Robert A Britton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1908801/publications.pdf

Version: 2024-02-01

106 papers 5,884 citations

36 h-index 72 g-index

116 all docs

116 does citations

116 times ranked 7432 citing authors

#	Article	IF	CITATIONS
1	RbgA ensures the correct timing in the maturation of the 50S subunits functional sites. Nucleic Acids Research, 2022, , .	14.5	4
2	Gut-derived butyrate suppresses ocular surface inflammation. Scientific Reports, 2022, 12, 4512.	3.3	19
3	Gut Microbiota From Sjögren syndrome Patients Causes Decreased T Regulatory Cells in the Lymphoid Organs and Desiccation-Induced Corneal Barrier Disruption in Mice. Frontiers in Medicine, 2022, 9, 852918.	2.6	16
4	Distinct gene expression profiles between human preterm-derived and adult-derived intestinal organoids exposed to <i>Enterococcus faecalis</i> : a pilot study. Gut, 2022, 71, 2141-2143.	12.1	10
5	Systems biology approach to functionally assess the <i>Clostridioides difficile</i> pangenome reveals genetic diversity with discriminatory power. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119396119.	7.1	5
6	Fusobacterium nucleatum Adheres to Clostridioides difficile via the RadD Adhesin to Enhance Biofilm Formation in Intestinal Mucus. Gastroenterology, 2021, 160, 1301-1314.e8.	1.3	46
7	Probiotics and the Microbiome—How Can We Help Patients Make Sense of Probiotics?. Gastroenterology, 2021, 160, 614-623.	1.3	16
8	Human-Derived Bifidobacterium dentium Modulates the Mammalian Serotonergic System and Gut–Brain Axis. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 221-248.	4.5	73
9	<i>Fusobacterium nucleatum</i> Secretes Outer Membrane Vesicles and Promotes Intestinal Inflammation. MBio, 2021, 12, .	4.1	101
10	The metabolic profile of Bifidobacterium dentium reflects its status as a human gut commensal. BMC Microbiology, 2021, 21, 154.	3.3	13
11	Differentially Expressed Gene Pathways in the Conjunctiva of SjĶgren Syndrome Keratoconjunctivitis Sicca. Frontiers in Immunology, 2021, 12, 702755.	4.8	13
12	AMiGA: Software for Automated Analysis of Microbial Growth Assays. MSystems, 2021, 6, e0050821.	3.8	20
13	Systems biology evaluation of refractory Clostridioides difficile infection including multiple failures of fecal microbiota transplantation. Anaerobe, 2021, 70, 102387.	2.1	8
14	Drivers of transcriptional variance in human intestinal epithelial organoids. Physiological Genomics, 2021, 53, 486-508.	2.3	17
15	Crowdsourcing biocuration: The Community Assessment of Community Annotation with Ontologies (CACAO). PLoS Computational Biology, 2021, 17, e1009463.	3.2	7
16	The gut-eye-lacrimal gland-microbiome axis in Sjögren Syndrome. Ocular Surface, 2020, 18, 335-344.	4.4	55
17	Adaptation of the Gut Microbiota to Modern Dietary Sugars and Sweeteners. Advances in Nutrition, 2020, 11, 616-629.	6.4	70
18	Involvement of the Gut Microbiota and Barrier Function in Glucocorticoidâ€Induced Osteoporosis. Journal of Bone and Mineral Research, 2020, 35, 801-820.	2.8	101

