List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1909540/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature, 1995, 378, 203-206.	27.8	1,338
2	A Single Nucleotide Polymorphism in the MDM2 Promoter Attenuates the p53 Tumor Suppressor Pathway and Accelerates Tumor Formation in Humans. Cell, 2004, 119, 591-602.	28.9	1,158
3	Gain of Function of a p53 Hot Spot Mutation in a Mouse Model of Li-Fraumeni Syndrome. Cell, 2004, 119, 861-872.	28.9	930
4	Pirh2, a p53-Induced Ubiquitin-Protein Ligase, Promotes p53 Degradation. Cell, 2003, 112, 779-791.	28.9	657
5	Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nature Genetics, 2001, 29, 92-95.	21.4	456
6	Mutant p53 Prolongs NF-κB Activation and Promotes Chronic Inflammation and Inflammation-Associated Colorectal Cancer. Cancer Cell, 2013, 23, 634-646.	16.8	388
7	MDM2, an introduction. Molecular Cancer Research, 2003, 1, 993-1000.	3.4	321
8	p53-independent functions of the p19ARF tumor suppressor. Genes and Development, 2000, 14, 2358-2365.	5.9	317
9	The inherent instability of mutant p53 is alleviated by <i>Mdm2</i> or <i>p16^{INK4a}</i> loss. Genes and Development, 2008, 22, 1337-1344.	5.9	317
10	Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nature Genetics, 2004, 36, 63-68.	21.4	306
11	p53-Mediated Senescence Impairs the Apoptotic Response to Chemotherapy and Clinical Outcome in Breast Cancer. Cancer Cell, 2012, 21, 793-806.	16.8	279
12	A DNA Damage–Induced p53 Serine 392 Kinase Complex Contains CK2, hSpt16, and SSRP1. Molecular Cell, 2001, 7, 283-292.	9.7	271
13	Mutant p53 partners in crime. Cell Death and Differentiation, 2018, 25, 161-168.	11.2	216
14	USP15 stabilizes MDM2 to mediate cancer-cell survival and inhibit antitumor T cell responses. Nature Immunology, 2014, 15, 562-570.	14.5	204
15	20 years studying p53 functions in genetically engineered mice. Nature Reviews Cancer, 2009, 9, 831-841.	28.4	193
16	Telomere dysfunction suppresses spontaneous tumorigenesis <i>in vivo</i> by initiating p53â€dependent cellular senescence. EMBO Reports, 2007, 8, 497-503.	4.5	185
17	Novel <i>MYBL1</i> Gene Rearrangements with Recurrent <i>MYBL1–NFIB</i> Fusions in Salivary Adenoid Cystic Carcinomas Lacking t(6;9) Translocations. Clinical Cancer Research, 2016, 22, 725-733.	7.0	167
18	Molecular Pathways: Targeting Mdm2 and Mdm4 in Cancer Therapy. Clinical Cancer Research, 2013, 19, 34-41.	7.0	161

#	Article	IF	CITATIONS
19	p53 Plays a Role in Mesenchymal Differentiation Programs, in a Cell Fate Dependent Manner. PLoS ONE, 2008, 3, e3707.	2.5	146
20	Synergistic roles of Mdm2 and Mdm4 for p53 inhibition in central nervous system development. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3226-3231.	7.1	138
21	The cenpB gene is not essential in mice. Chromosoma, 1998, 107, 570-576.	2.2	131
22	Tissue-Specific Differences of p53 Inhibition by Mdm2 and Mdm4. Molecular and Cellular Biology, 2006, 26, 192-198.	2.3	131
23	Limiting the power of p53 through the ubiquitin proteasome pathway. Genes and Development, 2014, 28, 1739-1751.	5.9	131
24	An alternatively spliced HDM2 product increases p53 activity by inhibiting HDM2. Oncogene, 2001, 20, 4041-4049.	5.9	126
25	Mdm2 Is Required for Survival of Hematopoietic Stem Cells/Progenitors via Dampening of ROS-Induced p53 Activity. Cell Stem Cell, 2010, 7, 606-617.	11.1	126
26	Heterodimerization of Mdm2 and Mdm4 is critical for regulating p53 activity during embryogenesis but dispensable for p53 and Mdm2 stability. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11995-12000.	7.1	124
27	An inducible mouse model for skin cancer reveals distinct roles for gain- and loss-of-function p53 mutations. Journal of Clinical Investigation, 2007, 117, 1893-1901.	8.2	122
