
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1913653/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comprehensive analyses of RNA-seq and genome-wide data point to enrichment of neuronal cell type subsets in neuropsychiatric disorders. Molecular Psychiatry, 2022, 27, 947-955.	7.9	14
2	Characterization of orexin input to dopamine neurons of the ventral tegmental area projecting to the medial prefrontal cortex and shell of nucleus accumbens. Brain Structure and Function, 2022, 227, 1083-1098.	2.3	6
3	On the interrelation between alcohol addiction–like behaviors in rats. Psychopharmacology, 2022, 239, 1115-1128.	3.1	5
4	Increased elasticity of sucrose demand during hyperdopaminergic states in rats. Psychopharmacology, 2022, 239, 773-794.	3.1	3
5	TRAPing Ghrelin-Activated Circuits: A Novel Tool to Identify, Target and Control Hormone-Responsive Populations in TRAP2 Mice. International Journal of Molecular Sciences, 2022, 23, 559.	4.1	3
6	Zona incerta neurons projecting to the ventral tegmental area promote action initiation towards feeding. Journal of Physiology, 2021, 599, 709-724.	2.9	20
7	Identification of Novel Neurocircuitry Through Which Leptin Targets Multiple Inputs to the Dopamine System to Reduce Food Reward Seeking. Biological Psychiatry, 2021, 90, 843-852.	1.3	20
8	Functional and Neurochemical Identification of Ghrelin Receptor (GHSR)-Expressing Cells of the Lateral Parabrachial Nucleus in Mice. Frontiers in Neuroscience, 2021, 15, 633018.	2.8	8
9	Cue and Reward Evoked Dopamine Activity Is Necessary for Maintaining Learned Pavlovian Associations. Journal of Neuroscience, 2021, 41, 5004-5014.	3.6	15
10	Temporally Specific Roles of Ventral Tegmental Area Projections to the Nucleus Accumbens and Prefrontal Cortex in Attention and Impulse Control. Journal of Neuroscience, 2021, 41, 4293-4304.	3.6	31
11	Optimization of whole-brain rabies virus tracing technology for small cell populations. Scientific Reports, 2021, 11, 10400.	3.3	4
12	The melanocortin pathway and energy homeostasis: From discovery to obesity therapy. Molecular Metabolism, 2021, 48, 101206.	6.5	114
13	Leptin Receptor Expressing Neurons in the Substantia Nigra Regulate Locomotion, and in The Ventral Tegmental Area Motivation and Feeding. Frontiers in Endocrinology, 2021, 12, 680494.	3.5	13
14	The Orexigenic Force of Olfactory Palatable Food Cues in Rats. Nutrients, 2021, 13, 3101.	4.1	10
15	Genetic deletion of the ghrelin receptor (GHSR) impairs growth and blunts endocrine response to fasting in Ghsr-IRES-Cre mice. Molecular Metabolism, 2021, 51, 101223.	6.5	10
16	Manifesto for an ECNP Neuromodulation Thematic Working Group (TWG): Non-invasive brain stimulation as a new Super-subspecialty. European Neuropsychopharmacology, 2021, 52, 72-83.	0.7	3
17	The temporal relationship between parental concern of overeating and childhood obesity considering genetic susceptibility: longitudinal results from the IDEFICS/I.Family study. International Journal of Behavioral Nutrition and Physical Activity, 2021, 18, 139.	4.6	3
18	Food-Anticipatory Activity: Rat Models and Underlying Mechanisms. Neuromethods, 2021, , 335-362.	0.3	0

#	Article	IF	CITATIONS
19	How Reward and Aversion Shape Motivation and Decision Making: A Computational Account. Neuroscientist, 2020, 26, 87-99.	3.5	14
20	Good taste or gut feeling? A new method in rats shows oroâ€sensory stimulation and gastric distention generate distinct and overlapping brain activation patterns. International Journal of Eating Disorders, 2020, 54, 1116-1126.	4.0	6
21	Modulation of value-based decision making behavior by subregions of the rat prefrontal cortex. Psychopharmacology, 2020, 237, 1267-1280.	3.1	57
22	Dopaminergic contributions to behavioral control under threat of punishment in rats. Psychopharmacology, 2020, 237, 1769-1782.	3.1	8
23	Considerations related to the use of short neuropeptide promoters in viral vectors targeting hypothalamic neurons. Scientific Reports, 2019, 9, 11146.	3.3	3
