Enrico Garattini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1908767/publications.pdf

Version: 2024-02-01

162 papers 6,206 citations

44069 48 h-index 91884 69 g-index

166 all docs

166 docs citations

166 times ranked 4930 citing authors

#	Article	IF	CITATIONS
1	Involvement of aldehyde oxidase in the metabolism of aromatic and aliphatic aldehyde-odorants in the mouse olfactory epithelium. Archives of Biochemistry and Biophysics, 2022, 715, 109099.	3.0	3
2	Role of cardiolipins, mitochondria, and autophagy in the differentiation process activated by all-trans retinoic acid in acute promyelocytic leukemia. Cell Death and Disease, 2022, 13, 30.	6.3	3
3	A DOCK1 Gene-Derived Circular RNA Is Highly Expressed in Luminal Mammary Tumours and Is Involved in the Epithelial Differentiation, Growth, and Motility of Breast Cancer Cells. Cancers, 2021, 13, 5325.	3.7	6
4	OXER1 and RACK1-associated pathway: a promising drug target for breast cancer progression. Oncogenesis, 2020, 9, 105.	4.9	25
5	Retinoic Acid Sensitivity of Triple-Negative Breast Cancer Cells Characterized by Constitutive Activation of the notch1 Pathway: The Role of Rarβ. Cancers, 2020, 12, 3027.	3.7	10
6	Evolution, expression, and substrate specificities of aldehyde oxidase enzymes in eukaryotes. Journal of Biological Chemistry, 2020, 295, 5377-5389.	3.4	39
7	All-Trans Retinoic Acid Stimulates Viral Mimicry, Interferon Responses and Antigen Presentation in Breast-Cancer Cells. Cancers, 2020, 12, 1169.	3.7	15
8	Assessing Autophagy During Retinoid Treatment of Breast Cancer Cells. Methods in Molecular Biology, 2019, 2019, 237-256.	0.9	4
9	Role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid. Journal of Experimental and Clinical Cancer Research, 2019, 38, 436.	8.6	11
10	The ATRA-21 gene-expression model predicts retinoid sensitivity in CEBPA double mutant, $t(8;21)$ and inv(16) AML patients. Blood Cancer Journal, 2019, 9, 76.	6.2	2
11	Aldehyde oxidase at the crossroad of metabolism and preclinical screening. Drug Metabolism Reviews, 2019, 51, 428-452.	3.6	11
12	HER2-positive breast-cancer cell lines are sensitive to KDM5 inhibition: definition of a gene-expression model for the selection of sensitive cases. Oncogene, 2019, 38, 2675-2689.	5.9	23
13	S100A3 a partner protein regulating the stability/activity of RARα and PML-RARα in cellular models of breast/lung cancer and acute myeloid leukemia. Oncogene, 2019, 38, 2482-2500.	5.9	18
14	BET proteins regulate homologous recombinationâ€mediated DNA repair: BRCAness and implications for cancer therapy. International Journal of Cancer, 2019, 144, 755-766.	5.1	54
15	Inhibitory effects of drugs on the metabolic activity of mouse and human aldehyde oxidases and influence on drug–drug interactions. Biochemical Pharmacology, 2018, 154, 28-38.	4.4	21
16	Uncoupling FoxO3A mitochondrial and nuclear functions in cancer cells undergoing metabolic stress and chemotherapy. Cell Death and Disease, 2018, 9, 231.	6.3	33
17	Critical overview on the structure and metabolism of human aldehyde oxidase and its role in pharmacokinetics. Coordination Chemistry Reviews, 2018, 368, 35-59.	18.8	21
18	Xanthine Oxidoreductase and Aldehyde Oxidases. , 2018, , 208-232.		1

