
Tomoya Baba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1910084/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Construction of <i>Escherichia coli</i> Kâ€12 inâ€frame, singleâ€gene knockout mutants: the Keio collection. Molecular Systems Biology, 2006, 2, 2006.0008.	7.2	6,537
2	The map-based sequence of the rice genome. Nature, 2005, 436, 793-800.	27.8	3,365
3	Hd1, a Major Photoperiod Sensitivity Quantitative Trait Locus in Rice, Is Closely Related to the Arabidopsis Flowering Time Gene CONSTANS. Plant Cell, 2000, 12, 2473-2483.	6.6	1,417
4	Multiple High-Throughput Analyses Monitor the Response of E. coli to Perturbations. Science, 2007, 316, 593-597.	12.6	694
5	Genome Structure of the Legume, Lotus japonicus. DNA Research, 2008, 15, 227-239.	3.4	691
6	The genome sequence and structure of rice chromosome 1. Nature, 2002, 420, 312-316.	27.8	519
7	Highly accurate genome sequences of Escherichia coli Kâ€12 strains MG1655 and W3110. Molecular Systems Biology, 2006, 2, 2006.0007.	7.2	409
8	Large-scale identification of protein–protein interaction of <i>Escherichia coli</i> K-12. Genome Research, 2006, 16, 686-691.	5.5	368
9	Experimental and Computational Assessment of Conditionally Essential Genes in <i>Escherichia coli</i> . Journal of Bacteriology, 2006, 188, 8259-8271.	2.2	237
10	Responses of theCentral Metabolism in Escherichia coli to PhosphoglucoseIsomerase and Glucose-6-Phosphate DehydrogenaseKnockouts. Journal of Bacteriology, 2003, 185, 7053-7067.	2.2	173
11	Ribosome binding proteins YhbH and YfiA have opposite functions during 100S formation in the stationary phase ofEscherichia coli. Genes To Cells, 2005, 10, 1103-1112.	1.2	126
12	Analysis ofEscherichia coli anaplerotic metabolism and its regulation mechanisms from the metabolic responses to altered dilution rates and phosphoenolpyruvate carboxykinase knockout. Biotechnology and Bioengineering, 2003, 84, 129-144.	3.3	124
13	Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13 C-labeling experiments and the measurement of enzyme activities. Applied Microbiology and Biotechnology, 2004, 64, 91-98.	3.6	98
14	Effect of zwf gene knockout on the metabolism of Escherichia coli grown on glucose or acetate. Metabolic Engineering, 2004, 6, 164-174.	7.0	97
15	Antisense Expression of a Rice Sucrose Transporter OsSUT1 in Rice (Oryza sativa L.). Plant and Cell Physiology, 2001, 42, 1181-1185.	3.1	82
16	A 718-kb DNA Sequence of the Escherichia coli K-12 Genome Corresponding to the 12.7-28.0 min Region on the Linkage Map. DNA Research, 1996, 3, 137-155.	3.4	76
17	Identification of the Two Missing Bacterial Genes Involved in Thiamine Salvage: Thiamine Pyrophosphokinase and Thiamine Kinase. Journal of Bacteriology, 2004, 186, 3660-3662.	2.2	55
18	Analysis of metabolic and physiological responses togndknockout inEscherichia coliby using C-13 tracer experiment and enzyme activity measurement. FEMS Microbiology Letters, 2003, 220, 295-301.	1.8	54