24	Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nature Genetics, 2019, 51, 1207-1214.	21.4	641
25	Differential contributions of striatal dopamine D1 and D2 receptors to component processes of value-based decision making. Neuropsychopharmacology, 2019, 44, 2195-2204.	5.4	33
26	Rats that are predisposed to excessive obesity show reduced (leptinâ€induced) thermoregulation even in the preobese state. Physiological Reports, 2019, 7, e14102.	1.7	4
27	Nutritional psychiatry: Towards improving mental health by what you eat. European Neuropsychopharmacology, 2019, 29, 1321-1332.	0.7	191
28	Limbic control over the homeostatic need for sodium. Scientific Reports, 2019, 9, 1050.	3.3	8
29	Impact of Freeâ€Choice Diets High in Fat and Different Sugars on Metabolic Outcome and Anxiety‣ike Behavior in Rats. Obesity, 2019, 27, 409-419.	3.0	14
30	Insensitivity to Losses: A Core Feature in Patients With Anorexia Nervosa?. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 995-1003.	1.5	9
31	Effects of GABA and Leptin Receptorâ€Expressing Neurons in the Lateral Hypothalamus on Feeding, Locomotion, and Thermogenesis. Obesity, 2019, 27, 1123-1132.	3.0	30
32	Corticolimbic Mechanisms of Behavioral Inhibition under Threat of Punishment. Journal of Neuroscience, 2019, 39, 4353-4364.	3.6	36
33	An Intersectional Approach to Target Neural Circuits With Cell- and Projection-Type Specificity: Validation in the Mesolimbic Dopamine System. Frontiers in Molecular Neuroscience, 2019, 12, 49.	2.9	9
34	Diet as connecting factor: Functional brain connectivity in relation to food intake and sucrose tasting, assessed with restingâ€state functional MRI in rats. Journal of Neuroscience Research, 2019, , .	2.9	6
35	Pathophysiology and Individualized Treatment of Hypothalamic Obesity Following Craniopharyngioma and Other Suprasellar Tumors: A Systematic Review. Endocrine Reviews, 2019, 40, 193-235.	20.1	80
36	Reinforcement learning across the rat estrous cycle. Psychoneuroendocrinology, 2019, 100, 27-31.	2.7	17

#	Article	IF	CITATIONS
37	A neuronal mechanism underlying decision-making deficits during hyperdopaminergic states. Nature Communications, 2018, 9, 731.	12.8	56
38	The role of genetic variation of human metabolism for BMI, mental traits and mental disorders. Molecular Metabolism, 2018, 12, 1-11.	6.5	19
39	Microbiota in obesity: interactions with enteroendocrine, immune and central nervous systems. Obesity Reviews, 2018, 19, 435-451.	6.5	77
40	The association of emotion-driven impulsiveness, cognitive inflexibility and decision-making with weight status in European adolescents. International Journal of Obesity, 2018, 42, 655-661.	3.4	8
41	Melanin-Concentrating Hormone acts through hypothalamic kappa opioid system and p70S6K to stimulate acute food intake. Neuropharmacology, 2018, 130, 62-70.	4.1	15
42	Enhancing excitability of dopamine neurons promotes motivational behaviour through increased action initiation. European Neuropsychopharmacology, 2018, 28, 171-184.	0.7	40
43	Is leptin resistance the cause or the consequence of diet-induced obesity?. International Journal of Obesity, 2018, 42, 1445-1457.	3.4	27
44	Anatomical projections of the dorsomedial hypothalamus to the periaqueductal grey and their role in thermoregulation: a cautionary note. Physiological Reports, 2018, 6, e13807.	1.7	16
45	A novel approach to map induced activation of neuronal networks using chemogenetics and functional neuroimaging in rats: A proof-of-concept study on the mesocorticolimbic system. NeuroImage, 2017, 156, 109-118.	4.2	45
46	Does activation of midbrain dopamine neurons promote or reduce feeding?. International Journal of Obesity, 2017, 41, 1131-1140.	3.4	48
47	Role of leptin in energy expenditure: the hypothalamic perspective. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R938-R947.	1.8	132
