
Stephan Pfister

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1908925/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Growing environmental footprint of plastics driven by coal combustion. Nature Sustainability, 2022, 5, 139-148.	23.7	148
2	Letter to the editor re: "The scarcity-weighted water footprint provides unreliable water sustainability scoring―by. Science of the Total Environment, 2022, 825, 154108.	8.0	3
3	Regionalized Life Cycle Inventories of Global Sulfidic Copper Tailings. Environmental Science & Technology, 2022, 56, 4553-4564.	10.0	21
4	Mine waste as a sustainable resource for facing bricks. Journal of Cleaner Production, 2022, 368, 133118.	9.3	12
5	A highly resolved MRIO database for analyzing environmental footprints and Green Economy Progress. Science of the Total Environment, 2021, 755, 142587.	8.0	46
6	Towards sustainable resource management: identification and quantification of human actions that compromise the accessibility of metal resources. Resources, Conservation and Recycling, 2021, 167, 105403.	10.8	30
7	Building consensus on water use assessment of livestock production systems and supply chains: Outcome and recommendations from the FAO LEAP Partnership. Ecological Indicators, 2021, 124, 107391.	6.3	22
8	Methodology and optimization tool for a personalized low environmental impact and healthful diet specific to country and season. Journal of Industrial Ecology, 2021, 25, 1147.	5.5	6
9	Quantifying uncertainty for AWARE characterization factors. Journal of Industrial Ecology, 2021, 25, 1588-1601.	5.5	4
10	Global Assessment of Agricultural Productivity Losses from Soil Compaction and Water Erosion. Environmental Science & Technology, 2021, 55, 12162-12171.	10.0	17
11	Linking land use inventories to biodiversity impact assessment methods. International Journal of Life Cycle Assessment, 2021, 26, 2315.	4.7	2
12	Preface to the Thematic Section: Mine Tailings: Problem or Opportunity? Towards a Combined Remediation and Resource Recovery Approach. Journal of Sustainable Metallurgy, 2021, 7, 1440.	2.3	1
13	Improving water ecosystem sustainability of urban water system by management strategies optimization. Journal of Environmental Management, 2020, 254, 109766.	7.8	18
14	Globally Regionalized Monthly Life Cycle Impact Assessment of Particulate Matter. Environmental Science & Technology, 2020, 54, 16028-16038.	10.0	16
15	Regionalized LCA in practice: the need for a universal shapefile to match LCI and LCIA. International Journal of Life Cycle Assessment, 2020, 25, 1867-1871.	4.7	10
16	Assessing Impacts on the Natural Resource Soil in Life Cycle Assessment: Methods for Compaction and Water Erosion. Environmental Science & Technology, 2020, 54, 6496-6507.	10.0	15
17	LC″MPACT: A regionalized life cycle damage assessment method. Journal of Industrial Ecology, 2020, 24, 1201-1219.	5.5	80
18	Quantifying the Valuation of Animal Welfare Among Americans. Journal of Agricultural and Environmental Ethics, 2020, 33, 261-282.	1.7	6

#	Article	IF	CITATIONS
19	Regional Carrying Capacities of Freshwater Consumption—Current Pressure and Its Sources. Environmental Science & Technology, 2020, 54, 9083-9094.	10.0	23
20	Giving Legs to Handprint Thinking: Foundations for Evaluating the Good We Do. Earth's Future, 2020, 8, e2019EF001422.	6.3	11
21	Water–Energy–Food Nexus Framework for Promoting Regional Integration in Central Asia. Water (Switzerland), 2020, 12, 1896.	2.7	27
22	Water scarcity footprint of hydropower based on a seasonal approach - Global assessment with sensitivities of model assumptions tested on specific cases. Science of the Total Environment, 2020, 724, 138188.	8.0	18
23	The greenhouse gas emissions, water consumption, and heat emissions of global steam-electric power production: a generating unit level analysis and database. Environmental Research Letters, 2020, 15, 104029.	5.2	7
24	Environmental impacts of an advanced oxidation process as tertiary treatment in a wastewater treatment plant. Science of the Total Environment, 2019, 694, 133572.	8.0	91
25	Defining freshwater as a natural resource: a framework linking water use to the area of protection natural resources. International Journal of Life Cycle Assessment, 2019, 24, 960-974.	4.7	33
26	A new method for analyzing sustainability performance of global supply chains and its application to material resources. Science of the Total Environment, 2019, 684, 164-177.	8.0	65
27	An LCA impact assessment model linking land occupation and malnutrition-related DALYs. International Journal of Life Cycle Assessment, 2019, 24, 1620-1630.	4.7	8
28	Global emission hotspots of coal power generation. Nature Sustainability, 2019, 2, 113-121.	23.7	149
29	International trade of global scarce water use in agriculture: Modeling on watershed level with monthly resolution. Ecological Economics, 2019, 159, 301-311.	5.7	40
30	Regionalization in LCA: current status in concepts, software and databases—69th LCA forum, Swiss Federal Institute of Technology, Zurich, 13 September, 2018. International Journal of Life Cycle Assessment, 2019, 24, 364-369.	4.7	21
31	The land-water nexus of biofuel production in Brazil: Analysis of synergies and trade-offs using a multiregional input-output model. Journal of Cleaner Production, 2019, 214, 52-61.	9.3	55
32	Overview and recommendations for regionalized life cycle impact assessment. International Journal of Life Cycle Assessment, 2019, 24, 856-865.	4.7	57
33	Consistent characterisation factors at midpoint and endpoint relevant to agricultural water scarcity arising from freshwater consumption. International Journal of Life Cycle Assessment, 2018, 23, 2276-2287.	4.7	58
34	Method Development for Including Environmental Water Requirement in the Water Stress Index. Water Resources Management, 2018, 32, 1585-1598.	3.9	5
35	A Multimedia Hydrological Fate Modeling Framework To Assess Water Consumption Impacts in Life Cycle Assessment. Environmental Science & Technology, 2018, 52, 4658-4667.	10.0	17
36	Global guidance on environmental life cycle impact assessment indicators: impacts of climate change, fine particulate matter formation, water consumption and land use. International Journal of Life Cycle Assessment, 2018, 23, 2189-2207.	4.7	94