#	Article	IF	CITATIONS
19	Massive NGS data analysis reveals hundreds of potential novel gene fusions in human cell lines. GigaScience, 2018, 7, .	6.4	6
20	Structural basis for the role of mammalian aldehyde oxidases in the metabolism of drugs and xenobiotics. Current Opinion in Chemical Biology, 2017, 37, 39-47.	6.1	33
21	Network-guided modeling allows tumor-type independent prediction of sensitivity to all-trans-retinoic acid. Annals of Oncology, 2017, 28, 611-621.	1.2	31
22	The autophagy scaffold protein ALFY is critical for the granulocytic differentiation of AML cells. Scientific Reports, 2017, 7, 12980.	3.3	15
23	Generation of a new mouse model of glaucoma characterized by reduced expression of the AP- $2\hat{l}^2$ and AP- $2\hat{l}'$ proteins. Scientific Reports, 2017, 7, 11140.	3.3	7
24	Direct Comparison of the Enzymatic Characteristics and Superoxide Production of the Four Aldehyde Oxidase Enzymes Present in Mouse. Drug Metabolism and Disposition, 2017, 45, 947-955.	3.3	15
25	RARα2 and PML-RAR similarities in the control of basal and retinoic acid induced myeloid maturation of acute myeloid leukemia cells. Oncotarget, 2017, 8, 37041-37060.	1.8	8
26	Mouse aldehyde-oxidase-4 controls diurnal rhythms, fat deposition and locomotor activity. Scientific Reports, 2016, 6, 30343.	3.3	15
27	Structure and function of mammalian aldehyde oxidases. Archives of Toxicology, 2016, 90, 753-780.	4.2	95
28	Association of <i>CFHR1 </i> homozygous deletion with acute myelogenous leukemia in the European population. Leukemia and Lymphoma, 2016, 57, 1234-1237.	1.3	5
29	Cellular and molecular determinants of all― <i>trans</i> retinoic acid sensitivity in breast cancer: <i>Luminal</i> phenotype and <scp>RAR</scp> α expression. EMBO Molecular Medicine, 2015, 7, 950-972.	6.9	60
30	Insights into the structural determinants of substrate specificity and activity in mouse aldehyde oxidases. Journal of Biological Inorganic Chemistry, 2015, 20, 209-217.	2.6	19
31	Is  Bad Luck' an Important Determinant of Cancer Incidence and Does This Concept Apply to Kidney Tumors?. Nephron, 2015, 129, 219-222.	1.8	4
32	All-trans-retinoic Acid Modulates the Plasticity and Inhibits the Motility of Breast Cancer Cells. Journal of Biological Chemistry, 2015, 290, 17690-17709.	3.4	44
33	Activation of RARÎ \pm induces autophagy in SKBR3 breast cancer cells and depletion of key autophagy genes enhances ATRA toxicity. Cell Death and Disease, 2015, 6, e1861-e1861.	6.3	24
34	Different Stability and Proteasome-Mediated Degradation Rate of SMN Protein Isoforms. PLoS ONE, 2015, 10, e0134163.	2.5	11
35	MicroRNA networks regulated by <i>all-trans</i> retinoic acid and Lapatinib control the growth, survival and motility of breast cancer cells. Oncotarget, 2015, 6, 13176-13200.	1.8	33
36	The four aldehyde oxidases of <i>Drosophila melanogaster</i> have different gene expression patterns and enzyme substrate specificities. Journal of Experimental Biology, 2014, 217, 2201-11.	1.7	28