#	Article	IF	CITATIONS
19	Rotavirus induces intercellular calcium waves through ADP signaling. Science, 2020, 370, .	12.6	44
20	Identification of Simplified Microbial Communities That Inhibit Clostridioides difficile Infection through Dilution/Extinction. MSphere, 2020, 5, .	2.9	15
21	Understanding the Role of RbgA in the Assembly of the 50S Ribosomal Subunit Microscopy and Microanalysis, 2020, 26, 118-119.	0.4	0
22	Systems biology analysis of the Clostridioides difficile core-genome contextualizes microenvironmental evolutionary pressures leading to genotypic and phenotypic divergence. Npj Systems Biology and Applications, 2020, 6, 31.	3.0	15
23	Reuterin disrupts <i>Clostridioides difficile </i> metabolism and pathogenicity through reactive oxygen species generation. Gut Microbes, 2020, 12, 1795388.	9.8	23
24	Enhancing responsiveness of human jejunal enteroids to host and microbial stimuli. Journal of Physiology, 2020, 598, 3085-3105.	2.9	17
25	Probiotics: Promise, Evidence, and Hope. Gastroenterology, 2020, 159, 409-413.	1.3	10
26	Challenges and Pitfalls in the Engineering of Human Interleukin 22 (hIL-22) Secreting Lactobacillus reuteri. Frontiers in Bioengineering and Biotechnology, 2020, 8, 543.	4.1	8
27	Discovery of a bacterial peptide as a modulator of GLP-1 and metabolic disease. Scientific Reports, 2020, 10, 4922.	3.3	22
28	Post-antibiotic gut dysbiosis-induced trabecular bone loss is dependent on lymphocytes. Bone, 2020, 134, 115269.	2.9	29
29	Parenteral lipids shape gut bile acid pools and microbiota profiles in the prevention of cholestasis in preterm pigs. Journal of Lipid Research, 2020, 61, 1038-1051.	4.2	21
30	Degradation of the Incretin Hormone Glucagon-Like Peptide-1 (GLP-1) by Enterococcus faecalis Metalloprotease GelE. MSphere, 2020, 5, .	2.9	14
31	Human intestinal enteroids as a model of <i>Clostridioides difficile</i> iournal of Physiology - Renal Physiology, 2020, 318, G870-G888.	3.4	23
32	Microbiota in vitro modulated with polyphenols shows decreased colonization resistance against Clostridioides difficile but can neutralize cytotoxicity. Scientific Reports, 2020, 10, 8358.	3.3	15
33	Characterizing mucusâ€based biofilms in human Clostridium difficile infection. FASEB Journal, 2020, 34, 1-1.	0.5	0
34	Dysregulation of Endogenous and Paracrine Calcium Signaling Pathways by Rotaviruses and Caliciviruses. FASEB Journal, 2020, 34, 1-1.	0.5	0
35	The role of trehalose in the global spread of epidemic <i>Clostridium difficile</i> . Gut Microbes, 2019, 10, 204-209.	9.8	32
36	Human Intestinal Enteroids With Inducible Neurogenin-3 Expression as a Novel Model of Gut Hormone Secretion. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 209-229.	4.5	60

3

#	Article	IF	CITATIONS
37	Dysbiosis Modulates Ocular Surface Inflammatory Response to Liposaccharide. , 2019, 60, 4224.		21
38	Beneficial effects of Lactobacillus reuteri 6475 on bone density in male mice is dependent on lymphocytes. Scientific Reports, 2019, 9, 14708.	3.3	28
39	Structural consequences of the interaction of RbgA with a 50S ribosomal subunit assembly intermediate. Nucleic Acids Research, 2019, 47, 10414-10425.	14.5	38
40	Scales of persistence: transmission and the microbiome. Current Opinion in Microbiology, 2019, 50, 42-49.	5.1	31
41	Probiotic <i>Lactobacillus reuteri</i> Prevents Postantibiotic Bone Loss by Reducing Intestinal Dysbiosis and Preventing Barrier Disruption. Journal of Bone and Mineral Research, 2019, 34, 681-698.	2.8	119
42	Degradation-resistant trehalose analogues block utilization of trehalose by hypervirulent Clostridioides difficile. Chemical Communications, 2019, 55, 5009-5012.	4.1	22
43	Characterizing how probiotic Lactobacillus reuteri 6475 and lactobacillic acid mediate suppression of osteoclast differentiation. Bone Reports, 2019, 11, 100227.	0.4	22
44	Body Mass Index as a Determinant of Systemic Exposure to Gallotannin Metabolites during 6â€Week Consumption of Mango (<i>Mangifera indica</i> L.) and Modulation of Intestinal Microbiota in Lean and Obese Individuals. Molecular Nutrition and Food Research, 2019, 63, e1800512.	3.3	24
45	Mechanisms Underlying Microbial-Mediated Changes in Social Behavior in Mouse Models of Autism Spectrum Disorder. Neuron, 2019, 101, 246-259.e6.	8.1	477
46	Lymphocytes mediate bone loss induced by gut microbiota repopulation following antibiotic use. FASEB Journal, 2019, 33, 589.4.	0.5	0
47	Genome alterations associated with improved transformation efficiency in Lactobacillus reuteri. Microbial Cell Factories, 2018, 17, 138.	4.0	9
48	Microbiota, Liver Diseases, and Alcohol., 2018, , 187-212.		2
49	Lung Microbiota and Its Impact on the Mucosal Immune Phenotype. , 2018, , 161-186.		0
50	Fecal Microbiota Transplantation: Therapeutic Potential for a Multitude of Diseases beyond Clostridium difficile., 2018,, 291-308.		2
51	Enterococci and Their Interactions with the Intestinal Microbiome. , 2018, , 309-330.		7
52	Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology., 2018,, 1-47.		0
53	Ecological Therapeutic Opportunities for Oral Diseases. , 2018, , 235-265.		0
54	Use of Traditional and Genetically Modified Probiotics in Human Health: What Does the Future Hold?. , 2018, , 363-370.		0

