
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1913450/publications.pdf Version: 2024-02-01

Νικοιλι Ερκλεν

#	Article	IF	CITATIONS
1	The Asymmetry of Magnetospheric Configuration and Substorms Occurrence Rate Within a Solar Activity Cycle. Springer Proceedings in Earth and Environmental Sciences, 2022, , 451-464.	0.4	2
2	The Exosphere as a Boundary: Origin and Evolution of Airless Bodies in the Inner Solar System and Beyond Including Planets with Silicate Atmospheres. Space Science Reviews, 2022, 218, 1.	8.1	6
3	The Inertiaâ€Based Model for Reconstruction of the Electron Diffusion Region. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA029045.	2.4	5
4	Escape and evolution of Titan's N2 atmosphere constrained by 14N/15N isotope ratios. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2020-2035.	4.4	8
5	Nitrogen Atmospheres of the Icy Bodies in the Solar System. Space Science Reviews, 2020, 216, 1.	8.1	11
6	Grad–Shafranov reconstruction of the magnetic configuration in the reconnection X-point vicinity in compressible plasma. Physics of Plasmas, 2020, 27, .	1.9	4
7	Modeling the Ly <i>α</i> transit absorption of the hot Jupiter HD 189733b. Astronomy and Astrophysics, 2020, 638, A49.	5.1	17
8	Close-in Sub-Neptunes Reveal the Past Rotation History of Their Host Stars: Atmospheric Evolution of Planets in the HD 3167 and K2-32 Planetary Systems. Astrophysical Journal, 2019, 879, 26.	4.5	33
9	The transition from "double-gradient―to ballooning unstable mode in bent magnetotail-like current sheet. Physics of Plasmas, 2019, 26, .	1.9	1
10	Transit Lyman- <i>α</i> signatures of terrestrial planets in the habitable zones of M dwarfs. Astronomy and Astrophysics, 2019, 623, A131.	5.1	18
11	The Kepler-11 system: evolution of the stellar high-energy emission and initial planetary atmospheric mass fractions. Astronomy and Astrophysics, 2019, 632, A65.	5.1	28
12	On the influence of the local maxima of total pressure on the current sheet stability to the kink-like (flapping) mode. Physics of Plasmas, 2018, 25, .	1.9	5
13	Relations Between <i>v_z</i> and <i>B_x</i> Components in Solar Wind and their Effect on Substorm Onset. Geophysical Research Letters, 2018, 45, 3760-3767.	4.0	4
14	Escape and fractionation of volatiles and noble gases from Mars-sized planetary embryos and growing protoplanets. Icarus, 2018, 307, 327-346.	2.5	43
15	On application of asymmetric Kan-like exact equilibria to the Earth magnetotail modeling. Annales Geophysicae, 2018, 36, 641-653.	1.6	5
16	Supermassive hot Jupiters provide more favourable conditions for the generation of radio emission via the cyclotron maser instability – a case study based on Tau Bootis b. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3680-3688.	4.4	14
17	Grid of upper atmosphere models for 1–40 <i>M</i> _⊕ planets: application to CoRoT-7 b and HD 219134 b,c. Astronomy and Astrophysics, 2018, 619, A151.	5.1	89
18	Young planets under extreme UV irradiation. Astronomy and Astrophysics, 2018, 612, A25.	5.1	29

#	Article	IF	CITATIONS
19	Modeling of Absorption by Heavy Minor Species for the Hot Jupiter HD 209458b. Astrophysical Journal, 2018, 866, 47.	4.5	13
20	Overcoming the Limitations of the Energy-limited Approximation for Planet Atmospheric Escape. Astrophysical Journal Letters, 2018, 866, L18.	8.3	82
21	Current sheet bending as destabilizing factor in magnetotail dynamics. Physics of Plasmas, 2018, 25, .	1.9	5
22	Largeâ€scale energy budget of impulsive magnetic reconnection: Theory and simulation. Journal of Geophysical Research: Space Physics, 2017, 122, 3212-3231.	2.4	1