3

#	Article	IF	CITATIONS
37	Retinoids and breast cancer: From basic studies to the clinic and back again. Cancer Treatment Reviews, 2014, 40, 739-749.	7.7	113
38	Structure and evolution of vertebrate aldehyde oxidases: from gene duplication to gene suppression. Cellular and Molecular Life Sciences, 2013, 70, 1807-1830.	5.4	53
39	New insights into the molecular mechanisms underlying sensitivity/resistance to the atypical retinoid ST1926 in acute myeloid leukaemia cells: The role of histone H2A.Z, cAMP-dependent protein kinase A and the proteasome. European Journal of Cancer, 2013, 49, 1491-1500.	2.8	14
40	Aldehyde oxidase and its importance in novel drug discovery: present and future challenges. Expert Opinion on Drug Discovery, 2013, 8, 641-654.	5.0	60
41	The Impact of Single Nucleotide Polymorphisms on Human Aldehyde Oxidase. Drug Metabolism and Disposition, 2012, 40, 856-864.	3.3	88
42	Human Axonal Survival of Motor Neuron (a-SMN) Protein Stimulates Axon Growth, Cell Motility, C-C Motif Ligand 2 (CCL2), and Insulin-like Growth Factor-1 (IGF1) Production. Journal of Biological Chemistry, 2012, 287, 25782-25794.	3.4	26
43	The First Mammalian Aldehyde Oxidase Crystal Structure. Journal of Biological Chemistry, 2012, 287, 40690-40702.	3.4	83
44	Retinoids and breast cancer: new clues to increase their activity and selectivity. Breast Cancer Research, 2012, 14, 111.	5.0	18
45	Synergistic antitumor activity of lapatinib and retinoids on a novel subtype of breast cancer with coamplification of ERBB2 and RARA. Oncogene, 2012, 31, 3431-3443.	5.9	51
46	The role of aldehyde oxidase in drug metabolism. Expert Opinion on Drug Metabolism and Toxicology, 2012, 8, 487-503.	3.3	147
47	p38αMAPK interacts with and inhibits RARα: suppression of the kinase enhances the therapeutic activity of retinoids in acute myeloid leukemia cells. Leukemia, 2012, 26, 1850-1861.	7.2	24
48	Spinal muscular atrophy pathogenic mutations impair the axonogenic properties of axonalâ€survival of motor neuron. Journal of Neurochemistry, 2012, 121, 465-474.	3.9	12
49	Increasing recognition of the importance of aldehyde oxidase in drug development and discovery. Drug Metabolism Reviews, 2011, 43, 374-386.	3.6	99
50	Characterization and Crystallization of Mouse Aldehyde Oxidase 3: From Mouse Liver to <i>Escherichia coli </i> Heterologous Protein Expression. Drug Metabolism and Disposition, 2011, 39, 1939-1945.	3.3	29
51	Induction of miR-21 by Retinoic Acid in Estrogen Receptor-positive Breast Carcinoma Cells. Journal of Biological Chemistry, 2011, 286, 4027-4042.	3.4	82
52	Antiproliferative and Differentiating Activities of a Novel Series of Histone Deacetylase Inhibitors. ACS Medicinal Chemistry Letters, 2010, 1, 411-415.	2.8	73
53	Site Directed Mutagenesis of Amino Acid Residues at the Active Site of Mouse Aldehyde Oxidase AOX1. PLoS ONE, 2009, 4, e5348.	2.5	40
54	SUG-1 Plays Proteolytic and Non-proteolytic Roles in the Control of Retinoic Acid Target Genes via Its Interaction with SRC-3. Journal of Biological Chemistry, 2009, 284, 8127-8135.	3.4	18

