Erich Kleinpeter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1913132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A lowâ€ŧemperature dynamic ¹ H, ¹³ C, and ⁷⁷ Se NMR study of 2,2′â€selenodicyclohexanol. Magnetic Resonance in Chemistry, 2022, 60, 165-171.	1.9	1
2	Cyclazines‧tructure and Aromaticity or Antiaromaticity on the Magnetic Criterion. European Journal of Organic Chemistry, 2022, 2022, .	2.4	2
3	Dative or coordinative carbonâ "boron bond in boron trapped N-heterocyclic carbenes (NHCs)? An answer given on the magnetic criterion. Tetrahedron, 2021, 80, 131787.	1.9	2
4	Intramolecular carbene stabilization via 3c,2e bonding on basis of the magnetic criterion. Tetrahedron, 2021, 95, 132357.	1.9	1
5	Quantification of σ-Acceptor and π-Donor Stabilization in <i>O</i> , <i>S</i> and Hal Analogues of <i>N</i> -Heterocyclic Carbenes (NHCs) on the Magnetic Criterion. Journal of Physical Chemistry A, 2021, 125, 7235-7245.	2.5	2
6	At the Experimental Limit of the NMR Conformational Analysis: ²⁹ Si and ¹³ C NMR Study of the Conformational Equilibrium of 1-Phenyl-1- <i>tert</i> butylsilacyclohexane. Organic Letters, 2021, 23, 405-409.	4.6	0
7	The ¹³ C chemical shift and the anisotropy effect of the carbene electronâ€deficient centre: Simple means to characterize the electron distribution of carbenes. Magnetic Resonance in Chemistry, 2020, 58, 280-292.	1.9	9
8	Synthesis and Conformational Analysis of Naphthoxazine-Fused Phenanthrene Derivatives. Molecules, 2020, 25, 2524.	3.8	2
9	Bent Allenes or Di-1,3-betaines—An Answer Given on the Magnetic Criterion. Journal of Physical Chemistry A, 2020, 124, 3180-3190.	2.5	7
10	BenzyneÂâ^' an acetylene- or cumulene-like electronic structure?. Tetrahedron, 2019, 75, 4663-4668.	1.9	7
11	1-Methylthio-1-phenyl-1-silacyclohexane: Synthesis, conformational preferences in gas and solution by GED, NMR and theoretical calculations. Tetrahedron, 2019, 75, 130677.	1.9	3
12	ls the term "Carbene―justified for remote N-heterocyclic carbenes (r-NHCs) and abnormal N-heterocyclic carbenes (aNHCs/MICs)?. Tetrahedron, 2019, 75, 1548-1554.	1.9	10
13	Very lowâ€temperature dynamic ²⁹ Si NMR study of the conformational equilibrium of (1,1′â€phenylâ€1,1′â€silacyclohexâ€1â€yl)disiloxane. Magnetic Resonance in Chemistry, 2019, 57, 317-31	9. ^{1.9}	3
14	Benzenium Ion: Aromatic as the π-Complex or Antiaromatic as the σ-Complex Being Somewhat Similar to the Cyclopentadienyl Cation. Journal of Physical Chemistry A, 2019, 123, 4443-4451.	2.5	12
15	Metal-Free Regioselective Monocyanation of Hydroxy-, Alkoxy-, and Benzyloxyarenes by Potassium Thiocyanate and Silica Sulfuric Acid as a Cyanating Agent. Journal of Organic Chemistry, 2019, 84, 1748-1756.	3.2	31
16	Stable Carbenes or Betaines?. European Journal of Organic Chemistry, 2018, 2018, 3114-3121.	2.4	10
17	Synthesis of 3-fluoro-3-methyl-3-silatetrahydropyran and its conformational preferences in gas and solution by GED, NMR and theoretical calculations. Tetrahedron, 2018, 74, 1859-1867.	1.9	6
18	Synthesis, conformational preferences in gas and solution, and molecular gear rotation in 1-(dimethylamino)-1-phenyl-1-silacyclohexane by gas phase electron diffraction (GED), LT NMR and theoretical calculations. Tetrahedron, 2018, 74, 4299-4307.	1.9	8