23	Aeronomical constraints to the minimum mass and maximum radius of hot low-mass planets. Astronomy and Astrophysics, 2017, 598, A90.	5.1	84
24	Global kinetic hybrid simulation for radially expanding solar wind. Journal of Geophysical Research: Space Physics, 2017, 122, 7854-7864.	2.4	0
25	Effect of stellar wind induced magnetic fields on planetary obstacles of non-magnetized hot Jupiters. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4330-4336.	4.4	44
26	Aerosol Constraints on the Atmosphere of the Hot Saturn-mass Planet WASP-49b. Astrophysical Journal, 2017, 849, 145.	4.5	32
27	An overabundance of low-density Neptune-like planets. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1868-1879.	4.4	61
28	Numerical linearized MHD model of flapping oscillations. Physics of Plasmas, 2016, 23, 062905.	1.9	5
29	Solar XUV and ENAâ€driven water loss from early Venus' steam atmosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 4718-4732.	2.4	31
30	On the ultraviolet anomalies of the WASP-12 and HD 189733 systems: Trojan satellites as a plasma source. Monthly Notices of the Royal Astronomical Society, 2016, 461, 988-999.	4.4	18
31	EUV-driven mass-loss of protoplanetary cores with hydrogen-dominated atmospheres: the influences of ionization and orbital distance. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1300-1309.	4.4	78
32	Identifying the â€~true' radius of the hot sub-Neptune CoRoT-24b by mass-loss modelling. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 461, L62-L66.	3.3	53
33	THE EVOLUTION OF STELLAR ROTATION AND THE HYDROGEN ATMOSPHERES OF HABITABLE-ZONE TERRESTRIAL PLANETS. Astrophysical Journal Letters, 2015, 815, L12.	8.3	114
34	A statistical survey of reconnection exhausts in the solar wind based on the Riemannian decay of current sheets. Journal of Geophysical Research: Space Physics, 2015, 120, 8194-8209.	2.4	2
35	Peculiarities of magnetic barrier formation for southward and northward directions of the IMF. Journal of Geophysical Research: Space Physics, 2015, 120, 9471-9483.	2.4	2
36	Impact induced surface heating by planetesimals on early Mars. Astronomy and Astrophysics, 2015, 574, A22.	5.1	19

#	Article	IF	CITATIONS
37	The double-gradient magnetic instability: Stabilizing effect of the guide field. Physics of Plasmas, 2015, 22, 012904.	1.9	11
38	Extreme hydrodynamic atmospheric loss near the critical thermal escape regime. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1916-1921.	4.4	34
39	Flapping oscillations of the bent current sheet. Advances in Space Research, 2015, 56, 1699-1706.	2.6	0
40	Stellar Driven Evolution of Hydrogen-Dominated Atmospheres from Earth-Like to Super-Earth-Type Exoplanets. Astrophysics and Space Science Library, 2015, , 137-151.	2.7	5
41	Stellar wind interaction and pick-up ion escape of the Kepler-11 "super-Earths― Astronomy and Astrophysics, 2014, 562, A116.	5.1	63
42	ATMOSPHERE EXPANSION AND MASS LOSS OF CLOSE-ORBIT GIANT EXOPLANETS HEATED BY STELLAR XUV. I. MODELING OF HYDRODYNAMIC ESCAPE OF UPPER ATMOSPHERIC MATERIAL. Astrophysical Journal, 2014, 795, 132.	4.5	90
43	Origin and loss of nebula-captured hydrogen envelopes from â€~sub'- to â€~super-Earths' in the habitable zone of Sun-like stars. Monthly Notices of the Royal Astronomical Society, 2014, 439, 3225-3238.	4.4	126
44	Origin and Stability of Exomoon Atmospheres: Implications for Habitability. Origins of Life and Evolution of Biospheres, 2014, 44, 239-260.	1.9	21
45	How to distinguish between kink and sausage modes in flapping oscillations?. Journal of Geophysical Research: Space Physics, 2014, 119, 3002-3015.	2.4	13
46	Escape of the martian protoatmosphere and initial water inventory. Planetary and Space Science, 2014, 98, 106-119.	1.7	83
