
Katashi Okoshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1907313/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Skeletal muscle aging: influence of oxidative stress and physical exercise. Oncotarget, 2017, 8, 20428-20440.	1.8	187
2	Influence of rutin treatment on biochemical alterations in experimental diabetes. Biomedicine and Pharmacotherapy, 2010, 64, 214-219.	5.6	122
3	Heterozygous knockout of neuregulin-1 gene in mice exacerbates doxorubicin-induced heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H660-H666.	3.2	104
4	Aldosterone directly stimulates cardiac myocyte hypertrophy. Journal of Cardiac Failure, 2004, 10, 511-518.	1.7	84
5	Cardiac remodeling in a rat model of diet-induced obesity. Canadian Journal of Cardiology, 2010, 26, 423-429.	1.7	80
6	Neuregulins Regulate Cardiac Parasympathetic Activity. Circulation, 2004, 110, 713-717.	1.6	63
7	Echocardiographic detection of congestive heart failure in postinfarction rats. Journal of Applied Physiology, 2011, 111, 543-551.	2.5	57
8	Long-Term Low Intensity Physical Exercise Attenuates Heart Failure Development in Aging Spontaneously Hypertensive Rats. Cellular Physiology and Biochemistry, 2015, 36, 61-74.	1.6	57
9	Aerobic Exercise Training Prevents Heart Failure-Induced Skeletal Muscle Atrophy by Anti-Catabolic, but Not Anabolic Actions. PLoS ONE, 2014, 9, e110020.	2.5	54
10	Ventricular remodeling induced by retinoic acid supplementation in adult rats. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H2242-H2246.	3.2	46
11	Heart failure-induced skeletal myopathy in spontaneously hypertensive rats. International Journal of Cardiology, 2013, 167, 698-703.	1.7	46
12	Diabetes mellitus activates fetal gene program and intensifies cardiac remodeling and oxidative stress in aged spontaneously hypertensive rats. Cardiovascular Diabetology, 2013, 12, 152.	6.8	43
13	Apocynin influence on oxidative stress and cardiac remodeling of spontaneously hypertensive rats with diabetes mellitus. Cardiovascular Diabetology, 2016, 15, 126.	6.8	43
14	Regulation of cardiac microRNAs induced by aerobic exercise training during heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1629-H1641.	3.2	42
15	AT1 Receptor Blockade Attenuates Insulin Resistance and Myocardial Remodeling in Rats with Diet-Induced Obesity. PLoS ONE, 2014, 9, e86447.	2.5	42
16	Rutin administration attenuates myocardial dysfunction in diabetic rats. Cardiovascular Diabetology, 2015, 14, 90.	6.8	41
17	Tomato (Lycopersicon esculentum) or lycopene supplementation attenuates ventricular remodeling after myocardial infarction through different mechanistic pathways. Journal of Nutritional Biochemistry, 2017, 46, 117-124.	4.2	41
18	Beneficial Effects of Physical Exercise on Functional Capacity and Skeletal Muscle Oxidative Stress in Rats with Aortic Stenosis-Induced Heart Failure. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-12	4.0	40

#	Article	IF	CITATIONS
19	Influence of apocynin on cardiac remodeling in rats with streptozotocin-induced diabetes mellitus. Cardiovascular Diabetology, 2018, 17, 15.	6.8	40
20	Low Intensity Physical Exercise Attenuates Cardiac Remodeling and Myocardial Oxidative Stress and Dysfunction in Diabetic Rats. Journal of Diabetes Research, 2015, 2015, 1-10.	2.3	39
21	Improved Systolic Ventricular Function With Normal Myocardial Mechanics in Compensated Cardiac Hypertrophy. International Heart Journal, 2004, 45, 647-656.	0.6	38
22	Myostatin and follistatin expression in skeletal muscles of rats with chronic heart failure. International Journal of Experimental Pathology, 2010, 91, 54-62.	1.3	38