#	Article	lF	CITATIONS
55	Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα. Cancer Research, 2009, 69, 1016-1026.	0.9	57
56	Role of the Molybdoflavoenzyme Aldehyde Oxidase Homolog 2 in the Biosynthesis of Retinoic Acid: Generation and Characterization of a Knockout Mouse. Molecular and Cellular Biology, 2009, 29, 357-377.	2.3	55
57	The mammalian aldehyde oxidase gene family. Human Genomics, 2009, 4, 119-30.	2.9	98
58	Mammalian aldehyde oxidases: genetics, evolution and biochemistry. Cellular and Molecular Life Sciences, 2008, 65, 1019-1048.	5.4	164
59	Atypical retinoids ST1926 and CD437 are S-phase-specific agents causing DNA double-strand breaks: significance for the cytotoxic and antiproliferative activity. Molecular Cancer Therapeutics, 2008, 7, 2941-2954.	4.1	39
60	Axonal-SMN (a-SMN), a protein isoform of the survival motor neuron gene, is specifically involved in axonogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1959-1964.	7.1	70
61	Retinoids as Differentiating Agents in Oncology: A Network of Interactions with Intracellular Pathways as the Basis for Rational Therapeutic Combinations. Current Pharmaceutical Design, 2007, 13, 1375-1400.	1.9	68
62	Cytodifferentiation by Retinoids, a Novel Therapeutic Option in Oncology: Rational Combinations with Other Therapeutic Agents. Vitamins and Hormones, 2007, 75, 301-354.	1.7	24
63	P38MAPK-dependent phosphorylation and degradation of SRC-3/AIB1 and RARα-mediated transcription. EMBO Journal, 2006, 25, 739-751.	7.8	81
64	Granulocytic maturation in cultures of acute myeloid leukemia is not always accompanied by increased apoptosis. Leukemia Research, 2006, 30, 519-520.	0.8	3
65	Antitumor Activity of the Retinoid-Related Molecules (E)-3-(4′-Hydroxy-3′-adamantylbiphenyl-4-yl)acrylic Acid (ST1926) and 6-[3-(1-Adamantyl)-4-hydroxyphenyl]-2-naphthalene Carboxylic Acid (CD437) in F9 Teratocarcinoma: Role of Retinoic Acid Receptor γ and Retinoid-Independent Pathways. Molecular Pharmacology, 2006, 70, 909-924.	2.3	39
66	Avian and Canine Aldehyde Oxidases. Journal of Biological Chemistry, 2006, 281, 19748-19761.	3.4	56
67	Identification of aldehyde oxidase 1 and aldehyde oxidase homologue 1 as dioxin-inducible genes. Toxicology, 2005, 207, 401-409.	4.2	31
68	The pathogenesis of molybdenum cofactor deficiency, its delay by maternal clearance, and its expression pattern in microarray analysis. Molecular Genetics and Metabolism, 2005, 85, 12-20.	1.1	33
69	Synthesis and Structureâ^Activity Relationships of a New Series of Retinoid-Related Biphenyl-4-ylacrylic Acids Endowed with Antiproliferative and Proapoptotic Activity. Journal of Medicinal Chemistry, 2005, 48, 4931-4946.	6.4	37
70	Regulation and Biochemistry of Mouse Molybdo-flavoenzymes. Journal of Biological Chemistry, 2004, 279, 8668-8683.	3.4	39
71	Atypical Retinoids: An Expanding Series of Anti-Leukemia and Anti-Cancer Agents Endowed with Selective Apoptotic Activity. Journal of Chemotherapy, 2004, 16, 70-73.	1.5	9
72	The Aldehyde Oxidase Gene Cluster in Mice and Rats. Journal of Biological Chemistry, 2004, 279, 50482-50498.	3.4	56

