Liduo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/191084/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 8970-8980.	10.3	1,609
2	Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563, 541-545.	27.8	1,451
3	Study on the stability of CH ₃ NH ₃ PbI ₃ films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. Journal of Materials Chemistry A, 2014, 2, 705-710.	10.3	963
4	Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells. Nature Communications, 2015, 6, 10030.	12.8	620
5	Solution processable small molecules for organic light-emitting diodes. Journal of Materials Chemistry, 2010, 20, 6392.	6.7	555
6	Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy and Environmental Science, 2016, 9, 490-498.	30.8	535
7	Mixed Cation FA <i>_x</i> PEA _{1–} <i>_x</i> PbI ₃ with Enhanced Phase and Ambient Stability toward Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601307.	19.5	298
8	Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination. Journal of Materials Chemistry A, 2014, 2, 13587-13592.	10.3	277
9	Direct Evidence of Ion Diffusion for the Silverâ€Electrodeâ€Induced Thermal Degradation of Inverted Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1602922.	19.5	277
10	High-Performance Planar-Type Photodetector on (100) Facet of MAPbI3 Single Crystal. Scientific Reports, 2015, 5, 16563.	3.3	270
11	Addictive-assisted construction of all-inorganic CsSnIBr ₂ mesoscopic perovskite solar cells with superior thermal stability up to 473 K. Journal of Materials Chemistry A, 2016, 4, 17104-17110.	10.3	250
12	H2O effect on the stability of organic thin-film field-effect transistors. Applied Physics Letters, 2003, 83, 1644-1646.	3.3	237
13	Nanotube–Silicon Heterojunction Solar Cells. Advanced Materials, 2008, 20, 4594-4598.	21.0	210
14	Stable α/δ phase junction of formamidinium lead iodide perovskites for enhanced near-infrared emission. Chemical Science, 2017, 8, 800-805.	7.4	199
15	Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 20105-20111.	10.3	194
16	Inorganic CsPb _{1â^'} <i>_x</i> Sn <i>_x</i> IBr ₂ for Efficient Wideâ€Bandgap Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1800525.	19.5	192
17	Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness. Nature Communications, 2021, 12, 973.	12.8	189
18	Enhancement of thermal stability for perovskite solar cells through cesium doping. RSC Advances, 2017, 7, 17473-17479.	3.6	178

#	Article	IF	CITATIONS
19	Cs ₂ PbI ₂ Cl ₂ , All-Inorganic Two-Dimensional Ruddlesden–Popper Mixed Halide Perovskite with Optoelectronic Response. Journal of the American Chemical Society, 2018, 140, 11085-11090.	13.7	167
20	Energetically favored formation of SnO2 nanocrystals as electron transfer layer in perovskite solar cells with high efficiency exceeding 19%. Nano Energy, 2017, 40, 336-344.	16.0	160
21	Molecular Understanding of the Chemical Stability of Organic Materials for OLEDs: A Comparative Study on Sulfonyl, Phosphine-Oxide, and Carbonyl-Containing Host Materials. Journal of Physical Chemistry C, 2014, 118, 7569-7578.	3.1	142
22	High-triplet-energy tri-carbazole derivatives as host materials for efficient solution-processed blue phosphorescent devices. Journal of Materials Chemistry, 2011, 21, 4918.	6.7	122
23	Towards High Efficiency and Low Rollâ€Off Orange Electrophosphorescent Devices by Fine Tuning Singlet and Triplet Energies of Bipolar Hosts Based on Indolocarbazole/1, 3, 5â€Triazine Hybrids. Advanced Functional Materials, 2014, 24, 3551-3561.	14.9	117
24	Organic light-emitting diodes with improved hole-electron balance by using copper phthalocyanine/aromatic diamine multiple quantum wells. Applied Physics Letters, 2002, 80, 2628-2630.	3.3	109