48	The determinants of food choice. Proceedings of the Nutrition Society, 2017, 76, 316-327.	1.0	218
49	Chemogenetic Activation of Midbrain Dopamine Neurons Affects Attention, but not Impulsivity, in the Five-Choice Serial Reaction Time Task in Rats. Neuropsychopharmacology, 2017, 42, 1315-1325.	5.4	33
50	Chemogenetic activation of dopamine neurons in the ventral tegmental area, but not substantia nigra, induces hyperactivity in rats. European Neuropsychopharmacology, 2016, 26, 1784-1793.	0.7	70
51	Ventral Tegmental Area Dopamine Cell Activation during Male Rat Sexual Behavior Regulates Neuroplasticity and d-Amphetamine Cross-Sensitization following Sex Abstinence. Journal of Neuroscience, 2016, 36, 9949-9961.	3.6	29
52	Hypothalamic kappa opioid receptor mediates both dietâ€induced and melanin concentrating hormone–induced liver damage through inflammation and endoplasmic reticulum stress. Hepatology, 2016, 64, 1086-1104.	7.3	28
53	Developmental differences in the brain response to unhealthy food cues: an fMRI study of children and adults. American Journal of Clinical Nutrition, 2016, 104, 1515-1522.	4.7	57
54	Melanocortin 3 Receptor Signaling in Midbrain Dopamine Neurons Increases the Motivation for Food Reward. Neuropsychopharmacology, 2016, 41, 2241-2251.	5.4	52

#	Article	IF	CITATIONS
55	Overview of genetic research in anorexia nervosa: The past, the present and the future. International Journal of Eating Disorders, 2015, 48, 814-825.	4.0	20
56	Altered Food-Cue Processing in Chronically III and Recovered Women with Anorexia Nervosa. Frontiers in Behavioral Neuroscience, 2015, 9, 46.	2.0	55
57	Leptin resistance in dietâ€induced obesity: the role of hypothalamic inflammation. Obesity Reviews, 2015, 16, 207-224.	6.5	165
58	Reducing Ventral Tegmental Dopamine D2 Receptor Expression Selectively Boosts Incentive Motivation. Neuropsychopharmacology, 2015, 40, 2085-2095.	5.4	64
59	Modulation of cue-induced firing of ventral tegmental area dopamine neurons by leptin and ghrelin. International Journal of Obesity, 2015, 39, 1742-1749.	3.4	71
60	Diet-Induced Neuropeptide Expression: Feasibility of Quantifying Extended and Highly Charged Endogenous Peptide Sequences by Selected Reaction Monitoring. Analytical Chemistry, 2015, 87, 9966-9973.	6.5	8
61	What you see is what you eat: An ALE meta-analysis of the neural correlates of food viewing in children and adolescents. NeuroImage, 2015, 104, 35-43.	4.2	70
62	Central Melanocortins Regulate the Motivation for Sucrose Reward. PLoS ONE, 2015, 10, e0121768.	2.5	41
63	Combined Use of the Canine Adenovirus-2 and DREADD-Technology to Activate Specific Neural Pathways In Vivo. PLoS ONE, 2014, 9, e95392.	2.5	95
64	Differential Modulation of Arcuate Nucleus and Mesolimbic Gene Expression Levels by Central Leptin in Rats on Short-Term High-Fat High-Sugar Diet. PLoS ONE, 2014, 9, e87729.	2.5	24
65	Recombinant Adeno-Associated Virus: Efficient Transduction of the Rat VMH and Clearance from Blood. PLoS ONE, 2014, 9, e97639.	2.5	14
66	FTO knockdown in rat ventromedial hypothalamus does not affect energy balance. Physiological Reports, 2014, 2, e12152.	1.7	3
67	The obesity-associated gene <i>Negr1</i> regulates aspects of energy balance in rat hypothalamic areas. Physiological Reports, 2014, 2, e12083.	1.7	35
68	Pharmacological manipulations in animal models of anorexia and binge eating in relation to humans. British Journal of Pharmacology, 2014, 171, 4767-4784.	5.4	20
69	Feelings about food: the ventral tegmental area in food reward and emotional eating. Trends in Pharmacological Sciences, 2014, 35, 31-40.	8.7	119
70	The snacking rat as model of human obesity: effects of a free-choice high-fat high-sugar diet on meal patterns. International Journal of Obesity, 2014, 38, 643-649.	3.4	108
71	Neuropeptide <scp>Y</scp> and Leptin Sensitivity is Dependent on Diet Composition. Journal of Neuroendocrinology, 2014, 26, 377-385.	2.6	33