28	The loss of mdm2 induces p53 mediated apoptosis. Oncogene, 2000, 19, 1691-1697.	5.9	116
29	Increased Sensitivity to UV Radiation in Mice with a p53 Point Mutation at Ser389. Molecular and Cellular Biology, 2004, 24, 8884-8894.	2.3	116
30	Immune Cell Production of Interleukin 17 Induces Stem Cell Features of Pancreatic Intraepithelial Neoplasia Cells. Gastroenterology, 2018, 155, 210-223.e3.	1.3	114
31	Restoring expression of wild-type p53 suppresses tumor growth but does not cause tumor regression in mice with a p53 missense mutation. Journal of Clinical Investigation, 2011, 121, 893-904.	8.2	113
32	p53 sends nucleotides to repair DNA. Nature, 2000, 404, 24-25.	27.8	112
33	A High-Frequency Regulatory Polymorphism in the p53 Pathway Accelerates Tumor Development. Cancer Cell, 2010, 18, 220-230.	16.8	108
34	Attenuating the p53 Pathway in Human Cancers: Many Means to the Same End. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026211.	6.2	105
35	Multiple Stress Signals Activate Mutant p53 <i>In Vivo</i> . Cancer Research, 2011, 71, 7168-7175.	0.9	104
36	Haploinsufficiency of Mdm2 and Mdm4 in Tumorigenesis and Development. Molecular and Cellular Biology, 2007, 27, 5479-5485.	2.3	102

#	Article	IF	CITATIONS
37	p21 delays tumor onset by preservation of chromosomal stability. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19842-19847.	7.1	97
38	Inhibition of Endothelial p53 Improves Metabolic Abnormalities Related to Dietary Obesity. Cell Reports, 2014, 7, 1691-1703.	6.4	95
39	Lung cancer risk in germline p53 mutation carriers: association between an inherited cancer predisposition, cigarette smoking, and cancer risk. Human Genetics, 2003, 113, 238-243.	3.8	94
40	Bcl-2 inhibits p53 nuclear import following DNA damage. Oncogene, 1997, 15, 2767-2772.	5.9	86
41	<i>Mdm2</i> and <i>Mdm4</i> Loss Regulates Distinct p53 Activities. Molecular Cancer Research, 2008, 6, 947-954.	3.4	86
42	Mouse Models of p53 Functions. Cold Spring Harbor Perspectives in Biology, 2010, 2, a001115-a001115.	5.5	85
43	MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53. Molecular Cell, 2016, 61, 68-83.	9.7	82
44	Cooperative phosphorylation at multiple sites is required to activate p53 in response to UV radiation. Oncogene, 2000, 19, 358-364.	5.9	81
45	The Li-Fraumeni syndrome: An inherited susceptibility to cancer. Trends in Molecular Medicine, 1997, 3, 390-395.	2.6	80
46	Mutant p53: Multiple Mechanisms Define Biologic Activity in Cancer. Frontiers in Oncology, 2015, 5, 249.	2.8	80
47	The oncogenic roles of p53 mutants in mouse models. Current Opinion in Genetics and Development, 2007, 17, 66-70.	3.3	79
48	High levels of the p53 inhibitor MDM4 in head and neck squamous carcinomas. Human Pathology, 2007, 38, 1553-1562.	2.0	78
49	Pla2g16 phospholipase mediates gain-of-function activities of mutant p53. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11145-11150.	7.1	77
50	Tissue-specific expression of p53 in transgenic mice is regulated by intron sequences. Molecular Carcinogenesis, 1991, 4, 3-9.	2.7	75
51	Spontaneous Tumorigenesis in Mice Overexpressing the p53-Negative Regulator Mdm4. Cancer Research, 2010, 70, 7148-7154.	0.9	70
52	What have animal models taught us about the p53 pathway?. Journal of Pathology, 2005, 205, 206-220.	4.5	69
53	The Mdm Network and Its Regulation of p53 Activities: A Rheostat of Cancer Risk. Human Mutation, 2014, 35, 728-737.	2.5	67
54	Oncogenic <i>KRAS</i> Recruits an Expansive Transcriptional Network through Mutant p53 to Drive Pancreatic Cancer Metastasis. Cancer Discovery, 2021, 11, 2094-2111.	9.4	66