Томоуа Вава

#	Article	IF	CITATIONS
19	Identification and characterization of clustered genes for thermostable xylan-degrading enzymes, beta-xylosidase and xylanase, of Bacillus stearothermophilus 21. Applied and Environmental Microbiology, 1994, 60, 2252-2258.	3.1	53
20	Construction of a Contiguous 874-kb Sequence of the Escherichia coli-K12 Genome Corresponding to 50.0-68.8 min on the Linkage Map and Analysis of Its Sequence Features. DNA Research, 1997, 4, 91-95.	3.4	50
21	A physical map with yeast artificial chromosome (YAC) clones covering 63% of the 12 rice chromosomes. Genome, 2001, 44, 32-37.	2.0	50
22	A 460-kb DNA Sequence of the Escherichia coli K-12 Genome Corresponding to the 40.1-50.0 min Region on the Linkage Map. DNA Research, 1996, 3, 379-392.	3.4	48
23	Functional analysis of 1440 Escherichia coli genes using the combination of knock-out library and phenotype microarrays. Metabolic Engineering, 2005, 7, 318-327.	7.0	47
24	The Construction of Systematic In-Frame, Single-Gene Knockout Mutant Collection in Escherichia coli K-12. Methods in Molecular Biology, 2008, 416, 171-181.	0.9	45
25	A physical map with yeast artificial chromosome (YAC) clones covering 63% of the 12 rice chromosomes. Genome, 2001, 44, 32-37.	2.0	44
26	Systematic characterization ofEscherichia coligenes/ORFs affecting biofilm formation. FEMS Microbiology Letters, 2003, 225, 107-114.	1.8	42
27	Complete genome sequence and comparative analysis of Shewanella violacea, a psychrophilic and piezophilic bacterium from deep sea floor sediments. Molecular BioSystems, 2010, 6, 1216.	2.9	42
28	A 570-kb DNA Sequence of the Escherichia coli K-12 Genome Corresponding to the 28.0-40.1 min Region on the Linkage Map. DNA Research, 1996, 3, 363-377.	3.4	41
29	The Applications of Systematic In-Frame, Single-Gene Knockout Mutant Collection of Escherichia coli K-12. Methods in Molecular Biology, 2008, 416, 183-194.	0.9	38
30	Microflorae of aquatic moss pillars in a freshwater lake, East Antarctica, based on fatty acid and 16S rRNA gene analyses. Polar Biology, 2012, 35, 425-433.	1.2	36
31	Comparative Analysis of argK-tox Clusters and Their Flanking Regions in Phaseolotoxin-Producing Pseudomonas syringae Pathovars. Journal of Molecular Evolution, 2006, 63, 401-414.	1.8	35
32	Aurantimicrobium minutum gen. nov., sp. nov., a novel ultramicrobacterium of the family Microbacteriaceae, isolated from river water. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 4072-4079.	1.7	32
33	Eukaryotic phylotypes in aquatic moss pillars inhabiting a freshwater lake in East Antarctica, based on 18S rRNA gene analysis. Polar Biology, 2012, 35, 1495-1504.	1.2	27
34	Systematic genome-wide scanning for genes involved in ATP generation in Escherichia coli. Metabolic Engineering, 2009, 11, 1-7.	7.0	26
35	Glutathione production by efficient ATP-regenerating <i>Escherichia coli</i> mutants. FEMS Microbiology Letters, 2009, 297, 217-224.	1.8	25
36	Identification of Essential Genes and Synthetic Lethal Gene Combinations in Escherichia coli K-12. Methods in Molecular Biology, 2015, 1279, 45-65.	0.9	23

Томоуа Вава

#	Article	IF	CITATIONS
37	Complete Genome Sequence of Aurantimicrobium minutum Type Strain KNC ^T , a Planktonic Ultramicrobacterium Isolated from River Water. Genome Announcements, 2016, 4, .	0.8	17
38	Escherichia coli proteome chips for detecting protein–protein interactions. Proteomics, 2006, 6, 6433-6436.	2.2	12
39	Genome sequence and overview of Oligoflexus tunisiensis Shr3T in the eighth class Oligoflexia of the phylum Proteobacteria. Standards in Genomic Sciences, 2016, 11, 90.	1.5	12
40	Diversity of RuBisCO gene responsible for CO2 fixation in an Antarctic moss pillar. Polar Biology, 2012, 35, 1641-1650.	1.2	11
41	ENVIRONMENTAL DEPENDENCY OF GENE KNOCKOUTS ON PHENOTYPE MICROARRAY ANALYSIS IN ESCHERICHIA COLI. Journal of Bioinformatics and Computational Biology, 2010, 08, 83-99.	0.8	10
42	Batch-Learning Self-Organizing Map Identifies Horizontal Gene Transfer Candidates and Their Origins in Entire Genomes. Frontiers in Microbiology, 2020, 11, 1486.	3.5	8
43	High-throughput Fluorescence Labelling of Full-length cDNA Products Based on a Reconstituted Translation System. Journal of Biochemistry, 2006, 141, 19-24.	1.7	6
44	Direct PCR amplification of the 16S rRNA gene from single microbial cells isolated from an Antarctic iceberg using laser microdissection microscopy. Polar Science, 2011, 5, 375-382.	1.2	6
45	Nanoporous scaffold for DNA polymerase: pore-size optimisation of mesoporous silica for DNA amplification. RSC Advances, 2014, 4, 25920-25923.	3.6	6
46	Essential cellular modules for the proliferation of the primitive cell. Geoscience Frontiers, 2018, 9, 1155-1161.	8.4	6
47	Rice Genomics: Current Status of Genome Sequencing. Novartis Foundation Symposium, 2001, 236, 28-45.	1.1	4
48	Crosslinked polymers with increased affinity for methyl orange. Die Makromolekulare Chemie Rapid Communications, 1988, 9, 553-558.	1.1	3
49	Minimal Genomes: How Many Genes Does a Cell Require To Be Viable. Journal of Geography (Chigaku) Tj ETQq1	1 0,78431 0.3	4 rgBT /Ovei
50	Highly Precise and Sensitive Polymerase Chain Reaction Using Mesoporous Silica-Immobilized Enzymes. ACS Applied Materials & Interfaces, 2022, 14, 29483-29490.	8.0	3
51	Alkaline and Thermophilic Amylases of Industrial Use. Annals of the New York Academy of Sciences, 1996, 799, 332-340.	3.8	0
52	Numerical Simulation of Fine Particle Deposition in Layering Granulation. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2021, 107, 394-402.	0.4	0