#	Article	IF	CITATIONS
55	The Genomic Basis of Lactobacilli as Health-Promoting Organisms. , 2018, , 49-71.		O
56	Microbial Interactions and Interventions in Colorectal Cancer. , 2018, , 99-130.		1
57	Bifidobacteria and Their Health-Promoting Effects. , 2018, , 73-98.		13
58	Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?. , 2018, , 131-148.		0
59	Protective role of commensal bacteria in Sjögren Syndrome. Journal of Autoimmunity, 2018, 93, 45-56.	6.5	77
60	Resilience of small intestinal beneficial bacteria to the toxicity of soybean oil fatty acids. ELife, 2018, 7,	6.0	14
61	Microbiota Reconstitution Does Not Cause Bone Loss in Germ-Free Mice. MSphere, 2018, 3, .	2.9	36
62	Sj \tilde{A} ¶gren-Like Lacrimal Keratoconjunctivitis in Germ-Free Mice. International Journal of Molecular Sciences, 2018, 19, 565.	4.1	57
63	Human Intestinal Enteroid Monolayers as a Physiologically Relevant Model to Study Clostridium difficile Toxin Activity. FASEB Journal, 2018, 32, 873.1.	0.5	0
64	Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Molecular Systems Biology, 2017, 13, 923.	7.2	194
65	Mechanisms of cross-talk between the diet, the intestinal microbiome, and the undernourished host. Gut Microbes, 2017, 8, 98-112.	9.8	43
66	Next-Generation Probiotics Targeting Clostridium difficile through Precursor-Directed Antimicrobial Biosynthesis. Infection and Immunity, 2017, 85, .	2.2	65
67	Gut Microbiota and Bone Health. Advances in Experimental Medicine and Biology, 2017, 1033, 47-58.	1.6	64
68	The impact of recent improvements in cryo-electron microscopy technology on the understanding of bacterial ribosome assembly. Nucleic Acids Research, 2017, 45, 1027-1040.	14.5	19
69	Genetic Tools for the Enhancement of Probiotic Properties. Microbiology Spectrum, 2017, 5, .	3.0	4
70	CRISPR Diversity and Microevolution in <i>Clostridium difficile</i> . Genome Biology and Evolution, 2016, 8, 2841-2855.	2.5	60
71	MiniBioReactor Arrays (MBRAs) as a Tool for Studying C. difficile Physiology in the Presence of a Complex Community. Methods in Molecular Biology, 2016, 1476, 235-258.	0.9	26
72	YphC and YsxC GTPases assist the maturation of the central protuberance, GTPase associated region and functional core of the 50S ribosomal subunit. Nucleic Acids Research, 2016, 44, 8442-8455.	14.5	42