23	Long-term high-fat diet-induced obesity decreases the cardiac leptin receptor without apparent lipotoxicity. Life Sciences, 2011, 88, 1031-1038.	4.3	38
24	Modulation of MAPK and NF-κB Signaling Pathways by Antioxidant Therapy in Skeletal Muscle of Heart Failure Rats. Cellular Physiology and Biochemistry, 2016, 39, 371-384.	1.6	36
25	Critical infarct size to induce ventricular remodeling, cardiac dysfunction and heart failure in rats. International Journal of Cardiology, 2011, 151, 242-243.	1.7	35
26	Heart Failure-Induced Diaphragm Myopathy. Cellular Physiology and Biochemistry, 2014, 34, 333-345.	1.6	35
27	Early Spironolactone Treatment Attenuates Heart Failure Development by Improving Myocardial Function and Reducing Fibrosis in Spontaneously Hypertensive Rats. Cellular Physiology and Biochemistry, 2015, 36, 1453-1466.	1.6	35
28	Influence of N-Acetylcysteine on Oxidative Stress in Slow-Twitch Soleus Muscle of Heart Failure Rats. Cellular Physiology and Biochemistry, 2015, 35, 148-159.	1.6	35
29	Myocardial Function during Chronic Food Restriction in Isolated Hypertrophied Cardiac Muscle. American Journal of the Medical Sciences, 2000, 320, 244-248.	1.1	35
30	Pressure overload-induced hypertrophy in transgenic mice selectively overexpressing AT ₂ receptors in ventricular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1274-H1281.	3.2	34
31	The impact of renewable energy diffusion on European consumption-based emissions. Economic Systems Research, 2016, 28, 133-150.	2.7	34
32	Myocardial Dysfunction Induced by Food Restriction is Related to Morphological Damage in Normotensive Middle-Aged Rats. Journal of Biomedical Science, 2005, 12, 641-649.	7.0	33
33	Beta-Carotene Supplementation Attenuates Cardiac Remodeling Induced by One-Month Tobacco-Smoke Exposure in Rats. Toxicological Sciences, 2006, 90, 259-266.	3.1	33
34	Aldosterone Blockade Reduces Mortality without Changing Cardiac Remodeling in Spontaneously Hypertensive Rats. Cellular Physiology and Biochemistry, 2013, 32, 1275-1287.	1.6	33
35	Food restriction induces in vivo ventricular dysfunction in spontaneously hypertensive rats without impairment of in vitro myocardial contractility. Brazilian Journal of Medical and Biological Research, 2004, 37, 607-613.	1.5	33
36	Heart Failure-Induced Cachexia. Arquivos Brasileiros De Cardiologia, 2013, 100, 476-82.	0.8	33

#	Article	IF	CITATIONS
37	Food restriction-induced myocardial dysfunction demonstrated by the combination of in vivo and in vitro studies. Nutrition Research, 2002, 22, 1353-1364.	2.9	32
38	Combined exercise training in asymptomatic elderly with controlled hypertension: Effects on functional capacity and cardiac diastolic function. Medical Science Monitor, 2012, 18, CR461-CR465.	1.1	31
39	N-Acetylcysteine Influence on Oxidative Stress and Cardiac Remodeling in Rats During Transition from Compensated Left Ventricular Hypertrophy to Heart Failure. Cellular Physiology and Biochemistry, 2017, 44, 2310-2321.	1.6	30
40	The Role of Oxidative Stress in the Aging Heart. Antioxidants, 2022, 11, 336.	5.1	30
41	Exercise during transition from compensated left ventricular hypertrophy to heart failure in aortic stenosis rats. Journal of Cellular and Molecular Medicine, 2019, 23, 1235-1245.	3.6	29
42	Extensive impact of saturated fatty acids on metabolic and cardiovascular profile in rats with diet-induced obesity: a canonical analysis. Cardiovascular Diabetology, 2013, 12, 65.	6.8	28
43	Mechanical, biochemical, and morphological changes in the heart from chronic food-restricted rats. Canadian Journal of Physiology and Pharmacology, 2001, 79, 754-760.	1.4	27
