
Andrew Emili

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1914206/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 2006, 440, 637-643.	27.8	2,681
2	Quantifying <i>E. coli</i> Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells. Science, 2010, 329, 533-538.	12.6	1,860
3	Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature, 2005, 433, 531-537.	27.8	1,093
4	Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature, 2007, 446, 806-810.	27.8	806
5	A Census of Human Soluble Protein Complexes. Cell, 2012, 150, 1068-1081.	28.9	781
6	Panorama of ancient metazoan macromolecular complexes. Nature, 2015, 525, 339-344.	27.8	478
7	Global Survey of Organ and Organelle Protein Expression in Mouse: Combined Proteomic and Transcriptomic Profiling. Cell, 2006, 125, 173-186.	28.9	429
8	Global Functional Atlas of Escherichia coli Encompassing Previously Uncharacterized Proteins. PLoS Biology, 2009, 7, e1000096.	5.6	331
9	eSGA: E. coli synthetic genetic array analysis. Nature Methods, 2008, 5, 789-795.	19.0	231
10	Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae. Nature, 2012, 489, 585-589.	27.8	228
11	The binary protein-protein interaction landscape of Escherichia coli. Nature Biotechnology, 2014, 32, 285-290.	17.5	218
12	Splicing and transcription-associated proteins PSF and p54nrb/NonO bind to the RNA polymerase II CTD. Rna, 2002, 8, 1102-1111.	3.5	159
13	Subcellular proteomics. Nature Reviews Methods Primers, 2021, 1, .	21.2	159
14	PRISM, a Generic Large Scale Proteomic Investigation Strategy for Mammals*S. Molecular and Cellular Proteomics, 2003, 2, 96-106.	3.8	145
15	Protein-protein interaction networks: probing disease mechanisms using model systems. Genome Medicine, 2013, 5, 37.	8.2	124
16	A Global Analysis of the Receptor Tyrosine Kinase-Protein Phosphatase Interactome. Molecular Cell, 2017, 65, 347-360.	9.7	123
17	Global landscape of cell envelope protein complexes in Escherichia coli. Nature Biotechnology, 2018, 36, 103-112.	17.5	110
18	Assessment of a method to characterize antibody selectivity and specificity for use in immunoprecipitation. Nature Methods, 2015, 12, 725-731.	19.0	109