#	Article	IF	Citations
73	Lactobacillus reuteri 6475 Increases Bone Density in Intact Females Only under an Inflammatory Setting. PLoS ONE, 2016, 11, e0153180.	2.5	81
74	Cultivation of stable, reproducible microbial communities from different fecal donors using minibioreactor arrays (MBRAs). Microbiome, 2015, 3, 42.	11.1	104
75	Intestinal microbial communities associated with acute enteric infections and disease recovery. Microbiome, 2015, 3, 45.	11.1	151
76	Prebiotic and Probiotic Regulation of Bone Health: Role of the Intestine and its Microbiome. Current Osteoporosis Reports, 2015, 13, 363-371.	3.6	169
77	Humanized microbiota mice as a model of recurrent Clostridium difficile disease. Microbiome, 2015, 3, 35.	11.1	68
78	Loss of Bone and Wnt10b Expression in Male Type 1 Diabetic Mice Is Blocked by the Probiotic Lactobacillus reuteri. Endocrinology, 2015, 156, 3169-3182.	2.8	113
79	Functional Interaction between Ribosomal Protein L6 and RbgA during Ribosome Assembly. PLoS Genetics, 2014, 10, e1004694.	3.5	23
80	Epidemic Clostridium difficile Strains Demonstrate Increased Competitive Fitness Compared to Nonepidemic Isolates. Infection and Immunity, 2014, 82, 2815-2825.	2.2	70
81	Role of the Intestinal Microbiota in Resistance to Colonization by Clostridium difficile. Gastroenterology, 2014, 146, 1547-1553.	1.3	369
82	Probiotic <i>L. reuteri</i> Treatment Prevents Bone Loss in a Menopausal Ovariectomized Mouse Model. Journal of Cellular Physiology, 2014, 229, 1822-1830.	4.1	374
83	Role of Lactobacillus reuteri cell and mucus-binding protein A (CmbA) in adhesion to intestinal epithelial cells and mucus in vitro. Microbiology (United Kingdom), 2014, 160, 671-681.	1.8	75
84	Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. Journal of Cellular Physiology, 2013, 228, 1793-1798.	4.1	217
85	High efficiency recombineering in lactic acid bacteria. Nucleic Acids Research, 2012, 40, e76-e76.	14.5	182
86	Histamine Derived from Probiotic Lactobacillus reuteri Suppresses TNF via Modulation of PKA and ERK Signaling. PLoS ONE, 2012, 7, e31951.	2.5	363
87	Interaction between the intestinal microbiota and host in Clostridium difficile colonization resistance. Trends in Microbiology, 2012, 20, 313-319.	7.7	213
88	Cyclopropane fatty acid synthase mutants of probiotic human-derivedLactobacillus reuteriare defective in TNF inhibition. Gut Microbes, 2011, 2, 69-79.	9.8	21
89	Incorporating Genomics and Bioinformatics across the Life Sciences Curriculum. PLoS Biology, 2010, 8, e1000448.	5.6	54
90	The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiology (United Kingdom), 2010, 156, 1589-1599.	1.8	213

#	Article	IF	CITATIONS
91	Role of GTPases in Bacterial Ribosome Assembly. Annual Review of Microbiology, 2009, 63, 155-176.	7.3	138
92	Probiotics and Gastrointestinal Infections. Interdisciplinary Perspectives on Infectious Diseases, 2008, 2008, 1-10.	1.4	41
93	Maturation of the 5' end of Bacillus subtilis 16S rRNA by the essential ribonuclease YkqC/RNase J1. Molecular Microbiology, 2007, 63, 127-138.	2.5	129
94	DNA Microarrays and Bacterial Gene Expression. Methods in Enzymology, 2003, 370, 264-278.	1.0	3
95	Cell cycle arrest in Era GTPase mutants: a potential growth rateâ€regulated checkpoint in <i>Escherichia coli (i). Molecular Microbiology, 1998, 27, 739-750.</i>	2.5	127
96	Isolation and Characterization of Suppressors of Two <i>Escherichia coli dnaG</i> Mutations, <i>dnaG2903</i> and <i>parB</i> . Genetics, 1997, 145, 867-875.	2.9	13
97	Functional analysis of mutations in the transcription terminator T1 that suppress two dnaG alleles in Escherichia coli. Molecular Genetics and Genomics, 1995, 246, 729-733.	2.4	4
98	Conservation and evolution of the rpsU-dnaG-rpoD macromolecular synthesis operon in bacteria. Molecular Microbiology, 1993, 8, 343-355.	2.5	56
99	Genetic Tools for the Enhancement of Probiotic Properties. , 0, , 371-387.		0
100	United States Regulatory Considerations for Development of Live Biotherapeutic Products as Drugs. , 0, , 409-416.		1
101	Bacteriophage Clinical Use as Antibacterial "Drugs― Utility and Precedent. , 0, , 417-451.		2
102	Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve Human Health., 0,, 453-483.		8
103	The Potential of Probiotics as a Therapy for Osteoporosis. , 0, , 213-233.		6
104	Engineering Diagnostic and Therapeutic Gut Bacteria., 0,, 331-361.		4
105	Control of <i>Clostridium difficile </i> Infection by Defined Microbial Communities., 0,, 267-289.		1
106	Genome Editing of Food-Grade Lactobacilli To Develop Therapeutic Probiotics. , 0, , 389-408.		2