44	The influence of temporal food restriction on the performance of isolated cardiac muscle. Nutrition Research, 2001, 21, 639-648.	2.9	26
45	Ventricular remodeling and diastolic myocardial dysfunction in rats submitted to protein-calorie malnutrition. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H1327-H1333.	3.2	26
46	Behavior of cardiac variables in animals exposed to cigarette smoke. Arquivos Brasileiros De Cardiologia, 2003, 81, 221-8.	0.8	26
47	Long-term obesity promotes alterations in diastolic function induced by reduction of phospholamban phosphorylation at serine-16 without affecting calcium handling. Journal of Applied Physiology, 2014, 117, 669-678.	2.5	26
48	Effects of late exercise on cardiac remodeling and myocardial calcium handling proteins in rats with moderate and large size myocardial infarction. International Journal of Cardiology, 2016, 221, 406-412.	1.7	26
49	Effects of aerobic and resistance exercise on cardiac remodelling and skeletal muscle oxidative stress of infarcted rats. Journal of Cellular and Molecular Medicine, 2020, 24, 5352-5362.	3.6	26
50	Growth hormone and heart failure: Oxidative stress and energetic metabolism in rats. Growth Hormone and IGF Research, 2008, 18, 275-283.	1.1	25
51	Landscape of heart proteome changes in a diet-induced obesity model. Scientific Reports, 2019, 9, 18050.	3.3	25
52	High-fat Diet Promotes Cardiac Remodeling in an Experimental Model of Obesity. Arquivos Brasileiros De Cardiologia, 2015, 105, 479-86.	0.8	24
53	Myocardial myostatin in spontaneously hypertensive rats with heart failure. International Journal of Cardiology, 2016, 215, 384-387.	1.7	24
54	Influence of intermittent fasting on myocardial infarction-induced cardiac remodeling. BMC Cardiovascular Disorders, 2019, 19, 126.	1.7	24

#	Article	IF	CITATIONS
55	Diet-induced obesity causes metabolic, endocrine and cardiac alterations in spontaneously hypertensive rats. Medical Science Monitor, 2010, 16, BR367-73.	1.1	24
56	Mechanical, biochemical, and morphological changes in the heart from chronic food-restricted rats. Canadian Journal of Physiology and Pharmacology, 2001, 79, 754-760.	1.4	23
57	Chronic heart failure-induced skeletal muscle atrophy, necrosis, and changes in myogenic regulatory factors. Medical Science Monitor, 2010, 16, BR374-83.	1.1	23
58	Green tea (Cammellia sinensis) attenuates ventricular remodeling after experimental myocardial infarction. International Journal of Cardiology, 2016, 225, 147-153.	1.7	22
59	Doppler echocardiography in athletes from different sports. Medical Science Monitor, 2013, 19, 187-193.	1.1	22
60	Curvas de percentis de valores normais de medidas ecocardiográficas em crianças eutróficas procedentes da região centro-sul do Estado de São Paulo. Arquivos Brasileiros De Cardiologia, 2006, 87, 711-21.	0.8	19
61	Myocardial contractile dysfunction contributes to the development of heart failure in rats with aortic stenosis. International Journal of Cardiology, 2007, 117, 109-114.	1.7	19
62	Saturated high-fat diet-induced obesity increases adenylate cyclase of myocardial <i>î²</i> -adrenergic system and does not compromise cardiac function. Physiological Reports, 2016, 4, e12914.	1.7	19
63	Lowâ€intensity aerobic exercise improves cardiac remodelling of adult spontaneously hypertensive rats. Journal of Cellular and Molecular Medicine, 2019, 23, 6504-6507.	3.6	19
64	Prevalence and predictors of ventricular remodeling after anterior myocardial infarction in the era of modern medical therapy. Medical Science Monitor, 2012, 18, CR276-CR281.	1.1	19
65	Perfil nutricional e cardiovascular de ratos normotensos e hipertensos sob dieta hiperlipÃdica. Arquivos Brasileiros De Cardiologia, 2009, 93, 526-533.	0.8	18
