
Stephanie K Kampf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1912308/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel approach to estimating soil yield risk in fire prone ecosystems. Forest Ecology and Management, 2022, 505, 119887.	3.2	1
2	Reconceptualizing the hyporheic zone for nonperennial rivers and streams. Freshwater Science, 2022, 41, 167-182.	1.8	15
3	Effects of spatial and temporal variability in surface water inputs on streamflow generation and cessation in the rain–snow transition zone. Hydrology and Earth System Sciences, 2022, 26, 2779-2796.	4.9	5
4	Hillslope sediment fence catch efficiencies and particle sorting for postâ€fire rain storms. Earth Surface Processes and Landforms, 2021, 46, 267-279.	2.5	3
5	Connectivity of postâ€fire runoff and sediment from nested hillslopes and watersheds. Hydrological Processes, 2021, 35, .	2.6	11
6	Spatial Patterns and Drivers of Nonperennial Flow Regimes in the Contiguous United States. Geophysical Research Letters, 2021, 48, e2020GL090794.	4.0	54
7	Subsurface and Surface Flow Leading to Channel Initiation. , 2021, , .		0
8	Predicting mean annual and mean monthly streamflow in Colorado ungauged basins. River Research and Applications, 2021, 37, 569-578.	1.7	7
9	Controls on Streamflow Densities in Semiarid Rocky Mountain Catchments. Water (Switzerland), 2021, 13, 521.	2.7	8
10	Beyond Streamflow: Call for a National Data Repository of Streamflow Presence for Streams and Rivers in the United States. Water (Switzerland), 2021, 13, 1627.	2.7	14
11	Pervasive changes in stream intermittency across the United States. Environmental Research Letters, 2021, 16, 084033.	5.2	47
12	Managing nonperennial headwater streams in temperate forests of the United States. Forest Ecology and Management, 2021, 497, 119523.	3.2	13
13	Winter Inputs Buffer Streamflow Sensitivity to Snowpack Losses in the Salt River Watershed in the Lower Colorado River Basin. Water (Switzerland), 2021, 13, 3.	2.7	18
14	On the hydrological difference between catchments above and below the intermittentâ€persistent snow transition. Hydrological Processes, 2021, 35, e14411.	2.6	8
15	What's in a Name? Patterns, Trends, and Suggestions for Defining Non-Perennial Rivers and Streams. Water (Switzerland), 2020, 12, 1980.	2.7	49
16	River ecosystem conceptual models and nonâ€perennial rivers: A critical review. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1473.	6.5	37
17	Subannual Streamflow Responses to Rainfall and Snowmelt Inputs in Snowâ€Dominated Watersheds of the Western United States. Water Resources Research, 2020, 56, e2019WR026132.	4.2	21
18	PEMIP: Post-fire erosion model inter-comparison project. Journal of Environmental Management, 2020, 268, 110704	7.8	11

2

STEPHANIE K KAMPF

#	Article	IF	CITATIONS
19	The Case for an Open Water Balance: Reâ€envisioning Network Design and Data Analysis for a Complex, Uncertain World. Water Resources Research, 2020, 56, e2019WR026699.	4.2	36
20	Zero or not? Causes and consequences of zeroâ€flow stream gage readings. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1436.	6.5	63
21	Science Gets Up to Speed on Dry Rivers. Eos, 2020, 101, .	0.1	10
22	Corrigendum to: Prioritising fuels reduction for water supply protection. International Journal of Wildland Fire, 2020, 29, 1054.	2.4	0
23	What's in a Name? Patterns, Trends, and Suggestions for Defining Non-Perennial Rivers and Streams. Water (Switzerland), 2020, 12, 1980.	2.7	4
24	Partitioning snowmelt and rainfall in the critical zone: effects of climate type and soil properties. Hydrology and Earth System Sciences, 2019, 23, 3553-3570.	4.9	25
25	How Temperature Sensor Change Affects Warming Trends and Modeling: An Evaluation Across the State of Colorado. Water Resources Research, 2019, 55, 9748-9764.	4.2	17
26	Prioritising fuels reduction for water supply protection. International Journal of Wildland Fire, 2019, 28, 785.	2.4	29
27	Empirical models of annual post-fire erosion on mulched and unmulched hillslopes. Catena, 2018, 163, 276-287.	5.0	33
28	How Does Snow Persistence Relate to Annual Streamflow in Mountain Watersheds of the Western U.S. With Wet Maritime and Dry Continental Climates?. Water Resources Research, 2018, 54, 2605-2623.	4.2	41
29	Global snow zone maps and trends in snow persistence 2001–2016. International Journal of Climatology, 2018, 38, 4369-4383.	3.5	66
30	Rainfall Thresholds for Flow Generation in Desert Ephemeral Streams. Water Resources Research, 2018, 54, 9935-9950.	4.2	21
31	Changes in Andes snow cover from MODISÂdata,Â2000–2016. Cryosphere, 2018, 12, 1027-1046.	3.9	68
32	Rainfall thresholds for post-fire runoff and sediment delivery from plot to watershed scales. Forest Ecology and Management, 2018, 430, 346-356.	3.2	39
33	Testing the Waters: Mobile Apps for Crowdsourced Streamflow Data. Eos, 2018, 99, .	0.1	34
34	Return on investment from fuel treatments to reduce severe wildfire and erosion in a watershed investment program in Colorado. Journal of Environmental Management, 2017, 198, 66-77.	7.8	55
35	A snow climatology of the Andes Mountains from <scp>MODIS</scp> snow cover data. International Journal of Climatology, 2017, 37, 1526-1539.	3.5	38
36	Deriving snow-cover depletion curves for different spatial scales from remote sensing and snow telemetry data. Hydrological Processes, 2016, 30, 1708-1717.	2.6	19