47	Slow mode structure in the nightside magnetosheath related to IMF draping. Journal of Geophysical Research: Space Physics, 2014, 119, 1121-1128.	2.4	0
48	XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part I: Atmospheric Expansion and Thermal Escape. Astrobiology, 2013, 13, 1011-1029.	3.0	107
49	Features of the interaction of interplanetary coronal mass ejections/magnetic clouds with the Earth's magnetosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 99, 14-26.	1.6	8
50	Stability of Earth-Like N2 Atmospheres: Implications for Habitability. Thirty Years of Astronomical Discovery With UKIRT, 2013, , 33-52.	0.3	7
51	MHD modeling of the doubleâ€gradient (kink) magnetic instability. Journal of Geophysical Research: Space Physics, 2013, 118, 1146-1158.	2.4	25
52	Conditions at the magnetopause of Saturn and implications for the solar wind interaction. Journal of Geophysical Research: Space Physics, 2013, 118, 3087-3095.	2.4	67
53	Observational aspects of IMF draping-related magnetosheath accelerations for northward IMF. Annales Geophysicae, 2013, 31, 1779-1789.	1.6	4
54	Probing the blow-off criteria of hydrogen-rich â€~super-Earths'. Monthly Notices of the Royal Astronomical Society, 2013, 430, 1247-1256.	4.4	93

#	Article	IF	CITATIONS
55	XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part II: Hydrogen Coronae and Ion Escape. Astrobiology, 2013, 13, 1030-1048.	3.0	53
56	Current sheet oscillations in the magnetic filament approach. Physics of Plasmas, 2012, 19, 062905.	1.9	5
57	2.5D magnetohydrodynamic simulation of the Kelvin-Helmholtz instability around Venus—Comparison of the influence of gravity and density increase. Physics of Plasmas, 2012, 19, .	1.9	7
58	Deep Solar Activity Minimum 2007 – 2009: Solar Wind Properties and Major Effects on the Terrestrial Magnetosphere. Solar Physics, 2012, 281, 461.	2.5	4
59	Accelerated magnetosheath flows caused by IMF draping: Dependence on latitude. Geophysical Research Letters, 2012, 39, .	4.0	12
60	Scaling of the inner electron diffusion region in collisionless magnetic reconnection. Journal of Geophysical Research, 2012, 117, .	3.3	23
61	On accelerated magnetosheath flows under northward IMF. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	18
62	A 2.5-D electron Hall-MHD analytical model of steady state Hall magnetic reconnection in a compressible plasma. Journal of Geophysical Research, 2011, 116, .	3.3	10
63	Kink-like mode of a double gradient instability in a compressible plasma current sheet. Advances in Space Research, 2011, 48, 1531-1536.	2.6	8
64	Kinetic Alfven wave instability in a Lorentzian dusty plasma: Non-resonant particle approach. Physics of Plasmas, 2011, 18, .	1.9	14
65	The role of magnetic handedness in magnetic cloud propagation. Annales Geophysicae, 2010, 28, 1075-1100.	1.6	17
66	Kinetic Alfvén wave instability in a Lorentzian dusty magnetoplasma. Physics of Plasmas, 2010, 17, 103704.	1.9	12
67	Model of electron pressure anisotropy in the electron diffusion region of collisionless magnetic reconnection. Physics of Plasmas, 2010, 17, .	1.9	44
68	Influence of a density increase on the evolution of the Kelvin–Helmholtz instability and vortices. Physics of Plasmas, 2010, 17, 072901.	1.9	18
69	Geophysical and Atmospheric Evolution of Habitable Planets. Astrobiology, 2010, 10, 45-68.	3.0	47
70	Magnetosheath for almostâ€aligned solar wind magnetic field and flow vectors: Wind observations across the dawnside magnetosheath at X = â^'12 Re. Journal of Geophysical Research, 2010, 115, .	3.3	11