66	Fractal Dimension in Quantifying Experimental-Pulmonary-Hypertension-Induced Cardiac Dysfunction in Rats. Arquivos Brasileiros De Cardiologia, 2016, 107, 33-9.	0.8	18
67	Preventive aerobic training exerts a cardioprotective effect on rats treated with monocrotaline. International Journal of Experimental Pathology, 2016, 97, 238-247.	1.3	18
68	Cardiovascular assessment of patients with Ullrich-Turner's Syndrome on Doppler echocardiography and magnetic resonance imaging. Arquivos Brasileiros De Cardiologia, 2002, 78, 51-8.	0.8	17
69	Metalloproteinases-2 and -9 Predict Left Ventricular Remodeling after Myocardial Infarction. Arquivos Brasileiros De Cardiologia, 2013, 100, 315-21.	0.8	17
70	Association Between Atherosclerotic Aortic Plaques and Left Ventricular Hypertrophy in Patients With Cerebrovascular Events. Stroke, 2006, 37, 958-962.	2.0	16
71	Periostin as a modulator of chronic cardiac remodeling after myocardial infarction. Clinics, 2013, 68, 1344-1349.	1.5	16
72	Influence of Fluid Volume Variations on the Calculated Value of the Left Ventricular Mass Measured by Echocardiogram in Patients Submitted to Hemodialysis. Renal Failure, 2003, 25, 43-53.	2.1	15

#	Article	IF	CITATIONS
73	Zinc Supplementation Attenuates Cardiac Remodeling After Experimental Myocardial Infarction. Cellular Physiology and Biochemistry, 2018, 50, 353-362.	1.6	15
74	Rosemary supplementation (Rosmarinus oficinallis L.) attenuates cardiac remodeling after myocardial infarction in rats. PLoS ONE, 2017, 12, e0177521.	2.5	15
75	<i>Spondias mombin</i> L. attenuates ventricular remodelling after myocardial infarction associated with oxidative stress and inflammatory modulation. Journal of Cellular and Molecular Medicine, 2020, 24, 7862-7872.	3.6	14
76	Ecocardiografia de pacientes talassêmicos sem insuficiência cardÃaca em tratamento com transfusões sanguÃneas e quelação. Arquivos Brasileiros De Cardiologia, 2013, 100, 75-81.	0.8	14
77	Acute Coronary Syndrome Associated with Continuous 5-Fluorouracil Infusion in a Patient with Metastatic Colorectal Cancer—A Case Report with a Discussion on This Clinical Dilemma. Journal of Gastrointestinal Cancer, 2009, 40, 133-7.	1.3	13
78	Growth hormone attenuates skeletal muscle changes in experimental chronic heart failure. Growth Hormone and IGF Research, 2010, 20, 149-155.	1.1	13
79	Waist circumference, but not body mass index, is a predictor of ventricular remodeling after anterior myocardial infarction. Nutrition, 2013, 29, 122-126.	2.4	13
80	Dieta Intermitente Atenua a Remodelação CardÃaca Causada pelo ExercÃcio FÃsico. Arquivos Brasileiros De Cardiologia, 2020, 115, 184-193.	0.8	13
81	Follow-up study of morphology and cardiac function in rats undergoing induction of supravalvular aortic stenosis. Arquivos Brasileiros De Cardiologia, 2003, 81, 569-575.	0.8	12
82	Predictors of Right Ventricle Dysfunction After Anterior Myocardial Infarction. Canadian Journal of Cardiology, 2012, 28, 438-442.	1.7	12
83	Tomato (Lycopersicon esculentum) Supplementation Induces Changes in Cardiac miRNA Expression, Reduces Oxidative Stress and Left Ventricular Mass, and Improves Diastolic Function. Nutrients, 2015, 7, 9640-9649.	4.1	12
84	Pathological hypertrophy and cardiac dysfunction are linked to aberrant endogenous unsaturated fatty acid metabolism. PLoS ONE, 2018, 13, e0193553.	2.5	12
85	Myocardial Function during Chronic Food Restriction in Isolated Hypertrophied Cardiac Muscle. American Journal of the Medical Sciences, 2000, 320, 244-248.	1.1	11
