 2424972.	5.7	25
125	Channeling light along a chain of near-field coupled gold nanoparticles near a metallic film. Optics Express, 2008, 16, 22029.	3.4	24
126	Direct Growth of Optical Antennas Using E-Beam-Induced Gold Deposition. Plasmonics, 2010, 5, 135-139.	3.4	24

#	Article	IF	CITATIONS
127	Plasmonic tweezers—The strength of surface plasmons. MRS Bulletin, 2012, 37, 739-744.	3.5	24
128	Mechanical Squeezing via Unstable Dynamics in a Microcavity. Physical Review Letters, 2022, 128, 143601.	7.8	24
129	Local Field Spectroscopy of Metal Dimers by TPL Microscopy. Plasmonics, 2006, 1, 41-44.	3.4	23
130	InGaN green light emitting diodes with deposited nanoparticles. Photonics and Nanostructures - Fundamentals and Applications, 2007, 5, 86-90.	2.0	23
131	Spatially resolved photonic transfer through mesoscopic heterowires. Physical Review E, 2002, 65, 036616.	2.1	20
132	Optical manipulation of plasmonic nanoparticles. Applied Physics A: Materials Science and Processing, 2007, 89, 233-239.	2.3	20
133	Extending Vacuum Trapping to Absorbing Objects with Hybrid Paul-Optical Traps. Nano Letters, 2020, 20, 6018-6023.	9.1	20
134	Individual gold dimers investigated by far- and near-field imaging. Journal of Microscopy, 2008, 229, 254-258.	1.8	19
135	Detection of plasmon-enhanced luminescence fields from an optically manipulated pair of partially metal covered dielectric spheres. Optics Letters, 2008, 33, 2749.	3.3	18
136	On-Demand Activation of Photochromic Nanoheaters for High Color Purity 3D Printing. Nano Letters, 2020, 20, 3485-3491.	9.1	18
137	Sub-wavelength patterning of the optical near-field. Optics Express, 2004, 12, 282.	3.4	17
138	Quantification of gold nanoparticle accumulation in tissue by two-photon luminescence microscopy. Nanoscale, 2019, 11, 11331-11339.	5.6	17
139	Addressing and imaging high optical index dielectric ridges in the optical near field. Physical Review E, 2001, 64, 066607.	2.1	16
140	Two-color dark-field (TCDF) microscopy for metal nanoparticle imaging inside cells. Nanoscale, 2018, 10, 4019-4027.	5.6	15
141	Cavity resonances in finite plasmonic chains. Applied Physics Letters, 2007, 90, 041109.	3.3	14
142	Mode mapping of plasmonic stars using TPL microscopy. New Journal of Physics, 2008, 10, 105013.	2.9	11
143	Addressing and imaging microring resonators with optical evanescent light. Physical Review B, 2004, 69, .	3.2	10
144	Virtual Issue on Plasmonic-Based Sensing. ACS Photonics, 2017, 4, 2382-2384.	6.6	10

#	Article	IF	CITATIONS
145	Parallel and selective trapping in a patterned plasmonic landscape. , 2007, , .		9
146	Frustrated energy transport through micro-waveguides decorated by gold nanoparticle chains. Europhysics Letters, 2004, 66, 785-791.	2.0	8
147	Modelling resonant coupling between microring resonators addressed by optical evanescent waves. Nanotechnology, 2004, 15, 1200-1210.	2.6	8
148	Targeted hyperthermia with plasmonic nanoparticles. Frontiers of Nanoscience, 2020, 16, 307-352.	0.6	8
149	Publisher's Note: Surface-Enhanced Nonlinear Four-Wave Mixing [Phys. Rev. Lett. 104 , 046803 (2010)]. Physical Review Letters, 2010, 104, .	7.8	7
150	Cyclic concentrator, carpet cloaks and fisheye lens via transformation plasmonics. Journal of Optics (United Kingdom), 2016, 18, 044023.	2.2	7
151	A Chemical Nanoreactor Based on a Levitated Nanoparticle in Vacuum. ACS Nano, 2022, 16, 8677-8683.	14.6	7
152	Simultaneous observation of light localization and confinement in near-field optics. Europhysics Letters, 2001, 56, 517-522.	2.0	5
153	Non-invasive and quantitative <i>in vivo</i> monitoring of gold nanoparticle concentration and tissue hemodynamics by hybrid optical spectroscopies. Nanoscale, 2019, 11, 5595-5606.	5.6	5
154	SUBWAVELENGTH OPTICAL DEVICES FOR NANOMETER SCALE APPLICATIONS. International Journal of Nanoscience, 2002, 01, 63-78.	0.7	4
155	Thermoplasmonics. World Scientific Series in Nanoscience and Nanotechnology, 2017, , 379-407.	0.1	4
156	Precision Calibration of the Duffing Oscillator with Phase Control. Physical Review Letters, 2022, 128,	7.8	4
157	Probing the local field of nanoantennas using single particle luminescence. Journal of Physics: Conference Series, 2008, 100, 052038.	0.4	3
158	A light ride to the stars. Nature Photonics, 2019, 13, 227-228.	31.4	3
159	Optically Levitated Nanoparticles for Sensing Applications. , 2013, , .		3
160	Fiber-Coupled Surface Plasmon Polariton Excitation in Imprinted Dielectric-Loaded Waveguides. International Journal of Optics, 2010, 2010, 1-6.	1.4	2
161	Slow thermo-optomechanical pulsations in suspended one-dimensional photonic crystal nanocavities. Physical Review A, 2020, 102, .	2.5	2