25	High performance organic-inorganic perovskite-optocoupler based on low-voltage and fast response perovskite compound photodetector. Scientific Reports, 2015, 5, 7902.	3.3	104
26	Effect of cesium chloride modification on the film morphology and UV-induced stability of planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 11688-11695.	10.3	103
27	Improved SnO ₂ Electron Transport Layers Solutionâ€Deposited at Near Room Temperature for Rigid or Flexible Perovskite Solar Cells with High Efficiencies. Advanced Energy Materials, 2019, 9, 1900834.	19.5	100
28	High performance low-voltage organic phototransistors: interface modification and the tuning of electrical, photosensitive and memory properties. Journal of Materials Chemistry, 2012, 22, 11836.	6.7	99
29	Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance. Journal of Materials Chemistry A, 2013, 1, 11735.	10.3	96
30	A self-powered photodetector based on a CH ₃ NH ₃ PbI ₃ single crystal with asymmetric electrodes. CrystEngComm, 2016, 18, 4405-4411.	2.6	95
31	Controlling the Recombination Zone of White Organic Lightâ€Emitting Diodes with Extremely Long Lifetimes. Advanced Functional Materials, 2011, 21, 3540-3545.	14.9	94
32	Efficient n-type dopants with extremely low doping ratios for high performance inverted perovskite solar cells. Energy and Environmental Science, 2016, 9, 3424-3428.	30.8	94
33	A Pyridineâ€Containing Anthracene Derivative with High Electron and Hole Mobilities for Highly Efficient and Stable Fluorescent Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2011, 21, 1881-1886.	14.9	93
34	High-efficiency near-infrared organic light-emitting devices based on an iridium complex with negligible efficiency roll-off. Journal of Materials Chemistry C, 2013, 1, 6446.	5.5	87
35	A self-powered organolead halide perovskite single crystal photodetector driven by a DVD-based triboelectric nanogenerator. Journal of Materials Chemistry C, 2016, 4, 630-636.	5.5	87
36	Synthesis of Pt–Ni Octahedra in Continuous-Flow Droplet Reactors for the Scalable Production of Highly Active Catalysts toward Oxygen Reduction. Nano Letters, 2016, 16, 3850-3857.	9.1	86

#	Article	IF	CITATIONS
37	Highly-efficient blue electroluminescence based on two emitter isomers. Applied Physics Letters, 2004, 84, 1513-1515.	3.3	81
38	Achilles Heels of Phosphine Oxide Materials for OLEDs: Chemical Stability and Degradation Mechanism of a Bipolar Phosphine Oxide/Carbazole Hybrid Host Material. Journal of Physical Chemistry C, 2012, 116, 19451-19457.	3.1	79
39	High-efficiency orange to near-infrared emissions from bis-cyclometalated iridium complexes with phenyl-benzoquinoline isomers as ligands. Journal of Materials Chemistry, 2009, 19, 6573.	6.7	76
40	Printable CsPbBr ₃ perovskite quantum dot ink for coffee ring-free fluorescent microarrays using inkjet printing. Nanoscale, 2020, 12, 2569-2577.	5.6	73
41	Novel star-shaped host materials for highly efficient solution-processed phosphorescent organic light-emitting diodes. Journal of Materials Chemistry, 2010, 20, 6131.	6.7	71
42	Multifunctional MgO Layer in Perovskite Solar Cells. ChemPhysChem, 2015, 16, 1727-1732.	2.1	70
43	Highâ€stability organic redâ€light photodetector for narrowband applications. Laser and Photonics Reviews, 2016, 10, 473-480.	8.7	69
44	Improved Efficiency and Stability of Pb/Sn Binary Perovskite Solar Cells Fabricated by Galvanic Displacement Reaction. Advanced Energy Materials, 2019, 9, 1802774.	19.5	67
45	Blue phosphorescent dye as sensitizer and emitter for white organic light-emitting diodes. Applied Physics Letters, 2004, 85, 5403-5405.	3.3	66
