Ingo Fischer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1906063/publications.pdf

Version: 2024-02-01

175 4,396 36
papers citations h-index

181

docs citations

36 55
h-index g-index

181 3033
times ranked citing authors

155660

181 all docs

#	Article	IF	CITATIONS
1	Femtosecond waveâ€packet dynamics studied by timeâ€resolved zeroâ€kinetic energy photoelectron spectroscopy. Journal of Chemical Physics, 1995, 102, 5566-5569.	3.0	138
2	Excited state spectroscopy and dynamics of isolated adenine and 9-methyladenine. Physical Chemistry Chemical Physics, 2001, 3, 1827-1831.	2.8	136
3	The mechanism of excimer formation: an experimental and theoretical study on the pyrene dimer. Physical Chemistry Chemical Physics, 2017, 19, 25002-25015.	2.8	119
4	Well-controlled in-situ growth of 2D WO 3 rectangular sheets on reduced graphene oxide with strong photocatalytic and antibacterial properties. Journal of Hazardous Materials, 2018, 347, 266-278.	12.4	107
5	Experimental Assessment of the Strengths of B–B Triple Bonds. Journal of the American Chemical Society, 2015, 137, 1766-1769.	13.7	102
6	Highly Fluorescent Open-Shell NIR Dyes: The Time-Dependence of Back Electron Transfer in Triarylamine-Perchlorotriphenylmethyl Radicals. Journal of Physical Chemistry C, 2009, 113, 20958-20966.	3.1	100
7	Excited Mixed-Valence States of Symmetrical Donorâ^'Acceptorâ^'Donor Ï€ Systems. Journal of Physical Chemistry A, 2006, 110, 5204-5214.	2.5	94
8	Threshold Photoelectron Spectroscopy of the Methyl Radical Isotopomers, CH3, CH2D, CHD2 and CD3: Synergy between VUV Synchrotron Radiation Experiments and Explicitly Correlated Coupled Cluster Calculations. Journal of Physical Chemistry A, 2010, 114, 4818-4830.	2.5	88
9	Stimulusâ€Triggered Formation of an Anion–Cation Exciplex in Copper(I) Complexes as a Mechanism for Mechanochromic Phosphorescence. Angewandte Chemie - International Edition, 2018, 57, 13671-13675.	13.8	84
10	Highly Strained Heterocycles Constructed from Boron–Boron Multiple Bonds and Heavy Chalcogens. Angewandte Chemie - International Edition, 2016, 55, 5606-5609.	13.8	78
11	Dynamics of H-atom loss in adenine. Physical Chemistry Chemical Physics, 2004, 6, 5178.	2.8	75
12	High resolution photoelectron spectra of the NO dimer. Journal of Chemical Physics, 1992, 96, 7171-7174.	3.0	72
13	Collisional enhancement of Rydberg lifetimes observed in vibrational wave packet experiments. Journal of Chemical Physics, 1995, 103, 4538-4550.	3.0	70
14	Photodissociation dynamics of the allyl radical. Journal of Chemical Physics, 1999, 110, 1450-1462.	3.0	70
15	Femtosecond time-resolved zero kinetic energy photoelectron and photoionization spectroscopy studies of I2 wavepacket dynamics. Chemical Physics, 1996, 207, 331-354.	1.9	69
16	Photodissociation dynamics of the propargyl radical. Journal of Chemical Physics, 1999, 111, 3441-3448.	3.0	66
17	State-to-state photoionisation dynamics probed by zero kinetic energy (ZEKE) photoelectron spectroscopy. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 2425-2442.	1.7	61
18	Allyl-A Model System for the Chemical Dynamics of Radicals. Journal of Physical Chemistry A, 2002, 106, 4291-4300.	2.5	61

