Charles R Vanderburg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1906593/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mutations in the <i>FUS/TLS</i> Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis. Science, 2009, 323, 1205-1208.	6.0	2,302
2	Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science, 2019, 363, 1463-1467.	6.0	1,396
3	Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity. Cell, 2019, 177, 1873-1887.e17.	13.5	844
4	Exosomal cell-to-cell transmission of alpha synuclein oligomers. Molecular Neurodegeneration, 2012, 7, 42.	4.4	708
5	Tau protein liquid–liquid phase separation can initiate tau aggregation. EMBO Journal, 2018, 37, .	3.5	696
6	Validating novel tau positron emission tomography tracer <scp>[Fâ€18]â€AVâ€1451 (T807)</scp> on postmortem brain tissue. Annals of Neurology, 2015, 78, 787-800.	2.8	535
7	A multimodal cell census and atlas of the mammalian primary motor cortex. Nature, 2021, 598, 86-102.	13.7	316
8	Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer's Disease. Neuron, 2018, 99, 925-940.e7.	3.8	302
9	Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nature Methods, 2021, 18, 1352-1362.	9.0	276
10	De-repression of FOXO3a death axis by microRNA-132 and -212 causes neuronal apoptosis in Alzheimer's disease. Human Molecular Genetics, 2013, 22, 3077-3092.	1.4	252
11	Differential Expression of Exosomal microRNAs in Prefrontal Cortices of Schizophrenia and Bipolar Disorder Patients. PLoS ONE, 2013, 8, e48814.	1.1	205
12	A549 Lung Epithelial Cells Grown as Three-Dimensional Aggregates: Alternative Tissue Culture Model for Pseudomonas aeruginosa Pathogenesis. Infection and Immunity, 2005, 73, 1129-1140.	1.0	190
13	Pathological correlations of [Fâ€18]â€AVâ€1451 imaging in nonâ€alzheimer tauopathies. Annals of Neurology, 2017, 81, 117-128.	2.8	174
14	Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia. Human Molecular Genetics, 2009, 18, 497-516.	1.4	169
15	A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. Nature, 2021, 598, 103-110.	13.7	166
16	Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain. Nature Neuroscience, 2022, 25, 306-316.	7.1	166
17	Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson's disease. Nature Neuroscience, 2022, 25, 588-595.	7.1	155
18	A transcriptomic atlas of mouse cerebellar cortex comprehensivelyÂdefines cell types. Nature, 2021, 598, 214-219.	13.7	147

#	Article	IF	CITATIONS
19	Selective Translational Control of the Alzheimer Amyloid Precursor Protein Transcript by Iron Regulatory Protein-1. Journal of Biological Chemistry, 2010, 285, 31217-31232.	1.6	144
20	Metal exposure and Alzheimer's pathogenesis. Journal of Structural Biology, 2006, 155, 45-51.	1.3	121
21	Three-Dimensional Tissue Assemblies: Novel Models for the Study of Salmonella enterica Serovar Typhimurium Pathogenesis. Infection and Immunity, 2001, 69, 7106-7120.	1.0	117
22	Hypomorphic Notch 3 alleles link Notch signaling to ischemic cerebral small-vessel disease. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E128-35.	3.3	106
23	Decreased levels of BDNF protein in Alzheimer temporal cortex are independent of BDNF polymorphisms. Experimental Neurology, 2005, 194, 91-96.	2.0	105
24	A review of independent component analysis application to microarray gene expression data. BioTechniques, 2008, 45, 501-520.	0.8	92
25	Lessons learned about [F-18]-AV-1451 off-target binding from an autopsy-confirmed Parkinson's case. Acta Neuropathologica Communications, 2017, 5, 75.	2.4	85
26	Independent component analysis of Alzheimer's DNA microarray gene expression data. Molecular Neurodegeneration, 2009, 4, 5.	4.4	72
27	An in vitro paradigm to assess potential anti-Aβ antibodies for Alzheimer's disease. Nature Communications, 2018, 9, 2676.	5.8	50
28	E-Cadherin Transforms Embryonic Corneal Fibroblasts to Stratified Epithelium with Desmosomes. Cells Tissues Organs, 1996, 157, 87-104.	1.3	42
29	No alteration in tau exon 10 alternative splicing in tangle-bearing neurons of the Alzheimer's disease brain. Acta Neuropathologica, 2006, 112, 439-449.	3.9	41
30	The melanomaâ€ŀinked "redhead― <i>MC1R</i> influences dopaminergic neuron survival. Annals of Neurology, 2017, 81, 395-406.	2.8	41
31	Circulating miRNA Spaceflight Signature Reveals Targets for Countermeasure Development. Cell Reports, 2020, 33, 108448.	2.9	35
32	A three-dimensional tissue culture model of bone formation utilizing rotational co-culture of human adult osteoblasts and osteoclasts. Acta Biomaterialia, 2013, 9, 7908-7916.	4.1	34
33	miRâ€149 and miRâ€29c as candidates for bipolar disorder biomarkers. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 315-323.	1.1	34
34	Increased Expression of TrkB and Capzb2 Accompanies Preserved Cognitive Status in Early Alzheimer Disease Pathology. Journal of Neuropathology and Experimental Neurology, 2012, 71, 654-664.	0.9	26
35	Identification of Circulating Serum Multi-MicroRNA Signatures in Human DLBCL Models. Scientific Reports, 2019, 9, 17161.	1.6	25
36	Modulation of SPARC/Hevin Proteins in Alzheimer's Disease Brain Injury. Journal of Alzheimer's Disease, 2019, 68, 695-710.	1.2	23