46	Impacts of Sn precursors on solution-processed amorphous zinc–tin oxide films and their transistors. RSC Advances, 2012, 2, 5307.	3.6	66
47	Enhanced Moisture Stability of Cesium ontaining Compositional Perovskites by a Feasible Interfacial Engineering. Advanced Materials Interfaces, 2017, 4, 1700598.	3.7	65
48	Air-Stable Direct Bandgap Perovskite Semiconductors: All-Inorganic Tin-Based Heteroleptic Halides A _{<i>x</i>} SnCl _{<i>y</i>} I _{<i>z</i>} (A = Cs, Rb). Chemistry of Materials, 2018, 30, 4847-4856.	6.7	65
49	Stabilizing Perovskite Lightâ€Emitting Diodes by Incorporation of Binary Alkali Cations. Advanced Materials, 2020, 32, e1907786.	21.0	64
50	Low-voltage pentacene thin-film transistors with Ta2O5 gate insulators and their reversible light-induced threshold voltage shift. Applied Physics Letters, 2005, 86, 132101.	3.3	63
51	Bright single-active layer small-molecular organic light-emitting diodes with a polytetrafluoroethylene barrier. Applied Physics Letters, 2003, 82, 155-157.	3.3	58
52	Dependency of organic phototransistor properties on the dielectric layers. Applied Physics Letters, 2006, 89, 072108.	3.3	58
53	Multifunctional perovskite capping layers in hybrid solar cells. Journal of Materials Chemistry A, 2014, 2, 14973.	10.3	57
54	Oxygen doping in nickel oxide for highly efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 4721-4728.	10.3	57

#	Article	IF	CITATIONS
55	BaCO3Modification of TiO2Electrodes in Quasi-Solid-State Dye-Sensitized Solar Cells:  Performance Improvement and Possible Mechanism. Journal of Physical Chemistry C, 2007, 111, 8075-8079.	3.1	56
56	Star-shaped dendritic hosts based on carbazole moieties for highly efficient blue phosphorescent OLEDs. Journal of Materials Chemistry, 2012, 22, 12016.	6.7	56
57	Morphology-controlled CH ₃ NH ₃ PbI ₃ films by hexane-assisted one-step solution deposition for hybrid perovskite mesoscopic solar cells with high reproductivity. Journal of Materials Chemistry A, 2015, 3, 22839-22845.	10.3	55
58	An Origami Perovskite Photodetector with Spatial Recognition Ability. ACS Applied Materials & Interfaces, 2017, 9, 10921-10928.	8.0	49
59	A Droplet-Reactor System Capable of Automation for the Continuous and Scalable Production of Noble-Metal Nanocrystals. Nano Letters, 2018, 18, 3879-3884.	9.1	48
60	A Comparison Study of the Organic Small Molecular Thin Films Prepared by Solution Process and Vacuum Deposition: Roughness, Hydrophilicity, Absorption, Photoluminescence, Density, Mobility, and Electroluminescence. Journal of Physical Chemistry C, 2011, 115, 14278-14284.	3.1	47
61	P3HT/Phthalocyanine Nanocomposites as Efficient Holeâ€Transporting Materials for Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800264.	5.8	47
62	CH ₃ NH ₃ Pb _{1â^'x} Eu _x I ₃ mixed halide perovskite for hybrid solar cells: the impact of divalent europium doping on efficiency and stability. RSC Advances, 2018, 8, 11095-11101.	3.6	45
63	Progress of interface engineering in perovskite solar cells. Science China Materials, 2016, 59, 728-742.	6.3	43
64	Efficient and UV-stable perovskite solar cells enabled by side chain-engineered polymeric hole-transporting layers. Journal of Materials Chemistry A, 2018, 6, 12999-13004.	10.3	43
65	A new type of light-emitting naphtho[2,3-c][1,2,5]thiadiazole derivatives: synthesis, photophysical characterization and transporting properties. Journal of Materials Chemistry, 2008, 18, 806.	6.7	41
66	Pure red electroluminescence from a host material of binuclear gallium complex. Applied Physics Letters, 2002, 81, 4913-4915.	3.3	40