86	Papel relativo da remodelação geométrica do ventrÃculo esquerdo, morfológica e funcional do miocárdio na transição da hipertrofia compensada para a falência cardÃaca em ratos com estenose aórtica supravalvar. Arquivos Brasileiros De Cardiologia, 2007, 88, 225-233.	0.8	11
87	Tolerância ao esforço em ratos com estenose aórtica e disfunção ventricular diastólica e/ou sistólica. Arquivos Brasileiros De Cardiologia, 2013, 100, 44-51.	0.8	11
88	Heart remodeling produced by aortic stenosis promotes cardiomyocyte apoptosis mediated by collagen V imbalance. Pathophysiology, 2018, 25, 373-379.	2.2	11
89	Myocardial remodeling and dysfunction are induced by chronic food restriction in spontaneously hypertensive rats. Nutrition Research, 2006, 26, 567-572.	2.9	10
90	GROWTH HORMONE ATTENUATES MYOCARDIAL FIBROSIS IN RATS WITH CHRONIC PRESSURE OVERLOADâ€INDUCED LEFT VENTRICULAR HYPERTROPHY. Clinical and Experimental Pharmacology and Physiology, 2009, 36, 325-330.	1.9	10

#	Article	IF	CITATIONS
91	Relevância do padrão de remodelamento ventricular no modelo de infarto do miocárdio em ratos. Arquivos Brasileiros De Cardiologia, 2010, 95, 635-639.	0.8	10
92	Influence of different doses of retinoic acid on cardiac remodeling. Nutrition, 2011, 27, 824-828.	2.4	10
93	Taurine attenuates cardiac remodeling after myocardial infarction. International Journal of Cardiology, 2013, 168, 4925-4926.	1.7	10
94	Delayed rather than early exercise training attenuates ventricular remodeling after myocardial infarction. International Journal of Cardiology, 2013, 170, e3-e4.	1.7	10
95	Influence of high-intensity interval training and intermittent fasting on myocardium apoptosis pathway and cardiac morphology of healthy rats. Life Sciences, 2021, 264, 118697.	4.3	10
96	Association of pre and intraoperative variables with postoperative complications in coronary artery bypass graft surgery. Brazilian Journal of Cardiovascular Surgery, 2013, 28, 518-23.	0.6	10
97	Is 44-Hour Better than 24-Hour Ambulatory Blood Pressure Monitoring in Hemodialysis?. Kidney and Blood Pressure Research, 2006, 29, 273-279.	2.0	9
98	Prospective Echocardiographic Evaluation of the Right Ventricle and Pulmonary Arterial Pressure in Hyperthyroid Patients. Heart Lung and Circulation, 2019, 28, 1190-1196.	0.4	9
99	Skipping breakfast concomitant with late-night dinner eating is associated with worse outcomes following ST-segment elevation myocardial infarction. European Journal of Preventive Cardiology, 2020, 27, 2311-2313.	1.8	9
100	Impact of Modality and Intensity of Early Exercise Training on Ventricular Remodeling after Myocardial Infarction. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-6.	4.0	9
101	Early echocardiographic predictors of increased left ventricular end-diastolic pressure three months after myocardial infarction in rats. Medical Science Monitor, 2012, 18, BR253-BR258.	1.1	9
102	Aerobic training attenuates nicotinic acethylcholine receptor changes in the diaphragm muscle during heart failure. Histology and Histopathology, 2015, 30, 801-11.	0.7	9
103	Cardiomiopatia Hipertrófica – Revisão. Arquivos Brasileiros De Cardiologia, 2020, 115, 927-935.	0.8	9
104	Estresse crônico melhora a função miocárdica sem alterar a atividade do canal-L para Ca+2 em ratos. Arquivos Brasileiros De Cardiologia, 2012, 99, 907-914.	0.8	8
105	Cardiovascular changes in patients with non-severe Plasmodium vivax malaria. IJC Heart and Vasculature, 2016, 11, 12-16.	1.1	8
106	Temporal Measures in Cardiac Structure and Function During the Development of Obesity Induced by Different Types of Western Diet in a Rat Model. Nutrients, 2020, 12, 68.	4.1	8
107	Malaria and Vascular Endothelium. Arquivos Brasileiros De Cardiologia, 2014, 103, 165-9.	0.8	8