#	Article	IF	CITATIONS
55	p21 stability: Linking chaperones to a cell cycle checkpoint. Cancer Cell, 2005, 7, 113-114.	16.8	65
56	Expression Signatures of Metastatic Capacity in a Genetic Mouse Model of Lung Adenocarcinoma. PLoS ONE, 2009, 4, e5401.	2.5	65
57	The p53 targets mdm2 and Fas are not required as mediators of apoptosis in vivo. Oncogene, 1997, 15, 1527-1534.	5.9	64
58	Loss of Mdm4 Results in p53 -Dependent Dilated Cardiomyopathy. Circulation, 2007, 115, 2925-2930.	1.6	63
59	Distinct roles of Mdm2 and Mdm4 in red cell production. Blood, 2007, 109, 2630-2633.	1.4	63
60	TRIM24 suppresses development of spontaneous hepatic lipid accumulation and hepatocellular carcinoma in mice. Journal of Hepatology, 2015, 62, 371-379.	3.7	63
61	Switching mechanisms of cell death in mdm2- and mdm4-null mice by deletion of p53 downstream targets. Cancer Research, 2003, 63, 8664-9.	0.9	63
62	The p53–Mdm2 feedback loop protects against DNA damage by inhibiting p53 activity but is dispensable for p53 stability, development, and longevity. Genes and Development, 2013, 27, 1857-1867.	5.9	62
63	p53 tetramerization: at the center of the dominant-negative effect of mutant p53. Genes and Development, 2020, 34, 1128-1146.	5.9	54
64	ldentification of cancer sex-disparity in the functional integrity of p53 and its X chromosome network. Nature Communications, 2019, 10, 5385.	12.8	53
65	The Many Faces of MDM2 Binding Partners. Genes and Cancer, 2012, 3, 226-239.	1.9	51
66	Gankyrin: An intriguing name for a novel regulator of p53 and RB. Cancer Cell, 2005, 8, 3-4.	16.8	50
67	CRISPR/Cas9 can mediate high-efficiency off-target mutations in mice in vivo. Cell Death and Disease, 2018, 9, 1099.	6.3	50
68	Regulation of tissue―and stimulusâ€specific cell fate decisions by <i>p53 in vivo</i> . Journal of Pathology, 2011, 223, 127-137.	4.5	49
69	Integrative genome analysis of somatic p53 mutant osteosarcomas identifies Ets2-dependent regulation of small nucleolar RNAs by mutant p53 protein. Genes and Development, 2017, 31, 1847-1857.	5.9	48
70	Somatic Trp53 mutations differentially drive breast cancer and evolution of metastases. Nature Communications, 2018, 9, 3953.	12.8	45
71	Conditional allele ofmdm2 which encodes a p53 inhibitor. Genesis, 2002, 32, 145-147.	1.6	44
72	DisruptingTP53 in mouse models of human cancers. Human Mutation, 2003, 21, 321-326.	2.5	43

#	Article	IF	CITATIONS
73	The Organization and Expression of themdm2Gene. Genomics, 1996, 33, 352-357.	2.9	42
74	The Regulation of Cellular Functions by the p53 Protein: Cellular Senescence. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a026112.	6.2	42
75	Loss of one but not twomdm2 null alleles alters the tumour spectrum inp53 null mice. , 1999, 188, 322-328.		41
76	<i>DEAR1</i> Is a Chromosome 1p35 Tumor Suppressor and Master Regulator of TGF-β–Driven Epithelial–Mesenchymal Transition. Cancer Discovery, 2013, 3, 1172-1189.	9.4	40
77	Mammary tumor modifiers in BALB/cJ mice heterozygous for p53. Mammalian Genome, 2007, 18, 300-309.	2.2	39
78	Mouse models dissect the role of p53 in cancer and development. Seminars in Cancer Biology, 1998, 8, 337-344.	9.6	38
79	HDM4 (HDMX) is widely expressed in adult pre-B acute lymphoblastic leukemia and is a potential therapeutic target. Modern Pathology, 2007, 20, 54-62.	5.5	37
80	Tissueâ€specific and ageâ€dependent effects of global Mdm2 loss. Journal of Pathology, 2014, 233, 380-391.	4.5	33
81	Exclusion of a p53 germline mutation in a classic Li-Fraumeni syndrome family. Human Genetics, 1998, 102, 681-686.	3.8	30
82	Mutant p53 in concert with an interleukinâ€27 receptor alpha deficiency causes spontaneous liver inflammation, fibrosis, and steatosis in mice. Hepatology, 2016, 63, 1000-1012.	7.3	29