ANDREW EMILI

#	Article	IF	CITATIONS
19	Intracellular Density of <i>Wolbachia</i> Is Mediated by Host Autophagy and the Bacterial Cytoplasmic Incompatibility Gene <i>cifB</i> in a Cell Type-Dependent Manner in Drosophila melanogaster. MBio, 2021, 12, .	4.1	101
20	Quantitative Genome-Wide Genetic Interaction Screens Reveal Global Epistatic Relationships of Protein Complexes in Escherichia coli. PLoS Genetics, 2014, 10, e1004120.	3.5	96
21	Genetic Interaction Maps in Escherichia coli Reveal Functional Crosstalk among Cell Envelope Biogenesis Pathways. PLoS Genetics, 2011, 7, e1002377.	3.5	95
22	Actionable Cytopathogenic Host Responses of Human Alveolar Type 2 Cells to SARS-CoV-2. Molecular Cell, 2020, 80, 1104-1122.e9.	9.7	94
23	Organoids Model Transcriptional Hallmarks of Oncogenic KRAS Activation in Lung Epithelial Progenitor Cells. Cell Stem Cell, 2020, 27, 663-678.e8.	11.1	86
24	Interaction of tau with HNRNPA2B1 and N6-methyladenosine RNA mediates the progression of tauopathy. Molecular Cell, 2021, 81, 4209-4227.e12.	9.7	84
25	A Lentiviral Functional Proteomics Approach Identifies Chromatin Remodeling Complexes Important for the Induction of Pluripotency. Molecular and Cellular Proteomics, 2010, 9, 811-823.	3.8	83
26	Human-Chromatin-Related Protein Interactions Identify a Demethylase Complex Required for Chromosome Segregation. Cell Reports, 2014, 8, 297-310.	6.4	72
27	DLG5 connects cell polarity and Hippo signaling protein networks by linking PAR-1 with MST1/2. Genes and Development, 2016, 30, 2696-2709.	5.9	67
28	EPIC: software toolkit for elution profile-based inference of protein complexes. Nature Methods, 2019, 16, 737-742.	19.0	67
29	PDX-derived organoids model in vivo drug response and secrete biomarkers. JCI Insight, 2020, 5, .	5.0	66
30	Roles for Pbp1 and Caloric Restriction in Genome and Lifespan Maintenance via Suppression of RNA-DNA Hybrids. Developmental Cell, 2014, 30, 177-191.	7.0	57
31	Computational and experimental approaches to chart the <i>Escherichia coli</i> cell-envelope-associated proteome and interactome. FEMS Microbiology Reviews, 2009, 33, 66-97.	8.6	53
32	BraInMap Elucidates the Macromolecular Connectivity Landscape of Mammalian Brain. Cell Systems, 2020, 10, 333-350.e14.	6.2	48
33	Patient-specific iPSCs carrying an SFTPC mutation reveal the intrinsic alveolar epithelial dysfunction at the inception of interstitial lung disease. Cell Reports, 2021, 36, 109636.	6.4	48
34	Large-Scale Characterization and Analysis of the Murine Cardiac Proteome. Journal of Proteome Research, 2009, 8, 1887-1901.	3.7	45
35	Native KCC2 interactome reveals PACSIN1 as a critical regulator of synaptic inhibition. ELife, 2017, 6, .	6.0	44
36	Assessment of separation methods for extracellular vesicles from human and mouse brain tissues and human cerebrospinal fluids. Methods, 2020, 177, 35-49.	3.8	44

ANDREW EMILI

#	Article	IF	CITATIONS
37	The phosphocarrier protein HPr of the bacterial phosphotransferase system globally regulates energy metabolism by directly interacting with multiple enzymes in Escherichia coli. Journal of Biological Chemistry, 2017, 292, 14250-14257.	3.4	42
38	Single-platform â€~multi-omic' profiling: unified mass spectrometry and computational workflows for integrative proteomics–metabolomics analysis. Molecular Omics, 2018, 14, 307-319.	2.8	41
39	Sequential Peptide Affinity Purification System for the Systematic Isolation and Identification of Protein Complexes from Escherichia coli. Methods in Molecular Biology, 2009, 564, 373-400.	0.9	41
40	A Mutation in <i>Hnrnph1</i> That Decreases Methamphetamine-Induced Reinforcement, Reward, and Dopamine Release and Increases Synaptosomal hnRNP H and Mitochondrial Proteins. Journal of Neuroscience, 2020, 40, 107-130.	3.6	39
41	Novel function discovery with GeneMANIA: a new integrated resource for gene function prediction in <i>Escherichia coli</i> . Bioinformatics, 2015, 31, 306-310.	4.1	38
42	Determining composition of micron-scale protein deposits in neurodegenerative disease by spatially targeted optical microproteomics. ELife, 2015, 4, .	6.0	38
43	Global phosphoproteomic profiling reveals perturbed signaling in a mouse model of dilated cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12592-12597.	7.1	35
44	Conditional Epistatic Interaction Maps Reveal Global Functional Rewiring of Genome Integrity Pathways in Escherichia coli. Cell Reports, 2016, 14, 648-661.	6.4	34
45	Systematic Genetic Screens Reveal the Dynamic Global Functional Organization of the Bacterial Translation Machinery. Cell Reports, 2016, 17, 904-916.	6.4	34
46	TPR is required for the efficient nuclear export of mRNAs and lncRNAs from short and intron-poor genes. Nucleic Acids Research, 2020, 48, 11645-11663.	14.5	34
47	The MoxR ATPase RavA and Its Cofactor ViaA Interact with the NADH:Ubiquinone Oxidoreductase I in Escherichia coli. PLoS ONE, 2014, 9, e85529.	2.5	34
48	FZD4 Marks Lateral Plate Mesoderm and Signals with NORRIN to Increase Cardiomyocyte Induction from Pluripotent Stem Cell-Derived Cardiac Progenitors. Stem Cell Reports, 2018, 10, 87-100.	4.8	32
49	Modulation of lymphocyte-mediated tissue repair by rational design of heterocyclic aryl hydrocarbon receptor agonists. Science Advances, 2020, 6, eaay8230.	10.3	31
50	Extracting high confidence protein interactions from affinity purification data: At the crossroads. Journal of Proteomics, 2015, 118, 63-80.	2.4	30
51	Integrative genomics positions <scp>MKRN</scp> 1 as a novel ribonucleoprotein within the embryonic stem cell gene regulatory network. EMBO Reports, 2015, 16, 1334-1357.	4.5	28
52	Imaging the future: the emerging era of singleâ€cell spatial proteomics. FEBS Journal, 2021, 288, 6990-7001.	4.7	26
53	Monomeric Câ€reactive protein via endothelial CD31 for neurovascular inflammation in an ApoE genotypeâ€dependent pattern: A risk factor for Alzheimer's disease?. Aging Cell, 2021, 20, e13501.	6.7	25
54	G9a and ZNF644 Physically Associate to Suppress Progenitor Gene Expression during Neurogenesis. Stem Cell Reports, 2016, 7, 454-470.	4.8	24