108	Association between Functional Variables and Heart Failure after Myocardial Infarction in Rats. Arquivos Brasileiros De Cardiologia, 2016, 106, 105-12.	0.8	8

#	Article	IF	CITATIONS
109	Differential nutritional, endocrine, and cardiovascular effects in obesity-prone and obesity-resistant rats fed standard and hypercaloric diets. Medical Science Monitor, 2010, 16, BR208-17.	1.1	8
110	Açai supplementation (Euterpe oleracea Mart.) attenuates cardiac remodeling after myocardial infarction in rats through different mechanistic pathways. PLoS ONE, 2022, 17, e0264854.	2.5	8
111	Food restriction impairs myocardial inotropic response to calcium and β-adrenergic stimulation in spontaneously hypertensive rats. Nutrition Research, 2008, 28, 722-727.	2.9	7
112	Preditores ecocardiográficos de remodelação ventricular após o infarto agudo do miocárdio em ratos. Arquivos Brasileiros De Cardiologia, 2011, 97, 502-506.	0.8	7
113	Vitamin D supplementation intensifies cardiac remodeling after experimental myocardial infarction. International Journal of Cardiology, 2014, 176, 1225-1226.	1.7	7
114	Pamidronate Attenuates Diastolic Dysfunction Induced by Myocardial Infarction Associated with Changes in Geometric Patterning. Cellular Physiology and Biochemistry, 2015, 35, 259-269.	1.6	7
115	Cardiac function and intracellular Ca2+ handling proteins are not impaired by high-saturated-fat diet-induced obesity. Brazilian Journal of Medical and Biological Research, 2019, 52, e8085.	1.5	7
116	Aerobic Exercise During Advance Stage of Uncontrolled Arterial Hypertension. Frontiers in Physiology, 2021, 12, 675778.	2.8	7
117	Respiratory pressures and expiratory peak flow rate of patients undergoing coronary artery bypass graft surgery. Medical Science Monitor, 2012, 18, CR558-CR563.	1.1	7
118	Gastrointestinal changes associated to heart failure. Arquivos Brasileiros De Cardiologia, 2012, 98, 273-7.	0.8	7
119	Effects of the SGLT2 Inhibition on Cardiac Remodeling in Streptozotocin-Induced Diabetic Rats, a Model of Type 1 Diabetes Mellitus. Antioxidants, 2022, 11, 982.	5.1	7
120	Impacto da hipertensão arterial no remodelamento ventricular, em pacientes com estenose aórtica. Arquivos Brasileiros De Cardiologia, 2011, 97, 254-259.	0.8	6
121	Cardiac remodeling induced by 13-cis retinoic acid treatment in acne patients. International Journal of Cardiology, 2013, 163, 68-71.	1.7	6
122	Effects of early aldosterone antagonism on cardiac remodeling in rats with aortic stenosis-induced pressure overload. International Journal of Cardiology, 2016, 222, 569-575.	1.7	6
123	Effects of AT1 receptor antagonism on interstitial and ultrastructural remodeling of heart in response to a hypercaloric diet. Physiological Reports, 2019, 7, e13964.	1.7	6
124	Efeitos do ExercÃcio Aeróbico Tardio na Remodelação CardÃaca de Ratos com Infarto do Miocárdio Pequeno. Arquivos Brasileiros De Cardiologia, 2021, 116, 784-792.	0.8	6
125	Volume Overload Influence on Hypertrophied Myocardium Function International Heart Journal, 2002, 43, 689-695.	0.6	6
126	Frequency of Subclinical Atherosclerosis in Brazilian HIV-Infected Patients. Arquivos Brasileiros De Cardiologia, 2018, 110, 402-410.	0.8	6

#	Article	IF	CITATIONS
127	Prevalence of Metabolic Syndrome in Japanese-Brazilians According to Specific Definitions for Ethnicity. Metabolic Syndrome and Related Disorders, 2010, 8, 143-148.	1.3	5
128	Tachycardia-induced cardiomyopathy. BMJ Case Reports, 2012, 2012, bcr2012006587-bcr2012006587.	0.5	5
129	Dexamethasone and Training-Induced Cardiac Remodeling Improve Cardiac Function and Arterial Pressure in Spontaneously Hypertensive Rats. Journal of Cardiovascular Pharmacology and Therapeutics, 2021, 26, 189-199.	2.0	5