83	Mdm4 loss in the intestinal epithelium leads to compartmentalized cell death but no tissue abnormalities. Differentiation, 2009, 77, 442-449.	1.9	27
84	The ups and downs of p53 regulation in hematopoietic stem cells. Cell Cycle, 2011, 10, 3257-3262.	2.6	27
85	Therapeutic Efficacy of <i>p53</i> Restoration in <i>Mdm2</i> -Overexpressing Tumors. Molecular Cancer Research, 2014, 12, 901-911.	3.4	27
86	The p53 inhibitor Mdm4 cooperates with multiple genetic lesions in tumourigenesis. Journal of Pathology, 2017, 241, 501-510.	4.5	27
87	Mdm proteins: critical regulators of embryogenesis and homoeostasis. Journal of Molecular Cell Biology, 2017, 9, 16-25.	3.3	26
88	p53 drives a transcriptional program that elicits a non-cell-autonomous response and alters cell state in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23663-23673.	7.1	26
89	Loss of PML cooperates with mutant p53 to drive more aggressive cancers in a gender-dependent manner. Cell Cycle, 2013, 12, 1722-1731.	2.6	25
90	Dissecting the p53-Mdm2 feedback loop in vivo: uncoupling the role in p53 stability and activity. Oncotarget, 2014, 5, 1149-1156.	1.8	23

#	Article	IF	CITATIONS
91	Daxx maintains endogenous retroviral silencing and restricts cellular plasticity in vivo. Science Advances, 2020, 6, eaba8415.	10.3	22
92	Loss of the novel tumour suppressor and polarity gene <i>Trim62</i> (<i>Dear1</i>) synergizes with oncogenic Ras in invasive lung cancer. Journal of Pathology, 2014, 234, 108-119.	4.5	21
93	Restoring p53 in cancer: the promises and the challenges. Journal of Molecular Cell Biology, 2019, 11, 615-619.	3.3	21
94	Mutant p53 accumulates in cycling and proliferating cells in the normal tissues of p53 R172H mutant mice. Oncotarget, 2015, 6, 17968-17980.	1.8	21
95	Spatio-Temporal Genomic Heterogeneity, Phylogeny, and Metastatic Evolution in Salivary Adenoid Cystic Carcinoma. Journal of the National Cancer Institute, 2017, 109, .	6.3	19
96	Mutation at p53 serine 389 does not rescue the embryonic lethality in mdm2 or mdm4 null mice. Oncogene, 2004, 23, 7644-7650.	5.9	18
97	p53: Multiple Facets of a Rubik's Cube. Annual Review of Cancer Biology, 2017, 1, 185-201.	4.5	18
98	Transient enhancement of p53 activity protects from radiation-induced gastrointestinal toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17429-17437.	7.1	18
99	MDMX acts as a pervasive preleukemic-to-acute myeloid leukemia transition mechanism. Cancer Cell, 2021, 39, 529-547.e7.	16.8	17
100	Deletion of p21 cannot substitute for p53 loss in rescue of mdm2 null lethality. Nature Genetics, 1997, 16, 336-337.	21.4	16
101	Lack of Immunomodulatory Interleukin-27 Enhances Oncogenic Properties of Mutant p53 <i>In Vivo</i> . Clinical Cancer Research, 2016, 22, 3876-3883.	7.0	15
102	Mammary-specific expression of Trim24 establishes a mouse model of human metaplastic breast cancer. Nature Communications, 2021, 12, 5389.	12.8	14
103	Differential Gain-of-Function Activity of Three p53 Hotspot Mutants <i>In Vivo</i> . Cancer Research, 2022, 82, 1926-1936.	0.9	14
104	Constitutive Dicer1 phosphorylation accelerates metabolism and aging in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 960-969.	7.1	13
105	Men1 maintains exocrine pancreas homeostasis in response to inflammation and oncogenic stress. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6622-6629.	7.1	13
106	Daxx Functions Are p53-Independent <i>In Vivo</i> . Molecular Cancer Research, 2018, 16, 1523-1529.	3.4	12
107	Wnt/ß-catenin-mediated p53 suppression is indispensable for osteogenesis of mesenchymal progenitor cells. Cell Death and Disease, 2021, 12, 521.	6.3	12