STEPHANIE K KAMPF

#	Article	IF	CITATIONS
37	On the non-uniqueness of the hydro-geomorphic responses in a zero-order catchment with respect to soil moisture. Advances in Water Resources, 2016, 92, 73-89.	3.8	21
38	How do geomorphic effects of rainfall vary with storm type and spatial scale in a post-fire landscape?. Geomorphology, 2016, 273, 39-51.	2.6	43
39	Transition of dominant peak flow source from snowmelt to rainfall along the <scp>C</scp> olorado <scp>F</scp> ront <scp>R</scp> ange: Historical patterns, trends, and lessons from the 2013 <scp>C</scp> olorado <scp>F</scp> ront <scp>R</scp> ange floods. Water Resources Research, 2016, 52, 407-422.	4.2	60
40	Rain and channel flow supplements to subsurface water beneath hyper-arid ephemeral stream channels. Journal of Hydrology, 2016, 536, 524-533.	5.4	10
41	Redistribution of pyrogenic carbon from hillslopes to stream corridors following a large montane wildfire. Global Biogeochemical Cycles, 2016, 30, 1348-1355.	4.9	51
42	A GIS-based method for defining snow zones: application to the western United States. Geocarto International, 2015, 30, 62-81.	3.5	26
43	Snowmelt runoff and soil moisture dynamics on steep subalpine hillslopes. Hydrological Processes, 2015, 29, 712-723.	2.6	23
44	Snow water equivalent modeling components in NewAge-JGrass. Geoscientific Model Development, 2014, 7, 725-736.	3.6	21
45	Evaluation of digital channel network derivation methods in a glaciated subalpine catchment. Earth Surface Processes and Landforms, 2014, 39, 1790-1802.	2.5	7
46	Stochastic Method for Examining Vulnerability of Hydropower Generation and Reservoir Operations to Climate Change: Case Study of the Dworshak Reservoir in Idaho. Journal of Water Resources Planning and Management - ASCE, 2014, 140, .	2.6	10
47	Estimating source regions for snowmelt runoff in a Rocky Mountain basin: tests of a dataâ€based conceptual modeling approach. Hydrological Processes, 2014, 28, 2237-2250.	2.6	15
48	Linear models for estimating annual and growing season reference evapotranspiration using averages of weather variables. International Journal of Climatology, 2013, 33, 376-387.	3.5	16
49	9.3 Subsurface and Surface Flow Leading to Channel Initiation. , 2013, , 22-42.		8
50	Revised Coefficients for Priestley-Taylor and Makkink-Hansen Equations for Estimating Daily Reference Evapotranspiration. Journal of Hydrologic Engineering - ASCE, 2013, 18, 1289-1300.	1.9	59
51	Spatiotemporal index for analyzing controls on snow climatology: application in the Colorado Front Range. Physical Geography, 2013, 34, 85-107.	1.4	39
52	Catalyzing Frontiers inWater-Climate-Society Research: A View from Early Career Scientists and Junior Faculty. Bulletin of the American Meteorological Society, 2012, 93, 477-484.	3.3	12
53	A Stochastic Conceptual Modeling Approach for Examining the Effects of Climate Change on Streamflows in Mountain Basins. Journal of Hydrometeorology, 2012, 13, 837-855.	1.9	9
54	Effects of evapotranspiration on baseflow in a tropical headwater catchment. Journal of Hydrology, 2012, 462-463, 4-14.	5.4	22

STEPHANIE K KAMPF

#	Article	IF	CITATIONS
55	Variability and persistence of hillslope initial conditions: A continuous perspective on subsurface flow response to rain events. Journal of Hydrology, 2011, 404, 176-185.	5.4	21
56	A synthetic hydrologicâ€response dataset. Hydrological Processes, 2011, 25, 3688-3692.	2.6	15
57	Quantifying the water balance in a planar hillslope plot: Effects of measurement errors on flow prediction. Journal of Hydrology, 2010, 380, 191-202.	5.4	27
58	A hypothetical reality of Tarrawarraâ€like hydrologic response. Hydrological Processes, 2009, 23, 1093-1103.	2.6	27
59	A framework for classifying and comparing distributed hillslope and catchment hydrologic models. Water Resources Research, 2007, 43, .	4.2	130
60	Parameter estimation for a physicsâ€based distributed hydrologic model using measured outflow fluxes and internal moisture states. Water Resources Research, 2007, 43, .	4.2	24
61	Accuracy and uncertainty of thermal-infrared remote sensing of stream temperatures at multiple spatial scales. Remote Sensing of Environment, 2006, 100, 427-440.	11.0	113
62	Spatial characterization of land surface energy fluxes and uncertainty estimation at the Salar de Atacama, Northern Chile. Advances in Water Resources, 2006, 29, 336-354.	3.8	33
63	ASSESSING SATELLITE-BASED AND AIRCRAFT-BASED THERMAL INFRARED REMOTE SENSING FOR MONITORING PACIFIC NORTHWEST RIVER TEMPERATURE. Journal of the American Water Resources Association, 2005, 41, 1149-1159.	2.4	43
64	ACCURACY OF LAKE AND STREAM TEMPERATURES ESTIMATED FROM THERMAL INFRARED IMAGES. Journal of the American Water Resources Association, 2005, 41, 1161-1175.	2.4	53
65	Evaporation and land surface energy budget at the Salar de Atacama, Northern Chile. Journal of Hydrology, 2005, 310, 236-252.	5.4	85
66	Preliminary Investigations of Effluent Drainage from Mining Heap Leach Facilities. Vadose Zone Journal, 2002, 1, 186-196.	2.2	0