#	Article	IF	CITATIONS
37	The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). International Journal of Life Cycle Assessment, 2018, 23, 368-378.	4.7	471
38	Enhancing comprehensive measurement of social impacts in S-LCA by including environmental and economic aspects. International Journal of Life Cycle Assessment, 2018, 23, 133-146.	4.7	19
39	Ecosystem quality in LCIA: status quo, harmonization, and suggestions for the way forward. International Journal of Life Cycle Assessment, 2018, 23, 1995-2006.	4.7	30
40	Framework for integrating animal welfare into life cycle sustainability assessment. International Journal of Life Cycle Assessment, 2018, 23, 1476-1490.	4.7	64
41	LCA of key technologies for future electricity supply—68th LCA forum, Swiss Federal Institute of Technology, Zurich, 16 April, 2018. International Journal of Life Cycle Assessment, 2018, 23, 1716-1721.	4.7	2
42	Biodiversity impacts from water consumption on a global scale for use in life cycle assessment. International Journal of Life Cycle Assessment, 2017, 22, 1247-1256.	4.7	33
43	LCIA framework and cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative. Journal of Cleaner Production, 2017, 161, 957-967.	9.3	141
44	Water scarcity assessments in the past, present, and future. Earth's Future, 2017, 5, 545-559.	6.3	545
45	Towards harmonizing natural resources as an area of protection in life cycle impact assessment. International Journal of Life Cycle Assessment, 2017, 22, 1912-1927.	4.7	70
46	Assessing the environmental impacts of freshwater thermal pollution from global power generation in LCA. Science of the Total Environment, 2017, 580, 1014-1026.	8.0	26
47	Understanding the LCA and ISO water footprint: A response to Hoekstra (2016) "A critique on the water-scarcity weighted water footprint in LCA†Ecological Indicators, 2017, 72, 352-359.	6.3	158
48	Bringing it all together: linking measures to secure nations' food supply. Current Opinion in Environmental Sustainability, 2017, 29, 98-117.	6.3	47
49	BOARD-INVITED REVIEW: Quantifying water use in ruminant production. Journal of Animal Science, 2017, 95, 2001.	0.5	14
50	Hydropower's Biogenic Carbon Footprint. PLoS ONE, 2016, 11, e0161947.	2.5	69
51	Dealing with uncertainty in water scarcity footprints. Environmental Research Letters, 2016, 11, 054008.	5.2	42
52	Global thermal pollution of rivers from thermoelectric power plants. Environmental Research Letters, 2016, 11, 104011.	5.2	89
53	Spatially explicit assessment of water embodied in European trade: A product-level multi-regional input-output analysis. Global Environmental Change, 2016, 38, 171-182.	7.8	98
54	Global water footprint assessment of hydropower. Renewable Energy, 2016, 99, 711-720.	8.9	104