ERICH KLEINPETER

#	ARTICLE	IF	CITATIONS
19	Molecular Structure and Conformational Analysis of 1-Phenyl-1-X-1-Silacyclohexanes (X = F, Cl) by Electron Diffraction, Low-Temperature NMR, and Quantum Chemical Calculations. Journal of Organic Chemistry, 2017, 82, 461-470.	3.2	10
20	Conformational Preferences of the Phenyl Group in 1-Phenyl-1-X-1-silacyclo-hexanes (X = MeO, HO) and 3-Phenyl-3-X-3-silatetrahydropyrans (X = HO, H) by Low Temperature ¹³ C NMR Spectroscopy and Theoretical Calculations. Journal of Organic Chemistry, 2017, 82, 13414-13422.	3.2	10
21	Twisted C=C Double Bonds with Very Low Rotational Barriers in Dioxanediones and Isoxazolones Determined by Lowâ€Temperature Dynamic NMR Spectroscopy and Computational Chemistry. European Journal of Organic Chemistry, 2016, 2016, 4985-4990.	2.4	5
22	Y-aromaticity – existing: yes or no? An answer given on the magnetic criterion (TSNMRS). Tetrahedron, 2016, 72, 1675-1685.	1.9	5
23	Characterization and quantification of quasi-aromaticity by spatial magnetic properties (TSNMRS). Tetrahedron, 2015, 71, 5275-5284.	1.9	5
24	Anisotropy Effect of Three-Membered Rings in ¹ H NMR Spectra: Quantification by TSNMRS and Assignment of the Stereochemistry. Journal of Physical Chemistry A, 2015, 119, 4268-4276.	2.5	7
25	Chiral Dopants Derived from Ephedrine/Pseudoephedrine: Structure and Medium Effects on the Helical Twisting Power. Molecular Crystals and Liquid Crystals, 2015, 608, 14-24.	0.9	3
26	Molecular structure and conformational analysis of 3-methyl-3-phenyl-3-silatetrahydropyran. Gas-phase electron diffraction, lowÂtemperature NMR and quantum chemical calculations. Tetrahedron, 2015, 71, 3810-3818.	1.9	20
27	Synthesis and Conformational Analysis of 3-Methyl-3-silatetrahydropyran by GED, FTIR, NMR, and Theoretical Calculations: Comparative Analysis of 1-Hetero-3-methyl-3-silacyclohexanes. Journal of Organic Chemistry, 2015, 80, 12492-12500.	3.2	14
28	Quantification and Visualization of the Anisotropy Effect in NMR Spectroscopy by Through-Space NMR Shieldings. Annual Reports on NMR Spectroscopy, 2014, 82, 115-166.	1.5	16
29	(Anti)aromaticity of dehydroannulenes of various ring size proved by the ring current effect in 1H NMR spectra. Tetrahedron, 2013, 69, 1481-1488.	1.9	11
30	Push–pull allenes-conjugation, (anti)aromaticity and quantification of the push–pull character. Tetrahedron, 2013, 69, 2436-2445.	1.9	10
31	Silacyclohexanes and silaheterocyclohexanes—why are they so different from other heterocyclohexanes?. Tetrahedron, 2013, 69, 5927-5936.	1.9	30
32	Synthesis of primary thiocarbamates by silica sulfuric acid as effective reagent under solid-state and solution conditions. Journal of Molecular Structure, 2012, 1024, 156-162.	3.6	31
33	Antiaromaticity Proved by the Anisotropic Effect in ¹ H NMR Spectra. Journal of Physical Chemistry A, 2012, 116, 5674-5680.	2.5	30
34	Conformational preferences of Si–Ph,H and Si–Ph,Me silacyclohexanes and 1,3-thiasilacyclohexanes. Additivity of conformational energies in 1,1-disubstituted heterocyclohexanes. Tetrahedron, 2012, 68, 114-125.	1.9	34
35	Chelatoaromaticity—existing: yes or no? An answer given by spatial magnetic properties (through) Tj ETQq1 1	0.784314 2.8	rgBT /Overloo
36	The anisotropic effect of functional groups in 1H NMR spectra is the molecular response property of spatial nucleus independent chemical shifts (NICS)—Conformational equilibria of exo/endotetrahydrodicyclopentadiene derivatives. Organic and Biomolecular Chemistry, 2011, 9, 1098-1111.	2.8	33