72	The neuroanatomical function of leptin in the hypothalamus. Journal of Chemical Neuroanatomy, 2014, 61-62, 207-220.	2.1	61

#	Article	IF	CITATIONS
73	shRNA-induced saturation of the microRNA pathway in the rat brain. Gene Therapy, 2014, 21, 205-211.	4.5	31
74	A genome-wide association study of anorexia nervosa. Molecular Psychiatry, 2014, 19, 1085-1094.	7.9	282
75	AAV-Mediated Gene Transfer of the Obesity-Associated Gene Etv5 in Rat Midbrain Does Not Affect Energy Balance or Motivated Behavior. PLoS ONE, 2014, 9, e94159.	2.5	3
76	The role of melanocortins and Neuropeptide Y in food reward. European Journal of Pharmacology, 2013, 719, 208-214.	3.5	23
77	Food cues and ghrelin recruit the same neuronal circuitry. International Journal of Obesity, 2013, 37, 1012-1019.	3.4	20
78	The Val66Met polymorphism of the BDNF gene in anorexia nervosa: New data and a meta-analysis. World Journal of Biological Psychiatry, 2013, 14, 441-451.	2.6	31
79	Mechanisms underlying current and future anti-obesity drugs. Trends in Neurosciences, 2013, 36, 133-140.	8.6	90
80	Melanocortin MC4 receptor-mediated feeding and grooming in rodents. European Journal of Pharmacology, 2013, 719, 192-201.	3.5	12
81	Repeated agouti related peptide (83–132) injections inhibit cocaine-induced locomotor sensitisation, but not via the nucleus accumbens. European Journal of Pharmacology, 2013, 719, 187-191.	3.5	5
82	Blocking alpha2A adrenoceptors, but not dopamine receptors, augments bupropionâ€induced hypophagia in rats. Obesity, 2013, 21, E700-8.	3.0	12
83	Neutral antagonism at the cannabinoid 1 receptor: a safer treatment for obesity. Molecular Psychiatry, 2013, 18, 1294-1301.	7.9	64
84	Melanocortins. , 2013, , 1135-1142.		0
85	Low Control over Palatable Food Intake in Rats Is Associated with Habitual Behavior and Relapse Vulnerability: Individual Differences. PLoS ONE, 2013, 8, e74645.	2.5	24
86	Longitudinal Changes in the Physical Activity of Adolescents with Anorexia Nervosa and Their Influence on Body Composition and Leptin Serum Levels after Recovery. PLoS ONE, 2013, 8, e78251.	2.5	34
87	Food-Anticipatory Activity: Rat Models and Underlying Mechanisms. Neuromethods, 2013, , 291-317.	0.3	2
88	Ghrelin Mediates Anticipation to a Palatable Meal in Rats. Obesity, 2012, 20, 963-971.	3.0	71
89	Dietary Factors Affect Food Reward and Motivation to Eat. Obesity Facts, 2012, 5, 221-242.	3.4	34
90	Contribution of the mesolimbic dopamine system in mediating the effects of leptin and ghrelin on feeding. Proceedings of the Nutrition Society, 2012, 71, 435-445.	1.0	57

#	Article	IF	CITATIONS
91	Role of Ghrelin in the Pathophysiology of Eating Disorders. CNS Drugs, 2012, 26, 281-296.	5.9	20
92	Nutritional State Affects the Expression of the Obesityâ€Associated Genes <i>Etv5, Faim2, Fto</i> , and <i>Negr1</i> . Obesity, 2012, 20, 2420-2425.	3.0	56
93	Melanocortin Receptor 4 Deficiency Affects Body Weight Regulation, Grooming Behavior, and Substrate Preference in the Rat. Obesity, 2012, 20, 612-621.	3.0	77
94	Mandometer treatment not superior to treatment as usual for anorexia nervosa. International Journal of Eating Disorders, 2012, 45, 193-201.	4.0	18
95	Neuropsychological weaknesses in anorexia nervosa: Setâ€shifting, central coherence, and decision making in currently ill and recovered women. International Journal of Eating Disorders, 2012, 45, 685-694.	4.0	135
96	Acute and chronic suppression of the central ghrelin signaling system reveals a role in food anticipatory activity. European Neuropsychopharmacology, 2011, 21, 384-392.	0.7	101
97	Leptin reduces hyperactivity in an animal model for anorexia nervosa via the ventral tegmental area. European Neuropsychopharmacology, 2011, 21, 274-281.	0.7	58
98	Anticipation of meals during restricted feeding increases activity in the hypothalamus in rats. European Journal of Neuroscience, 2011, 34, 1485-1491.	2.6	23