#	Article	IF	CITATIONS
55	A matter of meters: state of the art in the life cycle assessment of enhanced geothermal systems. Energy and Environmental Science, 2016, 9, 2720-2743.	30.8	43
56	Water Footprinting in Life Cycle Assessment: How to Count the Drops and Assess the Impacts?. LCA Compendium, 2016, , 73-114.	0.8	5
57	Global Biodiversity Loss by Freshwater Consumption and Eutrophication from Swiss Food Consumption. Environmental Science & Technology, 2016, 50, 7019-7028.	10.0	55
58	Global freshwater thermal emissions from steam-electric power plants with once-through cooling systems. Energy, 2016, 97, 46-57.	8.8	41
59	Area of concern: a new paradigm in life cycle assessment for the development of footprint metrics. International Journal of Life Cycle Assessment, 2016, 21, 276-280.	4.7	38
60	Global guidance on environmental life cycle impact assessment indicators: progress and case study. International Journal of Life Cycle Assessment, 2016, 21, 429-442.	4.7	88
61	Spatially Explicit Analysis of Biodiversity Loss Due to Global Agriculture, Pasture and Forest Land Use from a Producer and Consumer Perspective. Environmental Science & Technology, 2016, 50, 3928-3936.	10.0	101
62	Ecoinvent 3: assessing water use in LCA and facilitating water footprinting. International Journal of Life Cycle Assessment, 2016, 21, 1349-1360.	4.7	43
63	Saving the Planet's Climate or Water Resources? The Trade-Off between Carbon and Water Footprints of European Biofuels. Sustainability, 2015, 7, 6665-6683.	3.2	37
64	Analysis of water use impact assessment methods (part A): evaluation of modeling choices based on a quantitative comparison of scarcity and human health indicators. International Journal of Life Cycle Assessment, 2015, 20, 139-160.	4.7	72
65	Spatial and temporal specific characterisation factors for water use impact assessment in Spain. International Journal of Life Cycle Assessment, 2015, 20, 128-138.	4.7	34
66	Making Sense of the Minefield of Footprint Indicators. Environmental Science & Technology, 2015, 49, 2601-2603.	10.0	38
67	Exploring the potential impact of implementing carbon capture technologies in fossil fuel power plants on regional European water stress index levels. International Journal of Greenhouse Gas Control, 2015, 39, 318-328.	4.6	10
68	Consensus building on the development of a stress-based indicator for LCA-based impact assessment of water consumption: outcome of the expert workshops. International Journal of Life Cycle Assessment, 2015, 20, 577-583.	4.7	84
69	Modelling spatially explicit impacts from phosphorus emissions in agriculture. International Journal of Life Cycle Assessment, 2015, 20, 785-795.	4.7	48
70	Analysis of water use impact assessment methods (part B): applicability for water footprinting and decision making with a laundry case study. International Journal of Life Cycle Assessment, 2015, 20, 865-879.	4.7	31
71	Large-Scale Hydrological Modeling for Calculating Water Stress Indices: Implications of Improved Spatiotemporal Resolution, Surface-Groundwater Differentiation, and Uncertainty Characterization. Environmental Science & Technology, 2015, 49, 4971-4979.	10.0	30
72	Criticality of Water: Aligning Water and Mineral Resources Assessment. Environmental Science & Technology, 2015, 49, 12315-12323.	10.0	33

#	Article	IF	CITATIONS
73	Uncertainty analysis of the environmental sustainability of biofuels. Energy, Sustainability and Society, 2015, 5, .	3.8	20
74	Water Use. LCA Compendium, 2015, , 223-245.	0.8	4
75	Activities of Water Use in LCA (WULCA). Journal of Life Cycle Assessment Japan, 2015, 11, 257-261.	0.0	0
76	Teleconnecting Consumption to Environmental Impacts at Multiple Spatial Scales. Journal of Industrial Ecology, 2014, 18, 7-9.	5.5	79
77	Response to Fang and Heijungs. Journal of Industrial Ecology, 2014, 18, 72-72.	5.5	2
78	Water Footprint: Pitfalls on Common Ground. Environmental Science & amp; Technology, 2014, 48, 4-4.	10.0	43
79	Impacts of River Water Consumption on Aquatic Biodiversity in Life Cycle Assessment—A Proposed Method, and a Case Study for Europe. Environmental Science & Technology, 2014, 48, 3236-3244.	10.0	43
80	Footprints and Safe Operation Space: Walk the Line?. Environmental Science & Technology, 2014, 48, 8935-8935.	10.0	5
81	Water Footprint Symposium: where next for water footprint and water assessment methodology?. International Journal of Life Cycle Assessment, 2014, 19, 1561-1565.	4.7	13
82	Virtual Scarce Water in China. Environmental Science & amp; Technology, 2014, 48, 7704-7713.	10.0	251
83	Monthly water stress: spatially and temporally explicit consumptive water footprint of global crop production. Journal of Cleaner Production, 2014, 73, 52-62.	9.3	199
84	Assessment of Implementing Carbon Capture Technologies in Fossil Fuel Power Plants on Regional European Water Stress Index Levels. Energy Procedia, 2014, 63, 7198-7204.	1.8	1
85	Assessing the Environmental Impact of Water Consumption by Energy Crops Grown in Spain. Journal of Industrial Ecology, 2013, 17, 90-102.	5.5	58
86	Quantifying Area Changes of Internationally Important Wetlands Due to Water Consumption in LCA. Environmental Science & Technology, 2013, 47, 9799-9807.	10.0	54
87	Review of methods addressing freshwater use in life cycle inventory and impact assessment. International Journal of Life Cycle Assessment, 2013, 18, 707-721.	4.7	268
88	Accounting for a scarce resource: virtual water and water footprint in the global water system. Current Opinion in Environmental Sustainability, 2013, 5, 599-606.	6.3	74
89	Estimating Water Consumption of Potential Natural Vegetation on Global Dry Lands: Building an LCA Framework for Green Water Flows. Environmental Science & Technology, 2013, 47, 12258-12265.	10.0	41
90	Effects of Consumptive Water Use on Biodiversity in Wetlands of International Importance. Environmental Science & Technology, 2013, 47, 12248-12257.	10.0	95