ERICH KLEINPETER

#	Article	IF	CITATIONS
37	Conformational analysis of 3â€methylâ€3â€silathiane and 3â€fluoroâ€3â€methylâ€3â€silathiane. Journal of Phys Organic Chemistry, 2011, 24, 320-326.	sical 1.9	25
38	The anisotropic effect of functional groups in 1H NMR spectra is the molecular response property of spatial NICS—the frozen conformational equilibria of 9-arylfluorenes. Tetrahedron, 2011, 67, 5740-5743.	1.9	22
39	Conformational analysis of 3,3â€dimethylâ€3â€silathiane, 2,3,3â€ŧrimethylâ€3â€silathiane and 2â€ŧrimethylsilylâ€3,3â€dimethylâ€3â€silathiane—preferred conformers, barriers to ring inversion and substituent effects. Journal of Physical Organic Chemistry, 2010, 23, 859-865.	1.9	15
40	Visualization of homoaromaticity in cations, neutral molecules and anions by spatial magnetic properties (through space NMR shieldings)—an 1H/13C NMR chemical shift study. Tetrahedron, 2009, 65, 5350-5360.	1.9	32
41	Quantification of the Pushâ``Pull Effect in Substituted Alkynes. Evaluation of ± <i>I</i> /± <i>M</i> Substituent Effects in Terms of C≡C Bond Length Variation. Journal of Physical Chemistry A, 2009, 113, 6774-6778.	2.5	16
42	Quantification of the (anti)aromaticity of fulvenes subject to ring size. Tetrahedron Letters, 2008, 49, 2776-2781.	1.4	32
43	Synthesis and Conformational Analysis of Tetrahydroisoquinolineâ€Fused 1,3,2â€Oxazaphospholidines and 1,2,3â€OxathiazolÂidines. European Journal of Organic Chemistry, 2008, 2008, 1464-1472.	2.4	8
44	Pushâ^'Pull vs Captodative Aromaticity. Journal of Physical Chemistry A, 2008, 112, 10895-10903.	2.5	25
45	Endohedral and External Through-Space Shieldings of the Fullerenes C ₅₀ , C ₆₀ , C ₆₀ <csup>-⁶, C₇₀, and C₇₀⁻⁶Visualization of (Anti)Aromaticity and Their Effects on the Chemical Shifts of Encapsulated Nuclei, Journal of Organic Chemistry, 2008, 73, 1498-1507.</csup>	3.2	79
46	Quantification of the (Anti)Aromaticity of Fulvalenes Subjected to π-Electron Cross-Delocalization. Journal of Organic Chemistry, 2008, 73, 56-65.	3.2	32
47	Visualization of through space NMR shieldings of aromatic and anti-aromatic molecules and a simple means to compare and estimate aromaticity. Computational and Theoretical Chemistry, 2007, 811, 45-60.	1.5	127
48	Hyperconjugation and the Increasing Bulk of OCOCX3 Substituents in Trans-1,4-Disubstituted Cyclohexanes Destabilize the Diequatorial Conformer. Journal of Organic Chemistry, 2006, 71, 4393-4399.	3.2	20
49	Quantification of the Pushâ``Pull Effect in Tolanes and a Revaluation of the Factors Affecting the 13C Chemical Shifts of the Carbon Atoms of the Câ‹®C Triple Bond. Journal of Organic Chemistry, 2006, 71, 3869-3875.	3.2	58
50	Study of the Substituent-Influenced Anomeric Effect in the Ring-Chain Tautomerism of 1-Alkyl-3-aryl-naphth[1,2-e][1,3]oxazines. European Journal of Organic Chemistry, 2006, 2006, 4670-4675.	2.4	8
51	Tautomerism, regioisomerism, and cyclization reactions of acridinyl thiosemicarbazides. Journal of Heterocyclic Chemistry, 2006, 43, 633-643.	2.6	16
52	Quantification of the push–pull effect in substituted alkenes. Tetrahedron Letters, 2005, 46, 5995-5997.	1.4	48
53	The Interplay of Thio(seleno)amide/Vinylogous Thio(seleno)amide "Resonance―and the Anisotropic Effect of Thiocarbonyl and Selenocarbonyl Functional Groups. Journal of Organic Chemistry, 2005, 70, 6592-6602.	3.2	42
54	Conformational Analysis of Saturated Heterocyclic Six-Membered Rings. Advances in Heterocyclic Chemistry, 2004, 86, 41-127.	1.7	77

#	Article	IF	CITATIONS
55	Separation of Anisotropic and Steric Substituent Effectsâ `Nuclear Chemical Shielding Analysis of H-4 and C-4 in Phenanthrene and 11-Ethynylphenanthrene. Journal of the American Chemical Society, 2004, 126, 2231-2236.	13.7	55
56	Electronic State of Pushâ^'Pull Alkenes:Â An Experimental Dynamic NMR and Theoretical ab Initio MO Study. Journal of Organic Chemistry, 2004, 69, 4317-4329.	3.2	131
57	Ab initio calculation of the anisotropy effect of multiple bonds and the ring current effect of arenes—application in conformational and configurational analysis. Perkin Transactions II RSC, 2001, , 1893-1898.	1.1	48