71	Hall magnetohydrodynamic effects for current sheet flapping oscillations related to the magnetic double gradient mechanism. Physics of Plasmas, 2010, 17, .	1.9	13
72	MHD aspect of current sheet oscillations related to magnetic field gradients. Annales Geophysicae, 2009, 27, 417-425.	1.6	18

#	Article	IF	CITATIONS
73	Determining the mass loss limit for close-in exoplanets: what can we learn from transit observations?. Astronomy and Astrophysics, 2009, 506, 399-410.	5.1	135
74	Dust kinetic Alfv $ ilde{A}$ ©n and acoustic waves in a Lorentzian plasma. Physics of Plasmas, 2009, 16, .	1.9	27
75	MHD model of the flapping motions in the magnetotail current sheet. Journal of Geophysical Research, 2009, 114, .	3.3	45
76	Shear driven waves in the induced magnetosphere of Mars: parameter dependence. Astrophysics and Space Sciences Transactions, 2009, 5, 39-42.	1.0	3
77	Magnetic double gradient mechanism for flapping oscillations of a current sheet. Geophysical Research Letters, 2008, 35, .	4.0	37
78	The 2.5â€D analytical model of steadyâ€state Hall magnetic reconnection. Journal of Geophysical Research, 2008, 113, .	3.3	17
79	A slow mode transition region adjoining the front boundary of a magnetic cloud as a relic of a convected solar wind feature: Observations and MHD simulation. Journal of Geophysical Research, 2008, 113, .	3.3	11
80	Shear driven waves in the induced magnetosphere of Mars. Plasma Physics and Controlled Fusion, 2008, 50, 074018.	2.1	22
81	Coronal Mass Ejection (CME) Activity of Low Mass M Stars as An Important Factor for The Habitability of Terrestrial Exoplanets. II. CME-Induced Ion Pick Up of Earth-like Exoplanets in Close-In Habitable Zones. Astrobiology, 2007, 7, 185-207.	3.0	256
82	Magnetic Double-Gradient Instability and Flapping Waves in a Current Sheet. Physical Review Letters, 2007, 99, 235003.	7.8	42
83	Roche lobe effects on the atmospheric loss from "Hot Jupiters― Astronomy and Astrophysics, 2007, 472, 329-334.	5.1	300
84	Aspects of solar wind interaction with Mars: comparison of fluid and hybrid simulations. Annales Geophysicae, 2007, 25, 145-159.	1.6	2
85	Influence of the Interplanetary Magnetic Field on the Solar Wind Flow about Planetary Obstacles. Space Science Reviews, 2006, 122, 209-219.	8.1	8
86	Plasma and Magnetic Field Parameters in the Vicinity of Shortâ€periodic Giant Exoplanets. Astrophysical Journal, Supplement Series, 2005, 157, 396-401.	7.7	37
87	Influence of κ-distributed ions on the two-stream instability. Physics of Plasmas, 2005, 12, 102103.	1.9	6
88	Solar System Magnetospheres. Space Science Reviews, 2005, 116, 227-298.	8.1	47
89	Peculiarities of Alfvén wave propagation along a nonuniform magnetic flux tube. Physics of Plasmas, 2005, 12, 012905.	1.9	5
90	Stellar-Planetary Relations: Atmospheric Stability as a Prerequisite for Planetary Habitability. Celestial Mechanics and Dynamical Astronomy, 2005, 92, 273-285.	1.4	3

#	Article	IF	CITATIONS
91	Roche lobe effects on expanded upper atmospheres of short-periodic giant exoplanets. Astronomy and Astrophysics, 2005, 439, 771-775.	5.1	26
92	Interchange instability of a curved current layerconvecting in the magnetosheath from the bow shock towards themagnetopause. Annales Geophysicae, 2004, 22, 993-999.	1.6	1
93	Magnetohydrodynamic instability of a high magnetic shear layer with a finite curvature radius. Physics of Plasmas, 2002, 9, 401-408.	1.9	9
94	Dayside magnetopause erosion on geostationary orbit using WIND and GOES data (1996-1999). , 2002, 4678, 523.		1
95	Some signatures of magnetic field line reconnection. , 2002, , .		0
96	Analysis of an inclined fast shock including pressure anisotropy. , 2002, 4678, 513.		0