99	Association study in eating disorders: TPH2 associates with anorexia nervosa and self-induced vomiting. Genes, Brain and Behavior, 2011, 10, 236-243.	2.2	20
100	Inverse Agonism at α2A Adrenoceptors Augments the Hypophagic Effect of Sibutramine in Rats. Obesity, 2011, 19, 1979-1986.	3.0	15
101	A free-choice high-fat high-sugar diet induces glucose intolerance and insulin unresponsiveness to a glucose load not explained by obesity. International Journal of Obesity, 2011, 35, 595-604.	3.4	61
102	An overview on how components of the melanocortin system respond to different high energy diets. European Journal of Pharmacology, 2011, 660, 207-212.	3.5	15
103	Both overexpression of agouti-related peptide or neuropeptide Y in the paraventricular nucleus or lateral hypothalamus induce obesity in a neuropeptide- and nucleus specific manner. European Journal of Pharmacology, 2011, 660, 148-155.	3.5	7
104	Neurobiology of overeating and obesity: The role of melanocortins and beyond. European Journal of Pharmacology, 2011, 660, 28-42.	3.5	74
105	Melanocortin receptor-mediated effects on obesity are distributed over specific hypothalamic regions. International Journal of Obesity, 2011, 35, 629-641.	3.4	29
106	A meta-analysis of circulating BDNF concentrations in anorexia nervosa. World Journal of Biological Psychiatry, 2011, 12, 444-454.	2.6	65
107	Olanzapine affects locomotor activity and meal size in male rats. Pharmacology Biochemistry and Behavior, 2010, 97, 130-137.	2.9	37
108	An adeno-associated viral vector transduces the rat hypothalamus and amygdala more efficient than a lentiviral vector. BMC Neuroscience, 2010, 11, 81.	1.9	11

#	Article	IF	CITATIONS
109	Neuropeptide delivery to the brain: a von Willebrand factor signal peptide to direct neuropeptide secretion. BMC Neuroscience, 2010, 11, 94.	1.9	1
110	Are recently identified genetic variants regulating BMI in the general population associated with anorexia nervosa?. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 695-699.	1.7	17
111	Shortâ€Days Induce Weight Loss in Siberian Hamsters Despite Overexpression of the Agoutiâ€Related Peptide Gene. Journal of Neuroendocrinology, 2010, 22, 564-575.	2.6	15
112	A free-choice high-fat high-sugar diet induces changes in arcuate neuropeptide expression that support hyperphagia. International Journal of Obesity, 2010, 34, 537-546.	3.4	114
113	Suppressor of cytokine signaling 3 knockdown in the mediobasal hypothalamus: counterintuitive effects on energy balance. Journal of Molecular Endocrinology, 2010, 45, 341-353.	2.5	13
114	Optimization of Adeno-Associated Viral Vector-Mediated Gene Delivery to the Hypothalamus. Human Gene Therapy, 2010, 21, 673-682.	2.7	32
115	Neurobiology Driving Hyperactivity in Activity-Based Anorexia. Current Topics in Behavioral Neurosciences, 2010, 6, 229-250.	1.7	56
116	Sustained NPY Overexpression in the PVN Results in Obesity via Temporarily Increasing Food Intake. Obesity, 2009, 17, 1448-1450.	3.0	32
117	Obesity genes identified in genome-wide association studies are associated with adiposity measures and potentially with nutrient-specific food preference. American Journal of Clinical Nutrition, 2009, 90, 951-959.	4.7	179
118	Dopamine antagonism inhibits anorectic behavior in an animal model for anorexia nervosa. European Neuropsychopharmacology, 2009, 19, 153-160.	0.7	57
119	Leptin's effect on hyperactivity: Potential downstream effector mechanisms. Physiology and Behavior, 2008, 94, 689-695.	2.1	24
120	Anti-obesity drugs and neural circuits of feeding. Trends in Pharmacological Sciences, 2008, 29, 208-217.	8.7	97
121	Differential Effects of Recombinant Adeno-Associated Virus-Mediated Neuropeptide Y Overexpression in the Hypothalamic Paraventricular Nucleus and Lateral Hypothalamus on Feeding Behavior. Journal of Neuroscience, 2007, 27, 14139-14146.	3.6	65
122	Difference in susceptibility to activity-based anorexia in two inbred strains of mice. European Neuropsychopharmacology, 2007, 17, 199-205.	0.7	69
