
Ajeet Srivastav

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1910111/publications.pdf Version: 2024-02-01

AIFET SDIVASTAV

#	Article	IF	CITATIONS
1	Thermodynamic model to predict bulk metallic glass forming composition in Zr-Cu-Fe-Al system and understanding the role of Dy addition. Physica B: Condensed Matter, 2022, 624, 413416.	2.7	10
2	Formation mechanism of nanocrystalline W derived cubic-H0.5WO3. Scripta Materialia, 2022, 208, 114363.	5.2	4
3	Understanding the Growth Mechanism of Hematite Nanoparticles: The Role of Maghemite as an Intermediate Phase. Crystal Growth and Design, 2021, 21, 16-22.	3.0	9
4	Review: Oxygen-deficient tungsten oxides. Journal of Materials Science, 2021, 56, 6615-6644.	3.7	40
5	Unveiling the crystallographic origin of mechanochemically induced monoclinic to triclinic phase transformation in WO ₃ . CrystEngComm, 2021, 23, 1821-1827.	2.6	6
6	Kinetics and phase formation during crystallization of Hf64Cu18Ni18 amorphous alloy. Phase Transitions, 2021, 94, 110-121.	1.3	2
7	Kinetic Approach to Determine the Class-Forming Ability in Hf-Based Metallic Glasses. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 1169-1173.	2.2	4
8	Corrosion Studies of Hf64Cu18Ni18 Metallic Glass in Acidic and Alkaline Media. Transactions of the Indian Institute of Metals, 2021, 74, 949-956.	1.5	2
9	On the temperature dependent magnetization in dual-phase Co nanowires confinedly electrodeposited inside nanoporous alumina membrane. Journal of Crystal Growth, 2021, 562, 126084.	1.5	5
10	Unraveling the growth mechanism of W18O49 nanowires on W surfaces. CrystEngComm, 2021, 23, 6559-6566.	2.6	3
11	Understanding the strain-dependent structure of Cu nanocrystals in Ag–Cu nanoalloys. Physical Chemistry Chemical Physics, 2021, 23, 26165-26177.	2.8	5
12	Crystallite size induced bandgap tuning in WO3 derived from nanocrystalline tungsten. Scripta Materialia, 2020, 176, 47-52.	5.2	20
13	Microstructure evolution and densification during spark plasma sintering of nanocrystalline W-5wt.%Ta alloy. Philosophical Magazine Letters, 2020, 100, 442-451.	1.2	3
14	Graphene-based chemiresistive gas sensors. Comprehensive Analytical Chemistry, 2020, , 149-173.	1.3	6
15	WO3.1/3H2O nanorods/nanoplates: Growth mechanism and CO2 uptake. Materialia, 2020, 14, 100943.	2.7	2
16	Measurements of the melting points, liquidus, and solidus of the Mo, Ta, and Mo Ta binary alloys using a novel high-speed pyrometric technique. International Journal of Refractory Metals and Hard Materials, 2020, 93, 105335.	3.8	9
17	Graphene/chitosan-functionalized iron oxide nanoparticles for biomedical applications. Journal of Materials Research, 2019, 34, 3389-3399.	2.6	17
18	Effect of Re on microstructural evolution and densification kinetics during spark plasma sintering of nanocrystalline W. Advanced Powder Technology, 2019, 30, 2779-2786.	4.1	14