67	Inorganic iodide ligands in ex situ PbS quantum dot sensitized solar cells with lâ^'/I3â^' electrolytes. Journal of Materials Chemistry, 2012, 22, 16914.	6.7	34
68	Aquointermediate Assisted Highly Orientated Perovskite Thin Films toward Thermally Stable and Efficient Solar Cells. Advanced Energy Materials, 2017, 7, 1601433.	19.5	34
69	A self-powered and high-voltage-isolated organic optical communication system based on triboelectric nanogenerators and solar cells. Nano Energy, 2019, 56, 391-399.	16.0	34
70	Cesium carbonate as a surface modification material for organic–inorganic hybrid perovskite solar cells with enhanced performance. RSC Advances, 2014, 4, 60131-60134.	3.6	31
71	Highâ€Performance Organic Optocouplers Based on a Photosensitive Interfacial C ₆₀ /NPB Heterojunction. Advanced Materials, 2009, 21, 2501-2504.	21.0	29
72	White light emission from an exciplex based on a phosphine oxide type electron transport compound in a bilayer device structure. RSC Advances, 2013, 3, 21453.	3.6	29

#	Article	IF	CITATIONS
73	High Performance of Perovskite Solar Cells via Catalytic Treatment in Two-Step Process: The Case of Solvent Engineering. ACS Applied Materials & Interfaces, 2016, 8, 30107-30115.	8.0	28
74	Marangoni Effectâ€Controlled Growth of Oriented Film for High Performance C8â€BTBT Transistors. Advanced Materials Interfaces, 2019, 6, 1801736.	3.7	27
75	Constructing nanorod–nanoparticles hierarchical structure at low temperature as photoanodes for dye-sensitized solar cells: combining relatively fast electron transport and high dye-loading together. Journal of Materials Chemistry, 2011, 21, 19389.	6.7	26
76	Electric Bias Induced Degradation in Organic-Inorganic Hybrid Perovskite Light-Emitting Diodes. Scientific Reports, 2018, 8, 15799.	3.3	26
77	Critical Role of Organoamines in the Irreversible Degradation of a Metal Halide Perovskite Precursor Colloid: Mechanism and Inhibiting Strategy. ACS Energy Letters, 2022, 7, 481-489.	17.4	26
78	A ZnO nanorod/nanoparticle hierarchical structure synthesized through a facile in situ method for dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 4765-4770.	10.3	25
79	Organic photocouplers consisting of organic light-emitting diodes and organic photoresistors. Applied Physics Letters, 2006, 88, 051110.	3.3	23
80	A ZnO nanorod layer with a superior light-scattering effect for dye-sensitized solar cells. RSC Advances, 2013, 3, 18537.	3.6	23
81	RbF modified FTO electrode enable energy-level matching for efficient electron transport layer-free perovskite solar cells. Chemical Engineering Journal, 2020, 394, 125024.	12.7	23
82	Charge tunneling injection through a thin teflon film between the electrodes and organic semiconductor layer: Relation to morphology of the teflon film. Physical Review B, 2006, 74, .	3.2	22
83	Thermally Decomposable Lithium Nitride as an Electron Injection Material for Highly Efficient and Stable OLEDs. Journal of Physical Chemistry C, 2009, 113, 13386-13390.	3.1	22
84	A flexible blue light sensitive organic photodiode with high properties for the applications in lowâ€voltageâ€control circuit and flexion sensors. Laser and Photonics Reviews, 2014, 8, 316-323.	8.7	22
85	Efficient blue-green and white organic light-emitting diodes withÂaÂsmall-molecule host and cationic iridium complexes asÂdopants. Applied Physics A: Materials Science and Processing, 2010, 100, 1035-1040.	2.3	21
86	Mg doping in nanosheet-based spherical structured ZnO photoanode for quasi-solid dye-sensitized solar cells. RSC Advances, 2014, 4, 21294-21300.	3.6	21