130	Differential effects of dexamethasone on arterial stiffness, myocardial remodeling and blood pressure between normotensive and spontaneously hypertensive rats. Journal of Applied Toxicology, 2021, 41, 1673-1686.	2.8	5
131	Association Between Serum Myostatin Levels, Hospital Mortality, and Muscle Mass and Strength Following ST-Elevation Myocardial Infarction. Heart Lung and Circulation, 2022, 31, 365-371.	0.4	5
132	Mechanisms Involved in the Beneficial Effects of Spironolactone after Myocardial Infarction. PLoS ONE, 2013, 8, e76866.	2.5	5
133	Infarct Size as Predictor of Systolic Functional Recovery after Myocardial Infarction. Arquivos Brasileiros De Cardiologia, 2014, 102, 549-56.	0.8	5
134	Bloqueio de Receptores AT1 Melhora o Desempenho Funcional Miocárdico na Obesidade. Arquivos Brasileiros De Cardiologia, 2020, 115, 17-28.	0.8	5
135	Association between frailty and C-terminal agrin fragment with 3-month mortality following ST-elevation myocardial infarction. Experimental Gerontology, 2022, 158, 111658.	2.8	5
136	Association between echocardiographic structural parameters and body weight in Wistar rats. Oncotarget, 2017, 8, 26100-26105.	1.8	4
137	Edema generalizado e circulação hiperdinâmica: um possÃvel caso de beribéri. Arquivos Brasileiros De Cardiologia, 2004, 83, 176-8; 173-5.	0.8	4
138	Effects of growth hormone on cardiac remodeling and soleus muscle in rats with aortic stenosis-induced heart failure. Oncotarget, 2017, 8, 83009-83021.	1.8	4
139	Left ventricular mass behaviour in hemodialysis patients during 17 years. Jornal Brasileiro De Nefrologia: Orgao Oficial De Sociedades Brasileira E Latino-Americana De Nefrologia, 2015, 37, 341-8.	0.9	4
140	Biomarkers in Acute Myocardial Infarction Diagnosis and Prognosis. Arquivos Brasileiros De Cardiologia, 2019, 113, 40-41.	0.8	4
141	Calcium homeostasis behavior and cardiac function on left ventricular remodeling by pressure overload. Brazilian Journal of Medical and Biological Research, 2021, 54, e10138.	1.5	3
142	Prevalence of metabolic syndrome in elderly Japanese-Brazilians. Medical Science Monitor, 2012, 18, PH1-PH5.	1.1	3
143	Impact of Ventricular Geometric Pattern on Cardiac Remodeling after Myocardial Infarction. Arquivos Brasileiros De Cardiologia, 2013, 100, 518-23.	0.8	3
144	Jaboticaba (Myrciaria jaboticaba) Attenuates Ventricular Remodeling after Myocardial Infarction in Rats. Antioxidants, 2022, 11, 249.	5.1	3

#	Article	IF	CITATIONS
145	Preventive training does not interfere with mRNA-encoding myosin and collagen expression during pulmonary arterial hypertension. PLoS ONE, 2021, 16, e0244768.	2.5	2
146	End-systolic pressure-diameter relation of the left ventricle during transient and sustained elevations of blood pressure. Arquivos Brasileiros De Cardiologia, 2000, 75, 26-32.	0.8	2
147	Association Between Left Ventricle Diastolic Dysfunction and Unfavorable Prognostic Markers in Patients with Aortic Insufficiency. Journal of Clinical and Diagnostic Research JCDR, 2017, 11, OC09-OC11.	0.8	2
148	The Role of Extracellular Matrix in the Experimental Acute Aortic Regurgitation Model in Rats. Heart Lung and Circulation, 2022, , .	0.4	2
149	Qualidade da Anticoagulação Oral em Pacientes com Fibrilação Atrial em um Hospital Terciário no Brasil. Arquivos Brasileiros De Cardiologia, 2022, , .	0.8	2
150	The rate of force generation by the myocardium is not influenced by afterload. Brazilian Journal of Medical and Biological Research, 1997, 30, 1471-1477.	1.5	1