108	New mouse models of cancer: Single-cell knockouts. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4245-4246.	7.1	10

#	Article	IF	CITATIONS
109	Mutant p53 Disrupts Role of ShcA Protein in Balancing Smad Protein-dependent and -independent Signaling Activity of Transforming Growth Factor-β (TGF-β)*. Journal of Biological Chemistry, 2011, 286, 44023-44034.	3.4	10
110	The Enigma of p53. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81, 37-40.	1.1	10
111	Dicer1 Phosphomimetic Promotes Tumor Progression and Dissemination. Cancer Research, 2019, 79, 2662-2668.	0.9	10
112	Synergistic and additive effect of retinoic acid in circumventing resistance to p53 restoration. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2198-2203.	7.1	9
113	The Common Germline <i>TP53-R337H</i> Mutation Is Hypomorphic and Confers Incomplete Penetrance and Late Tumor Onset in a Mouse Model. Cancer Research, 2021, 81, 2442-2456.	0.9	9
114	A Blood-based Polyamine Signature Associated With MEN1 Duodenopancreatic Neuroendocrine Tumor Progression. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e4969-e4980.	3.6	9
115	A spontaneous model of spondyloarthropathies that develops bone loss and pathological bone formation: A process regulated by IL27RA-/- and mutant-p53. PLoS ONE, 2018, 13, e0193485.	2.5	8
116	Tumorigenesis promotes Mdm4-S overexpression. Oncotarget, 2017, 8, 25837-25847.	1.8	8
117	TP53 mutation and haplotype analysis of two large African American families. , 1999, 14, 216-221.		7
118	Loss of digestive organ expansion factor (<i>Diexf)</i> reveals an essential role during murine embryonic development that is independent of p53. Oncotarget, 2017, 8, 103996-104006.	1.8	7
119	p53 Activity Dominates That of p73 upon <i>Mdm4</i> Loss in Development and Tumorigenesis. Molecular Cancer Research, 2016, 14, 56-65.	3.4	6
120	SNPing away at mutant p53 activities. Genes and Development, 2018, 32, 195-196.	5.9	5
121	Sox2+ cells in Sonic Hedgehog-subtype medulloblastoma resist p53-mediated cell-cycle arrest response and drive therapy-induced recurrence. Neuro-Oncology Advances, 2019, 1, vdz027.	0.7	5
122	TNBC invasion: downstream of STAT3. Oncotarget, 2017, 8, 20517-20518.	1.8	5
123	You can win by losing: p53 mutations in rhabdomyosarcomas. Journal of Pathology, 2010, 222, 124-128.	4.5	2
124	Analysis of Population Differences in Digital Conversations About Cancer Clinical Trials: Advanced Data Mining and Extraction Study. JMIR Cancer, 2021, 7, e25621.	2.4	2
125	Regulation of p53 Activity and Associated Checkpoint Controls. , 2010, , 171-188.		2
126	Alterations of the Mdm2 C-Terminus Differentially Impact Its Function <i>In Vivo</i> . Cancer Research, 2022, 82, 1313-1320.	0.9	2

#	Article	IF	CITATIONS
127	Is loss of p53 a driver of ductal carcinoma in situ progression?. British Journal of Cancer, 2022, 127, 1744-1754.	6.4	1
128	Mutant p53-Driven Tumorigenesis. , 2013, , 77-93.		0
129	One step at a time. Molecular Biology of the Cell, 2018, 29, 2614-2615.	2.1	0
130	Manipulating the p53 Gene in the Mouse: Organismal Functions of a Prototype Tumor Suppressor. , 2007, , 183-207.		0
131	p53-Mediated Stress and Tissue-Dependent Cell Fate Decisions; Implications for p53 Targeting. Blood, 2011, 118, SCI-3-SCI-3.	1.4	0
132	Developing Genetically Engineered Mouse Models to Study Tumor Suppression. Current Protocols in Mouse Biology, 2012, 2, 9-24.	1.2	0
133	BET Bromodomain Inhibition Reduces Leukemic Burden and Prolongs Survival In The Eμ-TCL1 Transgenic Mouse Model Of Chronic Lymphocytic Leukemia (CLL) Independent Of TP53 Mutation Status. Blood, 2013, 122, 876-876.	1.4	0
134	Manipulating the p53 Gene in the Mouse: Organismal Functions of a Prototype Tumor Suppressor. , 2007, , 183-207.		0