87	Molecularly Designed Zinc (II) Phthalocyanine Derivative as Dopantâ€Free Holeâ€Transporting Material of Planar Perovskite Solar Cell with Preferential Faceâ€on Orientation. Solar Rrl, 2019, 3, 1900182.	5.8	21
88	Efficient solution-processed phosphor-sensitized single-emitting-layer white organic light-emitting devices: fabrication, characteristics, and transient analysis of energy transfer. Journal of Materials Chemistry, 2011, 21, 5312.	6.7	20
89	Recent progress in interface modification for dye-sensitized solar cells. Science China Chemistry, 2010, 53, 1669-1678.	8.2	19
90	Small molecular phosphorescent organic light-emitting diodes using a spin-coated hole blocking layer. Applied Physics Letters, 2012, 100, .	3.3	19

#	Article	IF	CITATIONS
91	Enhanced performance in hybrid perovskite solar cell by modification with spinel lithium titanate. Journal of Materials Chemistry A, 2015, 3, 8882-8889.	10.3	19
92	The role of interface between electron transport layer and perovskite in halogen migration and stabilizing perovskite solar cells with Cs ₄ SnO ₄ . Journal of Materials Chemistry A, 2018, 6, 23797-23804.	10.3	19
93	Room-temperature solution-processed amorphous NbO _x as an electron transport layer in high-efficiency photovoltaics. Journal of Materials Chemistry A, 2018, 6, 17882-17888.	10.3	19
94	Organic cesium salt as an efficient electron injection material for organic light-emitting diodes. Applied Physics Letters, 2008, 93, 183302.	3.3	18
95	Organic optocouplers. Science China Chemistry, 2011, 54, 1017-1026.	8.2	18
96	Low-Temperature Evaporable Re ₂ O ₇ : An Efficient p-Dopant for OLEDs. Journal of Physical Chemistry C, 2013, 117, 13763-13769.	3.1	18
97	Ambipolar Transporting 1,2â€Benzanthracene Derivative with Efficient Green Excimer Emission for Singleâ€Layer Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2013, 1, 167-172.	7.3	16
98	Phototransistor Properties of Pentacene Organic Transistors with Poly(methyl methacrylate) Dielectric Layer. Japanese Journal of Applied Physics, 2006, 45, L96-L98.	1.5	14
99	Enhanced efficiency and stability of inverted perovskite solar cells by interfacial engineering with alkyl bisphosphonic molecules. RSC Advances, 2017, 7, 42105-42112.	3.6	13
100	Rational design of SnO2-based electron transport layer in mesoscopic perovskite solar cells: more kinetically favorable than traditional double-layer architecture. Science China Materials, 2017, 60, 963-976.	6.3	13
101	Tailoring electrical property of the low-temperature processed SnO2 for high-performance perovskite solar cells. Science China Materials, 2019, 62, 173-180.	6.3	13
102	Experimental and theoretical study of the charge transport property of 4,4′-N,N′-dicarbazole-biphenyl. Science China Chemistry, 2012, 55, 2428-2432.	8.2	12
103	Multifunctional Interface Modification of Energy Relay Dye in Quasi-solid Dye-sensitized Solar Cells. Scientific Reports, 2014, 4, 5570.	3.3	12
104	Lithium cobalt oxide as electron injection material for high performance organic light-emitting diodes. Applied Physics Letters, 2008, 92, 073301.	3.3	11
105	Study on the Electron Injection Mechanism of Thermally Decomposable Cs ₂ CO ₃ . Japanese Journal of Applied Physics, 2009, 48, 102302.	1.5	11
106	Nanocomposite Thin Film Based on Ytterbium Fluoride and <i>N,N′</i> -Bis(1-naphthyl)- <i>N,N′</i> -diphenyl-1,1′-biphenyl-4,4′-diamine and Its Application in Orga Light Emitting Diodes as Hole Transport Layer. Journal of Physical Chemistry C, 2008, 112, 11985-11990.	an\$c1	10
107	Preparation and spectral characteristics of anthracene/tetracene mixed crystals. Science in China Series B: Chemistry, 2009, 52, 181-187.	0.8	10