AJEET SRIVASTAV

#	Article	IF	CITATIONS
19	Localized pore evolution assisted densification during spark plasma sintering of nanocrystalline W-5wt.%Mo alloy. Scripta Materialia, 2019, 159, 41-45.	5.2	20
20	Estimation of diffusivity from densification data obtained during spark plasma sintering. Scripta Materialia, 2019, 161, 36-39.	5.2	17
21	Graphene from discharged dry cell battery electrodes. Journal of Hazardous Materials, 2019, 366, 358-369.	12.4	45
22	Antioxidant efficacy of chitosan/graphene functionalized superparamagnetic iron oxide nanoparticles. Journal of Materials Science: Materials in Medicine, 2018, 29, 154.	3.6	14
23	Applicability of γ* Parameter on Glass Forming Ability of Zr-,Ti-,Hf-(Cu–Ni)-based Metallic Glasses. Transactions of the Indian Institute of Metals, 2018, 71, 2839-2843.	1.5	0
24	In-situ \$\$hbox {TiO}_{2}\$\$ TiO 2 –rGO nanocomposites for CO gas sensing. Bulletin of Materials Science, 2018, 41, 1.	1.7	23
25	Thermodynamic calculation and experimental validation of Hf-rich glass forming compositions in Hf-Cu-Ni system. Journal of Non-Crystalline Solids, 2018, 500, 191-195.	3.1	25
26	Novel coalescence-driven grain-growth mechanism during annealing/spark plasma sintering of NiO nanocrystals. Journal of the European Ceramic Society, 2017, 37, 4973-4977.	5.7	7
27	Modeling and Theory: general discussion. Faraday Discussions, 2016, 186, 371-398.	3.2	1
28	Synthesis of Nanoparticle Assemblies: general discussion. Faraday Discussions, 2016, 186, 123-152.	3.2	0
29	Applications to Soft Matter: general discussion. Faraday Discussions, 2016, 186, 503-527.	3.2	1
30	Nanocomposites: general discussion. Faraday Discussions, 2016, 186, 277-293.	3.2	1
31	Evolution of morphology and texture during high energy ball milling of Ni and Ni-5 wt%Cu powders. Materials Characterization, 2016, 120, 90-96.	4.4	10
32	Formation of amorphous alumina during sintering of nanocrystalline B2 aluminides. Materials Characterization, 2016, 119, 186-194.	4.4	7
33	Crystallographic-shear-phase-driven W18O49 nanowires growth on nanocrystalline W surfaces. Scripta Materialia, 2016, 115, 28-32.	5.2	19
34	Nucleation and growth mechanism of Co–Pt alloy nanowires electrodeposited within alumina template. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	4
35	On correlation between densification kinetics during spark plasma sintering and compressive creep of B2 aluminides. Scripta Materialia, 2015, 107, 63-66.	5.2	15
36	Grain-size-dependent non-monotonic lattice parameter variation in nanocrystalline W: The role of non-equilibrium grain boundary structure. Scripta Materialia, 2015, 98, 20-23.	5.2	36

AJEET SRIVASTAV

#	Article	IF	CITATIONS
37	On Joule heating during spark plasma sintering of metal powders. Scripta Materialia, 2014, 93, 52-55.	5.2	61
38	Crystal anisotropy induced temperature dependent magnetization in cobalt nanowires electrodeposited within alumina template. Journal of Magnetism and Magnetic Materials, 2014, 349, 21-26.	2.3	20
39	XRD Characterization of Microstructural Evolution During Mechanical Alloying of W-20Âwt%Mo. Transactions of the Indian Institute of Metals, 2013, 66, 409-414.	1.5	16
40	Dilatometric analysis on shrinkage behavior during non-isothermal sintering of nanocrystalline tungsten mechanically alloyed with molybdenum. Journal of Alloys and Compounds, 2012, 536, S41-S44.	5.5	15
41	Initial-stage Sintering Kinetics of Nanocrystalline Tungsten. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3863-3866.	2.2	24
42	Magnetic nanowires by electrodeposition within templates. Physica Status Solidi (B): Basic Research, 2010, 247, 2364-2379.	1.5	139
43	Molten salt electrolysis of neodymium: electrolyte selection and deposition mechanism. Institutions of Mining and Metallurgy Transactions Section C: Mineral Processing and Extractive Metallurgy, 2010, 119, 88-92.	0.6	16
44	Loading Rate Sensitivity of Jute/Glass Hybrid Reinforced Epoxy Composites: Effect of Surface Modifications. Journal of Reinforced Plastics and Composites, 2007, 26, 851-860.	3.1	21
45	Tribological and Morphological Evaluation of Ni-P and Ni-P/D Coatings. Materials Science Forum, 0, 969, 73-79.	0.3	2