151	Influence of the elevation of the left ventricular diastolic pressure on the values of the first temporal derivative of the ventricular pressure (dP/dt). Arquivos Brasileiros De Cardiologia, 1999, 73, 42-46.	0.8	1
152	Cardiac cachexia and muscle wasting: definition, physiopathology, and clinical consequences. Research Reports in Clinical Cardiology, 2014, , 319.	0.2	1
153	Perfil Aterosclerótico da Artéria Carótida como Preditor de Risco para Reestenose após Implante de Stent Coronário. Arquivos Brasileiros De Cardiologia, 2021, 116, 727-733.	0.8	1
154	Effects of concurrent training associated with N-acetylcysteine on bone density of spontaneously hypertensive rats. Motriz Revista De Educacao Fisica, 2019, 25, .	0.2	1
155	Adrenaline: More than a century after its discovery and still a mystery. International Journal of Cardiology, 2018, 253, 124-125.	1.7	Ο
156	Clinical and echocardiographic predictors of left ventricular remodeling following anterior acute myocardial infarction. Clinics, 2021, 76, e2732.	1.5	0
157	Spironolactone increases myocardial performance and reduces right ventricular and atrial weights in spontaneously hypertensive rats. FASEB Journal, 2011, 25, 1000.12.	0.5	Ο
158	Signaling pathways involved in skeletal muscle response to oxidative stress in rats with heart failure. FASEB Journal, 2012, 26, 1036.6.	0.5	0
159	EFFECTS OF GROWTH HORMONE ADMINISTRATION ON CARDIAC REMODELING PROCESS IN RATS WITH AORTIC STENOSISâ€INDUCED HEART FAILURE. FASEB Journal, 2012, 26, 137.1.	O.5	Ο
160	Protein expression of myostatin and follistatin in the myocardium of spontaneously hypertensive rats with heart failure. FASEB Journal, 2012, 26, 1036.8.	0.5	0
161	Influence of physical exercise on cardiac structure and function of spontaneously hypertensive rats. FASEB Journal, 2012, 26, .	O.5	Ο
162	Influence of NADPH oxidase inhibitor apocynin on cardiac structure and function in rats with aortic stenosis. FASEB Journal, 2013, 27, lb478.	0.5	0

#	Article	IF	CITATIONS
163	Influence of late exercise training on myostatin and follistatin expression in soleus muscle of rats with chronic heart failure. FASEB Journal, 2013, 27, 1085.8.	0.5	0
164	Multivariate Analysis for Animal Selection in Experimental Research. Arquivos Brasileiros De Cardiologia, 2014, 104, 97-103.	0.8	0
165	Growth hormone influences atrophy pathways in skeletal muscle of heart failure rats (1163.3). FASEB Journal, 2014, 28, 1163.3.	0.5	0
166	Exercise training and MAPK protein expression in rats with heart failure (LB521). FASEB Journal, 2014, 28, LB521.	0.5	0
167	Influence of tomato and lycopene supplementation on the cardiac remodeling after acute myocardial infarction (LB337). FASEB Journal, 2014, 28, LB337.	0.5	0
168	Correlation Between Diet Macronutrients and Metabolic plus Cardiovascular Abnormalities in Spontaneously Hypertensive Rats. FASEB Journal, 2015, 29, LB246.	0.5	0
169	Influence of Creatine Supplementation and High Intensity Interval Training on Glycemic Profile and Cardiac Morphology in Rats. FASEB Journal, 2019, 33, 535.2.	0.5	0
170	Dexamethasoneâ€Induced Effects on Autonomic Balance, Arterial Stiffness and Cardiac Remodeling in Sedentary and Trained Spontaneously Hypertensive Rats. FASEB Journal, 2019, 33, 535.3.	0.5	0
171	Administration of Losartan Improves Myocardial Functional Performance in Rats with Highâ€Fat Dietâ€Induced Obesity. FASEB Journal, 2019, 33, 531.6.	0.5	0
172	Performance of cardiovascular risk scores in mortality prediction ten years after Acute Coronary Syndromes. Revista Da Associação Médica Brasileira, 2019, 65, 1074-1079.	0.7	0
173	Heart Failure Mid-Range Ejection Fraction. Arquivos Brasileiros De Cardiologia, 2021, 116, 24-25.	0.8	0