#	Article	IF	CITATIONS
73	Phosphodiesterase IV Inhibition by Piclamilast Potentiates the Cytodifferentiating Action of Retinoids in Myeloid Leukemia Cells. Journal of Biological Chemistry, 2004, 279, 42026-42040.	3.4	35
74	Induction of apoptosis and stress response in ovarian carcinoma cell lines treated with ST1926, an atypical retinoid. Cell Death and Differentiation, 2004, 11, 280-289.	11.2	54
75	ST1926, a novel and orally active retinoid-related molecule inducing apoptosis in myeloid leukemia cells: modulation of intracellular calcium homeostasis. Blood, 2004, 103, 194-207.	1.4	67
76	Retinoid Related Molecules an Emerging Class of Apoptotic Agents with Promising Therapeutic Potential in Oncology: Pharmacological Activity and Mechanisms of Action. Current Pharmaceutical Design, 2004, 10, 433-448.	1.9	61
77	Mammalian molybdo-flavoenzymes, an expanding family of proteins: structure, genetics, regulation, function and pathophysiology. Biochemical Journal, 2003, 372, 15-32.	3.7	221
78	The AF-1 and AF-2 Domains of RARÎ ³ 2 and RXRα Cooperate for Triggering the Transactivation and the Degradation of RARÎ ³ 2/RXRα Heterodimers. Journal of Biological Chemistry, 2003, 278, 34458-34466.	3.4	40
79	Down-regulation of the Phosphatidylinositol 3-Kinase/Akt Pathway Is Involved in Retinoic Acid-induced Phosphorylation, Degradation, and Transcriptional Activity of Retinoic Acid Receptor \hat{I}^3 2. Journal of Biological Chemistry, 2002, 277, 24859-24862.	3.4	50
80	Bis-indols: a novel class of molecules enhancing the cytodifferentiating properties of retinoids in myeloid leukemia cells. Blood, 2002, 100, 3719-3730.	1.4	30
81	Phosphorylation by p38MAPK and recruitment of SUG-1 are required for RA-induced RARgamma degradation and transactivation. EMBO Journal, 2002, 21, 3760-3769.	7.8	136
82	Cytodifferentiation: a novel approach to cancer treatment and prevention. Current Opinion in Pharmacology, 2001, 1, 358-363.	3.5	8
83	Tyrosine kinase inhibitor STI571 potentiates the pharmacologic activity of retinoic acid in acute promyelocytic leukemia cells: effects on the degradation of RARÎ \pm and PML-RARÎ \pm . Blood, 2001, 97, 3234-3243.	1.4	61
84	Purification of the Aldehyde Oxidase Homolog 1 (AOH1) Protein and Cloning of the AOH1 and Aldehyde Oxidase Homolog 2 (AOH2) Genes. Journal of Biological Chemistry, 2001, 276, 46347-46363.	3.4	43
85	Retinoid-dependent growth inhibition, differentiation and apoptosis in acute promyelocytic leukemia cells. Expression and activation of caspases. Cell Death and Differentiation, 2000, 7, 447-460.	11.2	84
86	Isolation and characterization of an acute promyelocytic leukemia cell line selectively resistant to the novel antileukemic and apoptogenic retinoid 6-[3-adamantyl-4-hydroxyphenyl]-2-naphthalene carboxylic acid. Blood, 2000, 95, 2672-2682.	1.4	39
87	Cloning of the cDNAs Coding for Two Novel Molybdo-flavoproteins Showing High Similarity with Aldehyde Oxidase and Xanthine Oxidoreductase. Journal of Biological Chemistry, 2000, 275, 30690-30700.	3.4	60
88	Isolation and characterization of an acute promyelocytic leukemia cell line selectively resistant to the novel antileukemic and apoptogenic retinoid 6-[3-adamantyl-4-hydroxyphenyl]-2-naphthalene carboxylic acid. Blood, 2000, 95, 2672-2682.	1.4	5
89	The Novel Synthetic Retinoid 6-[3-adamantyl-4-hydroxyphenyl]-2-naphthalene Carboxylic Acid (CD437) Causes Apoptosis in Acute Promyelocytic Leukemia Cells Through Rapid Activation of Caspases. Blood, 1999, 93, 1045-1061.	1.4	79
90	Leucocyte alkaline phosphatase identifies terminally differentiated normal neutrophils and its lack in chronic myelogenous leukaemia is not dependent on p210 tyrosine kinase activity. British Journal of Haematology, 1999, 105, 163-172.	2.5	16

#	Article	IF	CITATIONS
91	The mouse aldehyde oxidase gene: molecular cloning, chromosomal mapping and functional characterization of the $5\hat{a} \in \mathbb{Z}^2$ -flanking region. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1489, 207-222.	2.4	15
92	Molecular cloning of the cDNA coding for mouse aldehyde oxidase: tissue distribution and regulation in vivo by testosterone. Biochemical Journal, 1999, 341, 71-80.	3.7	56
93	Molecular cloning of the cDNA coding for mouse aldehyde oxidase: tissue distribution and regulation in vivo by testosterone. Biochemical Journal, 1999, 341, 71.	3.7	21
94	The Novel Synthetic Retinoid 6-[3-adamantyl-4-hydroxyphenyl]-2-naphthalene Carboxylic Acid (CD437) Causes Apoptosis in Acute Promyelocytic Leukemia Cells Through Rapid Activation of Caspases. Blood, 1999, 93, 1045-1061.	1.4	11
95	Molecular cloning of the cDNA coding for mouse aldehyde oxidase: tissue distribution and regulation in vivo by testosterone. Biochemical Journal, 1999, 341 (Pt 1), 71-80.	3.7	12
96	The novel synthetic retinoid 6-[3-adamantyl-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) causes apoptosis in acute promyelocytic leukemia cells through rapid activation of caspases. Blood, 1999, 93, 1045-61.	1.4	32
97	Leucocyte alkaline phosphatase identifies terminally differentiated normal neutrophils and its lack in chronic myelogenous leukaemia is not dependent on p210 tyrosine kinase activity. British Journal of Haematology, 1999, 105, 163-72.	2.5	4
98	Isolation and characterization of the gene coding for human cytidine deaminase. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1443, 323-333.	2.4	30
99	Cross-talk Between Retinoic Acid and Interferons: Molecular Mechanisms of Interaction in Acute Promyelocytic Leukemia Cells. Leukemia and Lymphoma, 1998, 30, 467-476.	1.3	13
100	Isolation and characterization of the human aldehyde oxidase gene: conservation of intron/exon boundaries with the xanthine oxidoreductase gene indicates a common origin. Biochemical Journal, 1998, 332, 383-393.	3.7	59
101	Cancer Procoagulant and Tissue Factor Are Differently Modulated by All-trans-Retinoic Acid in Acute Promyelocytic Leukemia Cells. Blood, 1998, 92, 143-151.	1.4	117
102	Flow Cytometry of Leukocyte Alkaline Phosphatase in Human Hematopoietic Cells. Hamatologie Und Bluttransfusion, 1998, , 62-67.	0.0	0
103	Molecular mechanisms of retinoid action in acute promyelocytic leukemia (Review). International Journal of Oncology, 1997, 11, 397-414.	3.3	0
104	Selective localization of mouse aldehyde oxidase mRNA in the choroid plexus and motor neurons. NeuroReport, 1997, 8, 2343-2349.	1.2	22
105	The xanthine oxidoreductase gene: structure and regulation. Biochemical Society Transactions, 1997, 25, 791-796.	3.4	29
106	Stat1 Is Induced and Activated by All-Trans Retinoic Acid in Acute Promyelocytic Leukemia Cells. Blood, 1997, 89, 1001-1012.	1.4	111
107	Flow cytometry of leucocyte alkaline phosphatase in normal and pathologic leucocytes. British Journal of Haematology, 1997, 96, 815-822.	2.5	15
108	Stat1 is induced and activated by all-trans retinoic acid in acute promyelocytic leukemia cells. Blood, 1997, 89, 1001-12.	1.4	37