162 Trapping with local evanescent light fields. , 2005, 5930, 454.

#	Article	IF	CITATIONS
163	Two-photon photoluminescence spectroscopy of metal dimers. , 2006, , .		1
164	Study of the angular acceptance of surface plasmon Bragg mirrors. , 2007, , .		1
165	Multiple trapping in a patterned plasmonic landscape. , 2007, , .		1
166	Dielectric surface plasmon Bragg mirrors: theory, design, and properties. Proceedings of SPIE, 2008, , .	0.8	1
167	Surface plasmon optics for enhanced light-matter interaction. , 2008, , .		1
168	Focus issue introduction: nanoplasmonics and metamaterials. Optical Materials Express, 2011, 1, 1139.	3.0	1
169	Engineering Through Mode Shaping and Lithographical Nanofabrication of Ultrasensitive Nano-plasmonic Sensors for Molecular Detection. , 2012, , 267-287.		1
170	Plasmon Nano-Optics: Designing Novel Nano-Tools for Biology and Medicine. Springer Series in Optical Sciences, 2012, , 201-222.	0.7	1
171	Nanobiosensors for In Vitro and In Vivo Analysis of Biomolecules. Methods in Molecular Biology, 2012, 811, 207-221.	0.9	1
172	Generation of sub-wavelength traps in the optical near field. , 2004, , .		0
173	Plasmon-based nano-lenses. , 2005, , .		0
174	Measurement of radiation forces generated by plasmon fields. , 2005, 5930, 362.		0
175	Optical sensing based on localized surface plasmons. , 2005, , .		0
176	Optical forces on a Rayleigh dielectric particle in a patterned near-field landscape. , 2005, , .		0
177	Electromagnetic coupling between localized and surface plasmons. , 2006, , .		0
178	Local field spectroscopy of metal dimers by two-photon photoluminescence microscopy. , 2006, , .		0
179	Plasmon-based optical manipulation. , 2007, , .		0
180	The strength of surface plasmons. , 2008, , .		0

#	Article	IF	CITATIONS
181	Spectroscopic TPL imaging of gold nano-antennas. , 2008, , .		Ο
182	Surface plasmons for micro- and nano-optical manipulation. , 2009, , .		0
183	Multipolar and Unidirectional Emission of Quantum Emitters Coupled to Optical Antennas. , 2012, , .		0
184	Optical and Thermal Properties of Gold Nanoparticles for Biology and Medicine. , 2012, , 273-298.		0
185	Cloaking Liquid Surface Waves and Plasmon Polaritons. Springer Series in Materials Science, 2013, , 267-288.	0.6	0
186	Taming light-matter interaction on the nanoscale. , 2013, , .		0
187	A Study of Optically Levitated NV Centers. , 2013, , .		0
188	Transformation Optics of Surface Plasmon Polaritons. Handbook of Surface Science, 2014, 4, 279-307.	0.3	0
189	3D Optical Manipulation of a single 50 nm particle with a scanning evanescent nano-tweezers. , 2014, , .		0
190	Levitation Nano-Optomechanics. , 2017, , .		0
191	Surface plasmon-based optical manipulation: towards ultra gentle nano-tweezers. , 2007, , .		0
192	Revisiting optical manipulation with surface plasmons. , 2008, , .		0
193	Nonlinear Optical Response of Nanoantennas. , 2011, , .		0
194	Sub-Kelvin Parametric Feedback Cooling of a Laser-Trapped Nanoparticle. , 2012, , .		0
195	Plasmon-Assisted Optofluidics. , 2013, , .		0
196	Optomechanical Plasmonic Trapping. , 2016, , .		0
197	Controlled Interaction of Single Nitrogen Vacancy Centers with Surface Plasmons. Springer Series in Solid-state Sciences, 2017, , 73-95.	0.3	0
198	Seeing what cannot be seen. , 2018, , .		0

#	Article	IF	CITATIONS
199	Wavefront Shaping by Thermo-Optical Engineering. Optics and Photonics News, 2020, 31, 44.	0.5	0
200	Optomechanics with a levitated nanoparticle. , 2020, , .		0
201	<i>ACS Photonics</i> 2022: A Fresh Start. ACS Photonics, 2022, 9, 1-1.	6.6	0
202	Updating the Journal Scope of <i>ACS Photonics</i> . ACS Photonics, 2022, 9, 304-304.	6.6	0
203	Updates to the <i>ACS Photonics</i> Manuscript Categories: Expanding Communication Channels within the Photonics Community. ACS Photonics, 2022, 9, 729-729.	6.6	0
204	Diffuse optical platform for the personalization of plasmonic photothermal therapy. , 2022, , .		0