#	Article	IF	CITATIONS
91	Towards an Integrated Family of Footprint Indicators. Journal of Industrial Ecology, 2013, 17, 337-339.	5.5	51
92	A new water footprint calculation method integrating consumptive and degradative water use into a single stand-alone weighted indicator. International Journal of Life Cycle Assessment, 2013, 18, 204-207.	4.7	132
93	Biodiversity Impacts from Salinity Increase in a Coastal Wetland. Environmental Science & Technology, 2013, 47, 6384-6392.	10.0	42
94	Environmental Impacts of <i>Jatropha curcas</i> Biodiesel in India. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-10.	3.0	34
95	Does Southâ€ŧoâ€North Water Transfer Reduce the Environmental Impact of Water Consumption in China?. Journal of Industrial Ecology, 2012, 16, 647-654.	5.5	33
96	Life Cycle Inventory and Carbon and Water FoodPrint of Fruits and Vegetables: Application to a Swiss Retailer. Environmental Science & Technology, 2012, 46, 3253-3262.	10.0	196
97	GIS-Based Regionalized Life Cycle Assessment: How Big Is Small Enough? Methodology and Case Study of Electricity Generation. Environmental Science & Technology, 2012, 46, 1096-1103.	10.0	115
98	Modeling the Local Biodiversity Impacts of Agricultural Water Use: Case Study of a Wetland in the Coastal Arid Area of Peru. Environmental Science & Technology, 2012, 46, 4966-4974.	10.0	45
99	Measuring ecological impact of water consumption by bioethanol using life cycle impact assessment. International Journal of Life Cycle Assessment, 2012, 17, 16-24.	4.7	22
100	Characterization Factors for Water Consumption and Greenhouse Gas Emissions Based on Freshwater Fish Species Extinction. Environmental Science & Technology, 2011, 45, 5272-5278.	10.0	114
101	Environmental Impacts of Water Use in Global Crop Production: Hotspots and Trade-Offs with Land Use. Environmental Science & Technology, 2011, 45, 5761-5768.	10.0	234
102	Value Choices in Life Cycle Impact Assessment of Stressors Causing Human Health Damage. Journal of Industrial Ecology, 2011, 15, 796-815.	5.5	46
103	Projected water consumption in future global agriculture: Scenarios and related impacts. Science of the Total Environment, 2011, 409, 4206-4216.	8.0	118
104	The environmental relevance of freshwater consumption in global power production. International Journal of Life Cycle Assessment, 2011, 16, 580-591.	4.7	110
105	Taking into account water use impacts in the LCA of biofuels: an Argentinean case study. International Journal of Life Cycle Assessment, 2011, 16, 869-877.	4.7	32
106	COMPARISON OF BOTTOM-UP AND TOP-DOWN APPROACHES TO CALCULATING THE WATER FOOTPRINTS OF NATIONS. Economic Systems Research, 2011, 23, 371-385.	2.7	288
107	A framework for assessing off-stream freshwater use in LCA. International Journal of Life Cycle Assessment, 2010, 15, 439-453.	4.7	203
108	Reducing humanity's water footprint. Environmental Science & Technology, 2010, 44, 6019-6021.	10.0	86

#	Article	IF	CITATIONS
109	Characterization Factors for Thermal Pollution in Freshwater Aquatic Environments. Environmental Science & Technology, 2010, 44, 9364-9369.	10.0	93
110	A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Global Environmental Change, 2010, 20, 113-120.	7.8	480
111	The water "shoesize―vs. footprint of bioenergy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, E93-4.	7.1	84
112	Assessing the Environmental Impacts of Freshwater Consumption in LCA. Environmental Science & Technology, 2009, 43, 4098-4104.	10.0	1,032