123	A reciprocal interaction between food-motivated behavior and diet-induced obesity. International Journal of Obesity, 2007, 31, 1286-1294.	3.4	147
124	Viral Mediated Neuropeptide Y Expression in the Rat Paraventricular Nucleus Results in Obesity. Obesity, 2007, 15, 2424-2435.	3.0	24
125	AgRP(83–132) and SHU9119 differently affect activity-based anorexia. European Neuropsychopharmacology, 2006, 16, 403-412.	0.7	39
126	The MC4 receptor and control of appetite. British Journal of Pharmacology, 2006, 149, 815-827.	5.4	228

#	Article	IF	CITATIONS
127	Melanocortin Receptors as Drug Targets for Disorders of Energy Balance. CNS and Neurological Disorders - Drug Targets, 2006, 5, 251-261.	1.4	18
128	Polymorphisms in the brain-derived neurotrophic factor gene are not associated with either anorexia nervosa or schizophrenia in Dutch patients. Psychiatric Genetics, 2005, 15, 81.	1.1	27
129	Hypothalamic neuropeptide expression following chronic food restriction in sedentary and wheel-running rats. Journal of Molecular Endocrinology, 2005, 35, 381-390.	2.5	100
130	a-MSH enhances activity-based anorexia. Peptides, 2005, 26, 1690-1696.	2.4	34
131	Voluntary access to a warm plate reduces hyperactivity in activity-based anorexia. Physiology and Behavior, 2005, 85, 151-157.	2.1	42
132	Leptin Treatment in Activity-Based Anorexia. Biological Psychiatry, 2005, 58, 165-171.	1.3	90
133	Olanzapine Reduces Physical Activity in Rats Exposed to Activity-Based Anorexia: Possible Implications for Treatment of Anorexia Nervosa?. Biological Psychiatry, 2005, 58, 651-657.	1.3	77
134	Induction of Brain Region-Specific Forms of Obesity by Agouti. Journal of Neuroscience, 2004, 24, 10176-10181.	3.6	29
135	Agouti-related protein prevents self-starvation. Molecular Psychiatry, 2003, 8, 235-240.	7.9	65
136	Melanocortin System and Eating Disorders. Annals of the New York Academy of Sciences, 2003, 994, 267-274.	3.8	35
137	Neuropeptides, food intake and body weight regulation: a hypothalamic focus. Peptides, 2002, 23, 2283-2306.	2.4	241
138	Association between an agouti-related protein gene polymorphism and anorexia nervosa. Molecular Psychiatry, 2001, 6, 325-328.	7.9	165
139	AgRP(83–132) Acts as an Inverse Agonist on the Human-Melanocortin-4 Receptor. Molecular Endocrinology, 2001, 15, 164-171.	3.7	326
140	Common Requirements for Melanocortin-4 Receptor Selectivity of Structurally Unrelated Melanocortin Agonist and Endogenous Antagonist, Agouti Protein. Journal of Biological Chemistry, 2001, 276, 931-936.	3.4	34
141	The Effect of Leptin on Luteinizing Hormone Release Is Exerted in the Zona Incerta and Mediated by Melaninâ€Concentrating Hormone. Journal of Neuroendocrinology, 2000, 12, 1133-1139.	2.6	45
142	Characterization of melanocortin receptor ligands on cloned brain melanocortin receptors and on grooming behavior in the rat. European Journal of Pharmacology, 1999, 378, 249-258.	3.5	88
143	Melanocortins and the Treatment of Nervous System Disease: Potential Relevance to the Skin?. Annals of the New York Academy of Sciences, 1999, 885, 342-349.	3.8	4
144	The role of central melanocortin receptors in the activation of the hypothalamus-pituitary-adrenal-axis and the induction of excessive grooming. British Journal of Pharmacology, 1998, 123, 1503-1508.	5.4	76

#	Article	IF	CITATIONS
145	Expression of Melanocortin-5 Receptor in Secretory Epithelia Supports a Functional Role in Exocrine and Endocrine Glands. Endocrinology, 1998, 139, 2348-2355.	2.8	50
146	Regulation of the Rat Oxytocin Gene by Estradiol Journal of Neuroendocrinology, 1990, 2, 633-639.	2.6	97
147	Vasopressin gene expression is stimulated by cyclic AMP in homologous and heterologous expression systems. FEBS Letters, 1990, 272, 89-93.	2.8	38
148	Characterizing and TRAPing a Social Stress-Activated Neuronal Ensemble in the Ventral Tegmental Area. Frontiers in Behavioral Neuroscience, 0, 16, .	2.0	1