ANDREW EMILI

#	Article	IF	CITATIONS
55	Egr1 mediates the effect of insulin on leptin transcription in adipocytes. Journal of Biological Chemistry, 2019, 294, 5784-5789.	3.4	22
56	Scalable multiplex co-fractionation/mass spectrometry platform for accelerated protein interactome discovery. Nature Communications, 2022, 13, .	12.8	20
57	The Nitrogen Regulatory PII Protein (GlnB) and <i>N</i> -Acetylglucosamine 6-Phosphate Epimerase (NanE) Allosterically Activate Glucosamine 6-Phosphate Deaminase (NagB) in Escherichia coli. Journal of Bacteriology, 2018, 200, .	2.2	19
58	Mapping signalling perturbations in myocardial fibrosis via the integrative phosphoproteomic profiling of tissue from diverse sources. Nature Biomedical Engineering, 2020, 4, 889-900.	22.5	17
59	Triphenyl phosphate is a selective PPARÎ ³ modulator that does not induce brite adipogenesis in vitro and in vivo. Archives of Toxicology, 2020, 94, 3087-3103.	4.2	16
60	Humanized mice reveal a macrophage-enriched gene signature defining human lung tissue protection during SARS-CoV-2 infection. Cell Reports, 2022, 39, 110714.	6.4	14
61	Exercise-responsive phosphoproteins in the heart. Journal of Molecular and Cellular Cardiology, 2017, 111, 61-68.	1.9	13
62	Protein Interaction Network Biology in Neuroscience. Proteomics, 2021, 21, e1900311.	2.2	13
63	Global Landscape of Native Protein Complexes in Synechocystis sp. PCC 6803. Genomics, Proteomics and Bioinformatics, 2022, 20, 715-727.	6.9	13
64	Usher syndrome type 1-associated gene, <i>pcdh15b</i> , is required for photoreceptor structural integrity in zebrafish. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	12
65	MKRN2 Physically Interacts with GLE1 to Regulate mRNA Export and Zebrafish Retinal Development. Cell Reports, 2020, 31, 107693.	6.4	11
66	Recombinant Lloviu virus as a tool to study viral replication and host responses. PLoS Pathogens, 2022, 18, e1010268.	4.7	11
67	Dengue Virus Infection of Aedes aegypti Alters Extracellular Vesicle Protein Cargo to Enhance Virus Transmission. International Journal of Molecular Sciences, 2020, 21, 6609.	4.1	10
68	Loss of G-Protein Pathway Suppressor 2 Promotes Tumor Growth Through Activation of AKT Signaling. Frontiers in Cell and Developmental Biology, 2020, 8, 608044.	3.7	10
69	Neuralized-like protein 4 (NEURL4) mediates ADP-ribosylation of mitochondrial proteins. Journal of Cell Biology, 2022, 221, .	5.2	9
70	<i>Omics Notebook</i> : robust, reproducible and flexible automated multiomics exploratory analysis and reporting. Bioinformatics Advances, 2021, 1, .	2.4	8
71	DNAJB1-PRKACA in HEK293T cells induces LINC00473 overexpression that depends on PKA signaling. PLoS ONE, 2022, 17, e0263829.	2.5	6
72	Proteome-wide dataset supporting the study of ancient metazoan macromolecular complexes. Data in Brief, 2016, 6, 715-721.	1.0	5