#	Article	IF	CITATIONS
109	Retinoic acid and methylation cis-regulatory elements control the mouse tissue non-specific alkaline phosphatase gene expression. Mechanisms of Development, 1996, 57, 21-32.	1.7	26
110	Recombinant Human Cytidine Deaminase: Expression, Purification, and Characterization. Protein Expression and Purification, 1996, 8, 247-253.	1.3	59
111	Effects of 1,25-Dihydroxy Vitamin D3 on All-Trans Retinoic Acid Sensitive and Resistant Acute Promyelocytic Leukemia Cells. Biochemical and Biophysical Research Communications, 1996, 224, 50-56.	2.1	20
112	AM580, a stable benzoic derivative of retinoic acid, has powerful and selective cyto-differentiating effects on acute promyelocytic leukemia cells. Blood, 1996, 87, 1520-1531.	1.4	69
113	Expression of xanthine oxidoreductase in mouse mammary epithelium during pregnancy and lactation: regulation of gene expression by glucocorticoids and prolactin. Biochemical Journal, 1996, 319, 801-810.	3.7	44
114	Interferons induce normal and aberrant retinoic-acid receptors type \hat{l}_{\pm} in acute promyelocytic leukemia cells: Potentiation of the induction of retinoid-dependent differentiation markers. , 1996, 68, 75-83.		22
115	Leukocyte Alkaline Phosphatase a Specific Marker for the Post-Mitotic Neutrophilic Granulocyte: Regulation in Acute Promyelocytic Leukemia. Leukemia and Lymphoma, 1996, 23, 493-503.	1.3	24
116	AM580, a stable benzoic derivative of retinoic acid, has powerful and selective cyto-differentiating effects on acute promyelocytic leukemia cells. Blood, 1996, 87, 1520-31.	1.4	25
117	Tissue- and cell-specific expression of mouse xanthine oxidoreductase gene <i>in vivo</i> : regulation by bacterial lipopolysaccharide. Biochemical Journal, 1995, 306, 225-234.	3.7	77
118	Determination of the retinobenzoic acid derivative Am580 in rat plasma by high-performance liquid chromatography. Biomedical Applications, 1995, 667, 301-306.	1.7	4
119	All-trans retinoic acid and cyclic adenosine monophosphate cooperate in the expression of leukocyte alkaline phosphatase in acute promyelocytic leukemia cells. Blood, 1995, 85, 3619-3635.	1.4	50
120	Purification, cDNA Cloning, and Tissue Distribution of Bovine Liver Aldehyde Oxidase. Journal of Biological Chemistry, 1995, 270, 31037-31045.	3.4	96
121	Tyrosine Kinases but Not cAMP-Dependent Protein Kinase Mediate the Induction of Leukocyte Alkaline Phosphatase by Granulocyte-Colony-Stimulating Factor and Retinoic Acid in Acute Promyelocytic Leukemia Cells. Biochemical and Biophysical Research Communications, 1995, 208, 846-854.	2.1	14
122	All-trans retinoic acid and cyclic adenosine monophosphate cooperate in the expression of leukocyte alkaline phosphatase in acute promyelocytic leukemia cells. Blood, 1995, 85, 3619-35.	1.4	11
123	Effects of dexamethasone on pro-inflammatory cytokine expression, cell growth and maturation during granulocytic differentiation of acute promyelocytic leukemia cells. European Cytokine Network, 1995, 6, 157-65.	2.0	18
124	Retinoic acid and granulocyte colony-stimulating factor synergistically induce leukocyte alkaline phosphatase in acute promyelocytic leukemia cells. Blood, 1994, 83, 1909-1921.	1.4	72
125	3T3 NIH murine fibroblasts and B78 murine melanoma cells expressing the Escherichia coli N3-methyladenine-DNA glycosylase I do not become resistant to alkylating agents. Carcinogenesis, 1994, 15, 533-537.	2.8	19
126	Assignment of the Human Cytidine Deaminase (CDA) Gene to Chromosome 1 Band p35-p36.2. Genomics, 1994, 22, 661-662.	2.9	12