108	High-Performance Organic Optocouplers Based on an Organic Photodiode With High Blue Light Sensitivity. IEEE Electron Device Letters, 2013, 34, 1295-1297.	3.9	9

#	Article	lF	CITATIONS
109	High quality perovskite thin films induced by crystal seeds with lead monoxide interfacial engineering. Journal of Materials Chemistry A, 2016, 4, 16913-16919.	10.3	8
110	Solutionâ€Processed Graphene Composite Films as Freestanding Platinumâ€Free Counter Electrodes for Bendable Dye Sensitized Solar Cells. Chinese Journal of Chemistry, 2016, 34, 59-66.	4.9	8
111	Improved performance of pure formamidinium lead iodide perovskite light-emitting diodes by moisture treatment. Journal of Materials Chemistry C, 2017, 5, 11121-11127.	5.5	8
112	Research on the adhesive ability between ITO anode and PET substrate improved by polyimide buffer layer. Science Bulletin, 2005, 50, 505-508.	1.7	7
113	Synthesis and characterization of nano/micro-structured crystalline germanium dioxide with novel morphology. Science Bulletin, 2009, 54, 2810-2813.	9.0	7
114	Controlled synthesis of ZnO spindles and fabrication of composite photoanodes at low temperature for quasi-solid state dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 3183.	6.7	7
115	MAPbl ₃ Photodetectors with 4.7 MHz Bandwidth and Their Application in Organic Optocouplers. Journal of Physical Chemistry Letters, 2022, 13, 815-821.	4.6	5
116	Comparison between P25 and anatase-based TiO2 quasi-solid state dye sensitized solar cells. Science Bulletin, 2008, 53, 954-957.	9.0	4
117	Oriented mesoporous TiO2 film as photoanode for dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 8023.	10.3	4
118	A multifunctional ionic iridium complex for field-effect and light-emitting devices. RSC Advances, 2014, 4, 51294-51297.	3.6	4
119	Transparent organic light-emitting diodes based on Cs2CO3:Ag/Ag composite cathode. Science Bulletin, 2010, 55, 1479-1482.	1.7	3
120	Preparation and properties of solution-processed zinc tin oxide films from a new organic precursor. Science China Chemistry, 2011, 54, 651-655.	8.2	3
121	Bipolar charge transport property of N,N′-dicarbazolyl-1,4-dimethene-benzene: A study of the short range order model. Science Bulletin, 2013, 58, 79-83.	1.7	3
122	Programmable and Erasable Pentacene/Ta ₂ O ₅ Phototransistor Memory With Improved Retention Time. IEEE Electron Device Letters, 2014, 35, 741-743.	3.9	3
123	New hybrid encapsulation for flexible organic light-emitting devices on plastic substrates. Science Bulletin, 2008, 53, 958-960.	9.0	2
124	Preparation and characteristics of flexible all-organic thin-film field-effect transistor. Science Bulletin, 2003, 48, 1554-1557.	1.7	1
125	P-141: High-Efficiency and Long Lifetime Electrophosphorescent Organic Light-Emitting Diodes with Improved Hole-Electron Balance by using Alternate Multilayer Structures. Digest of Technical Papers SID International Symposium, 2005, 36, 838.	0.3	1
126	Molecularly Designed Zinc (II) Phthalocyanine Derivative as Dopantâ€Free Holeâ€Transporting Material of Planar Perovskite Solar Cell with Preferential Faceâ€on Orientation. Solar Rrl, 2019, 3, 1970113.	5.8	1

#	Article	IF	CITATIONS
127	45.4: Dimers of Organic Metal Complexes Based on Tridentate Schiff-Base Ligand for Organic Electroluminescence. Digest of Technical Papers SID International Symposium, 2003, 34, 1298.	0.3	Ο
128	Fabrication and spectra characteristics of high efficiency white organic light-emitting diodes with single emitting layer. Science Bulletin, 2004, 49, 2133-2136.	1.7	0
129	[Ir(ppy)2pyim]PF6dielectric mixed with PMMA for area emission transistors. RSC Advances, 2016, 6, 94010-94013.	3.6	Ο