97	Influence of the curvature and thickness of the magnetopause on its instability. , 2002, , .		0
98	Electric potential difference due to MHD slow shocks propagating along the Io flux tube. , 2002, , .		0
99	Propagation of slow MHD waves along the dipole magnetic tubes. , 2002, , .		0
100	Two-dimensional MHD model of the reconnection diffusion region. Nonlinear Processes in Geophysics, 2002, 9, 131-138.	1.3	7
101	Effects of MHD slow shocks propagating along magnetic flux tubes in a dipole magnetic field. Nonlinear Processes in Geophysics, 2002, 9, 163-172.	1.3	6
102	Anisotropic magnetosheath: Comparison of theory with Wind observations near the stagnation streamline. Journal of Geophysical Research, 2001, 106, 29373-29385.	3.3	20
103	Jump conditions for pressure anisotropy and comparison with the Earth's bow shock. Nonlinear Processes in Geophysics, 2001, 8, 167-174.	1.3	22
104	Rate of steady-state reconnection in an incompressible plasma. Physics of Plasmas, 2001, 8, 4800-4809.	1.9	10
105	Solution for jump conditions at fast shocks in an anisotropic magnetized plasma. Journal of Plasma Physics, 2000, 64, 561-578.	2.1	35
106	MHD effects of the solar wind flow around planets. Nonlinear Processes in Geophysics, 2000, 7, 201-210.	1.3	3
107	Reconnection Rate for the Inhomogeneous Resistivity Petschek Model. Physical Review Letters, 2000, 84, 1455-1458.	7.8	45
108	Ideal magnetohydrodynamic flow around a blunt body under anisotropic pressure. Physics of Plasmas, 2000, 7, 3413-3420.	1.9	10

#	Article	IF	CITATIONS
109	On the effects of solar wind dynamic pressure on the anisotropic terrestrial magnetosheath. Journal of Geophysical Research, 2000, 105, 115-127.	3.3	14
110	Three-dimensional, one-fluid, ideal MHD model of magnetosheath flow with anisotropic pressure. Journal of Geophysical Research, 1999, 104, 6877-6887.	3.3	32
111	Aspects of MHD flow about Venus. Journal of Geophysical Research, 1999, 104, 12617-12626.	3.3	28
112	MHD model of magnetosheath flow: comparison with AMPTE/IRM observations on 24 October, 1985. Annales Geophysicae, 1998, 16, 518-527.	1.6	25
113	Charts of joint Kelvin-Helmholtz and Rayleigh-Taylor instabilites at the dayside magnetopause for strongly northward interplanetary magnetic field. Journal of Geophysical Research, 1998, 103, 6703-6727.	3.3	72
114	Recent Work on the Kelvin-Helmholtz Instability at the Dayside Magnetopause and Boundary Layer. , 1998, , 1-14.		8
115	Comparison of Gasdynamics and MHD Predictions for Magnetosheath Flow. , 1998, , 27-40.		4
116	Plasma depletion layer model for low Alfvén Mach number: Comparison with ISEE observations. Journal of Geophysical Research, 1997, 102, 11315-11324.	3.3	18
117	Possible plasma depletion layer ahead of an interplanetary ejecta. Journal of Geophysical Research, 1997, 102, 7087-7093.	3.3	13
118	Effects on the Jovian magnetosheath arising from solar wind flow around nonaxisymmetric bodies. Journal of Geophysical Research, 1996, 101, 10665-10672.	3.3	25
119	Magnetosheath parameters and reconnection: a case study for the near-cusp region and the equatorial flank. Planetary and Space Science, 1995, 43, 1105-1120.	1.7	14
120	Anomalous magnetosheath properties during Earth passage of an interplanetary magnetic cloud. Journal of Geophysical Research, 1995, 100, 19245.	3.3	57
121	Ideal MHD flow behind interplanetary shocks driven by magnetic clouds. Journal of Geophysical Research, 1995, 100, 19919.	3.3	25
122	Can Radio Emission Escape from the Magnetosphere of Ï andromedae b - a new method to constrain the minimum mass of hot jupiters. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	1