#	Article	IF	CITATIONS
127	Chromosomal Mapping, Isolation, and Characterization of the Mouse Xanthine Dehydrogenase Gene. Genomics, 1994, 23, 390-402.	2.9	55
128	Molybdenum(VI) salts convert the xanthine oxidoreductase apoprotein into the active enzyme in mouse L929 fibroblastic cells*. Biochemical Journal, 1994, 298, 69-77.	3.7	30
129	Retinoic acid and granulocyte colony-stimulating factor synergistically induce leukocyte alkaline phosphatase in acute promyelocytic leukemia cells. Blood, 1994, 83, 1909-21.	1.4	14
130	Progesterone Induced Expression of Alkaline Phosphatase Is Associated with a Secretory Phenotype in T47D Breast Cancer Cells. Biochemical and Biophysical Research Communications, 1993, 192, 1066-1072.	2.1	25
131	Effects of Synthetic Retinoids and Retinoic Acid Isomers on the Expression of Alkaline Phosphatase in F9 Teratocarcinoma Cells. Biochemical and Biophysical Research Communications, 1993, 196, 252-259.	2.1	40
132	Expression of luteinizing hormone-releasing hormone mRNA in the human prostatic cancer cell line LNCaP Journal of Clinical Endocrinology and Metabolism, 1993, 76, 797-800.	3.6	57
133	Retinoic acid and cyclic AMP synergistically induce the expression of liver/bone/kidney-type alkaline phosphatase gene in L929 fibroblastic cells. Biochemical Journal, 1993, 296, 67-77.	3.7	21
134	Molecular cloning of a cDNA coding for mouse liver xanthine dehydrogenase. Regulation of its transcript by interferons in vivo. Biochemical Journal, 1992, 283, 863-870.	3.7	130
135	Interferons induce xanthine dehydrogenase gene expression in L929 cells. Biochemical Journal, 1992, 285, 1001-1008.	3.7	57
136	Expression of E. coli tag gene encoding 3-methyladenine glycosylase I in NIH-3T3 murine fibroblasts. Biochemical and Biophysical Research Communications, 1992, 185, 41-46.	2.1	5
137	Regulation of the 202 gene expression by interferons in L929 cells. Biochemical and Biophysical Research Communications, 1992, 187, 628-634.	2.1	7
138	Inhibition of melanogenesis by BMY-28565, a novel compound depressing tyrosinase activity in B16 melanoma cells. Biochemical Pharmacology, 1992, 43, 183-189.	4.4	19
139	Characterization of a second promoter for the mouse liver/bone/kidney-type alkaline phosphatase gene: Cell and tissue specific expression. Biochemical and Biophysical Research Communications, 1991, 179, 1352-1360.	2.1	42
140	Retinoic acid induces liver/bone/kidney-type alkaline phosphatase gene expression in F9 teratocarcinoma cells. Biochemical Journal, 1991, 274, 673-678.	3.7	30
141	Isolation and characterization of the mouse liver/bone/kidney-type alkaline phosphatase gene. Biochemical Journal, 1990, 268, 641-648.	3.7	70
142	Purification and characterization of mouse liver xanthine oxidase. Archives of Biochemistry and Biophysics, 1990, 279, 237-241.	3.0	28
143	Expression of leukocyte alkaline phosphatase gene in normal and leukemic cells: regulation of the transcript by granulocyte colony- stimulating factor. Blood, 1990, 76, 2565-2571.	1.4	47
144	Expression of leukocyte alkaline phosphatase gene in normal and leukemic cells: regulation of the transcript by granulocyte colony-stimulating factor. Blood, 1990, 76, 2565-71.	1.4	12