CHARLES R VANDERBURG

#	Article	IF	CITATIONS
37	Modulators of Cytoskeletal Reorganization in CA1 Hippocampal Neurons Show Increased Expression in Patients at Mid-Stage Alzheimer's Disease. PLoS ONE, 2010, 5, e13337.	1.1	19
38	The Impact of Age and Sex in DLBCL: Systems Biology Analyses Identify Distinct Molecular Changes and Signaling Networks. Cancer Informatics, 2015, 14, CIN.S34144.	0.9	18
39	A Circulating microRNA Signature Predicts Age-Based Development of Lymphoma. PLoS ONE, 2017, 12, e0170521.	1.1	18
40	Megakaryocytes contain extranuclear histones and may be a source of platelet-associated histones during sepsis. Scientific Reports, 2020, 10, 4621.	1.6	17
41	A Special Local Clustering Algorithm for Identifying the Genes Associated With Alzheimer's Disease. IEEE Transactions on Nanobioscience, 2010, 9, 44-50.	2.2	16
42	Neuronal calcineurin transcriptional targets parallel changes observed in Alzheimer disease brain. Journal of Neurochemistry, 2018, 147, 24-39.	2.1	14
43	Posttranscriptional control of embryonic rat skeletal muscle protein synthesis. Control at the level of translation by endogenous RNA Journal of Cell Biology, 1988, 107, 1085-1098.	2.3	12
44	Metallosis in a Dog as a Long-Term Complication Following Total Hip Arthroplasty. Veterinary Pathology, 2017, 54, 828-831.	0.8	12
45	Transcriptional-translational regulation of muscle-specific protein synthesis and its relationship to chondrogenic stimuli. Journal of Biological Chemistry, 1986, 261, 1477-86.	1.6	12
46	Laser capture microdissection of metachromatically stained skeletal muscle allows quantification of fiber type specific gene expression. Molecular and Cellular Biochemistry, 2013, 375, 159-70.	1.4	11
47	Transcriptomic Analysis of Laser Capture Microdissected Tumors Reveals Cancer- and Stromal-Specific Molecular Subtypes of Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2021, 27, 2314-2325.	3.2	10
48	Cytoplasmic loading of dyes, protein and plasmid DNA using an impact-mediated procedure. BioTechniques, 1994, 17, 1118-25.	0.8	10
49	Local and Systemic Changes Associated with Long-term, Percutaneous, Static Implantation of Titanium Alloys in Rhesus Macaques (). Comparative Medicine, 2017, 67, 165-175.	0.4	9
50	Melanocortin 1 receptor activation protects against alpha-synuclein pathologies in models of Parkinson's disease. Molecular Neurodegeneration, 2022, 17, 16.	4.4	8
51	In situ localization of cholesterol in skeletal muscle by use of a monoclonal antibody. Journal of Applied Physiology, 2000, 89, 731-741.	1.2	7
52	Assessment of gene order computing methods for Alzheimer's disease. BMC Medical Genomics, 2013, 6, S8.	0.7	6
53	Studying protein degradation pathways in vivo using a cranial window-based approach. Methods, 2011, 53, 194-200.	1.9	4
54	Promise and challenges of dystonia brain banking: establishing a human tissue repository for studies of X-Linked Dystonia-Parkinsonism. Journal of Neural Transmission, 2021, 128, 575-587.	1.4	4

#	Article	IF	CITATIONS
55	Capzb2 protein expression in the brains of patients diagnosed with Alzheimer's disease and Huntington's disease. Translational Neuroscience, 2010, 1, 55-58.	0.7	2
56	Coagulation Biomarkers in Healthy Chinese-Origin Rhesus Macaques (Macaca mulatta). Journal of the American Association for Laboratory Animal Science, 2016, 55, 252-9.	0.6	1
57	Circulating microRNAs Predict the Initiation of NHL in a Novel In Vivo Model: Impact of Age and Sex Via a Systems Biology Approach. Blood, 2016, 128, 4114-4114.	0.6	0
58	Ultra-Sensitive Detection of Circulating Serum microRNAs (miRNAs) in Diffuse Large B-Cell Lymphoma (DLBCL) Patient-Derived Xenograft (PDX) Models and Correlation with Disease Status in DLBCL Patient. Blood, 2018, 132, 2973-2973.	0.6	0