Andrew Emili

#	Article	IF	CITATIONS
73	Mass Spectrometry-Based Phosphoproteomics and Systems Biology: Approaches to Study T Lymphocyte Activation and Exhaustion. Journal of Molecular Biology, 2021, 433, 167318.	4.2	5
74	ZFC3H1 and U1-70K promote the nuclear retention of mRNAs with 5′ splice site motifs within nuclear speckles. Rna, 2022, 28, 878-894.	3.5	5
75	Conceptual Design for an Automated High-Throughput Magnetic Protein Complex Purification Workcell. Journal of the Association for Laboratory Automation, 2003, 8, 101-106.	2.8	4
76	Multiomic Metabolic Enrichment Network Analysis Reveals Metabolite–Protein Physical Interaction Subnetworks Altered in Cancer. Molecular and Cellular Proteomics, 2022, 21, 100189.	3.8	4
77	Applicability of Chromatographic Coâ€Elution for Antibiotic Target Identification. Proteomics, 2021, 21, e2000038.	2.2	3
78	Enrichment of Phosphorylated Tau (Thr181) and Functionally Interacting Molecules in Chronic Traumatic Encephalopathy Brain-derived Extracellular Vesicles. , 2021, 12, 1376.		3
79	Mapping global protein contacts. Science, 2019, 365, 120-121.	12.6	3
80	Investigating Bacterial Protein Synthesis Using Systems Biology Approaches. Advances in Experimental Medicine and Biology, 2015, 883, 21-40.	1.6	2
81	Simple and Effective Affinity Purification Procedures for Mass Spectrometry-Based Identification of Protein-Protein Interactions in Cell Signaling Pathways. Methods in Molecular Biology, 2016, 1394, 181-187.	0.9	2
82	Mass-Spectrometry-Based Functional Proteomic and Phosphoproteomic Technologies and Their Application for Analyzing Ex Vivo and In Vitro Models of Hypertrophic Cardiomyopathy. International Journal of Molecular Sciences, 2021, 22, 13644.	4.1	2
83	Enhanced Proteomic Analysis by HPLC Prefractionation. , 0, , 1491-1501.		1
84	The cyclin dependent kinase inhibitor Roscovitine prevents diet-induced metabolic disruption in obese mice. Scientific Reports, 2021, 11, 20365.	3.3	1
85	Mapping global protein contacts. Science, 2019, 365, 120-121.	12.6	1
86	Protein–Protein Interaction Profiling in Candida albicans Revealed by Biochemical Purification–Mass Spectrometry (BP/MS). Methods in Molecular Biology, 2019, 2049, 203-211.	0.9	0
87	A reduced complexity cross between BALB/c substrains identifies Zhx2 as a candidate gene underlying oxycodone metabolite brain concentration and stateâ€dependent learning of opioid reward. FASEB Journal, 2022, 36, .	0.5	0
88	Pilot Study Showing Feasibility of Phosphoproteomic Profiling of Pathway-Level Molecular Alterations in Barrett's Esophagus. Genes, 2022, 13, 1215.	2.4	0