#	Article	IF	CITATIONS
145	Differences in the expression of alkaline phosphatase mRNA in chronic myelogenous leukemia and paroxysmal nocturnal hemoglobinuria polymorphonuclear leukocytes. Blood, 1989, 73, 1113-1115.	1.4	38
146	Isolation and characterization of variant cDNAs encoding mouse tyrosinase. Biochemical and Biophysical Research Communications, 1989, 159, 848-853.	2.1	36
147	Cloning and sequencing of human intestinal alkaline phosphatase cDNA Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 695-698.	7.1	142
148	Cloning and sequencing of bovine kidney alkaline phosphatase cDNA. Gene, 1987, 59, 41-46.	2.2	42
149	Human liver alkaline phosphatase, purification and partial sequencing: Homology with the placental isozyme. Archives of Biochemistry and Biophysics, 1986, 245, 331-337.	3.0	26
150	Human placental alkaline phosphatase in liver and intestine Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 6080-6084.	7.1	22
151	Perinatal Development of Cytochrome P-450, Cytochrome C Reductase, Aryl Hydrocarbon Hydroxylase, Styrene Monooxygenase, and Styrene Epoxide Hydrolase in Rabbit Liver Microsomes and Nuclei. Developmental Pharmacology and Therapeutics, 1985, 8, 232-242.	0.2	6
152	Purification and partial sequencing of bovine liver alkaline phosphatase. Archives of Biochemistry and Biophysics, 1985, 241, 380-385.	3.0	15
153	Biochemical studies on the ability of pentamethylmelamine to interact in vivo with DNA and proteins in a sensitive murine ovarian reticular cell sarcoma. Biochemical Pharmacology, 1984, 33, 2715-2722.	4.4	2
154	Distribution, metabolism, and irreversible binding of hexamethylmelamine in mice bearing ovarian carcinoma. Cancer Chemotherapy and Pharmacology, 1983, 11, 51-5.	2.3	14
155	Intact rat liver nuclei catalyze adriamycin irreversible interactions with dna and nuclear proteins. Toxicology Letters, 1983, 17, 343-348.	0.8	6
156	In vivo and in vitro irreversible binding of hexamethylmelamine to liver and ovarian tumor macromolecules of mice. Biochemical Pharmacology, 1981, 30, 1151-1154.	4.4	13
157	Induction of nuclear styrene monooxygenase and epoxide hydrolase in rat liver. Experientia, 1981, 37, 230-231.	1.2	2
158	Nuclear metabolism. II. Further studies on epoxide hydrolase activity. Chemico-Biological Interactions, 1981, 35, 311-318.	4.0	11
159	Improved gas chromatographic method for measuring phenylethylene glycol. Journal of Chromatography A, 1980, 188, 400-404.	3.7	20
160	Is nuclear styrene monooxygenase activity a microsomal artifact?. Chemico-Biological Interactions, 1980, 31, 341-346.	4.0	9
161	Nuclear metabolism. I. Determination of styrene monooxygenase activity in rat liver nuclei. Chemico-Biological Interactions, 1980, 29, 189-195.	4.0	11
162	Lipid-sensors, enigmatic-orphan and orphan nuclear receptors as therapeutic targets in breast-cancer. Oncotarget, 0, 7, 42661-42682.	1.8	24