#	Article	IF	CITATIONS
19	Carbon monoxide insertion at a heavy p-block element: unprecedented formation of a cationic bismuth carbamoyl. Chemical Science, 2019, 10, 4169-4176.	7.4	59
20	The zero kinetic energy photoelectron spectrum of the propargyl radical, C3H3. Journal of Chemical Physics, 2000, 112, 2575-2578.	3.0	58
21	The non-resonant two-photon zero kinetic energy photoelectron spectrum of CS2. Chemical Physics Letters, 1993, 202, 542-548.	2.6	55
22	Photoionization of Three Isomers of the C ₉ H ₇ Radical. Journal of Physical Chemistry A, 2010, 114, 4698-4703.	2.5	55
23	Photodissociation Dynamics of CH3I and CD3I Probed by Zero Kinetic Energy Photoelectron Spectroscopy. The Journal of Physical Chemistry, 1994, 98, 2024-2032.	2.9	54
24	Microcanonical rates for the unimolecular dissociation of the ethyl radical. Journal of Chemical Physics, 1999, 110, 5485-5488.	3.0	54
25	Photoionization of C ₇ H ₆ and C ₇ H ₅ : Observation of the Fulvenallenyl Radical. ChemPhysChem, 2011, 12, 1795-1797.	2.1	52
26	The vacuum ultraviolet photochemistry of the allyl radical investigated using synchrotron radiation. Journal of Chemical Physics, 2003, 118, 9077-9080.	3.0	46
27	Methylbismuth: an organometallic bismuthinidene biradical. Chemical Science, 2020, 11, 7562-7568.	7.4	46
28	Time-resolved photoelectron spectroscopy of the allyl radical: The lifetimes of the ultraviolet bands. Journal of Chemical Physics, 1998, 109, 5812-5822.	3.0	44
29	Synthesis of well–dispersed silver nanorods of different aspect ratios and their antimicrobial properties against gram positive and negative bacterial strains. Journal of Nanobiotechnology, 2013, 11, 42.	9.1	42
30	The VUV photochemistry of radicals: C3H3and C2H5. Physical Chemistry Chemical Physics, 2005, 7, 819-825.	2.8	41
31	Exclusive π Encapsulation of Light Alkali Metal Cations by a Neutral Molecule. Angewandte Chemie - International Edition, 2015, 54, 13090-13094.	13.8	41
32	Kinetics and dynamics in the photodissociation of the allyl radical. Journal of Chemical Physics, 1997, 107, 3329-3332.	3.0	40
33	Photoionization of Propargyl and Bromopropargyl Radicals: A Threshold Photoelectron Spectroscopic Study. Journal of Physical Chemistry A, 2011, 115, 2225-2230.	2.5	40
34	The nonresonant twoâ€photon zero kinetic energy photoelectron spectrum from the electronic ground state of H2S. Journal of Chemical Physics, 1993, 98, 3592-3599.	3.0	38
35	Excited-state proton transfer in naphthol/solvent clusters: the current state of affairs. International Journal of Mass Spectrometry, 2002, 220, 343-357.	1.5	37
36	Excited-state decay of hydrocarbon radicals, investigated by femtosecond time-resolved photoionization: Ethyl, propargyl, and benzyl. Journal of Chemical Physics, 2005, 122, 094302.	3.0	37

#	Article	IF	Citations
37	Tailoring of enhanced interfacial polarization in WO ₃ nanorods grown over reduced graphene oxide synthesized by a one-step hydrothermal method. RSC Advances, 2017, 7, 13985-13996.	3.6	37
38	The nonresonantâ€ŧwoâ€photon zero kinetic energy photoelectron spectrum out of the2Î1/2electronic ground state of nitric oxide. Journal of Chemical Physics, 1992, 97, 2332-2337.	3.0	35
39	The nonradiative decay of the allyl radical excited B 2A1 state studied by picosecond time-resolved photoelectron spectroscopy. Journal of Chemical Physics, 1997, 107, 8197-8200.	3.0	35
40	Excited-state proton transfer in 1-naphthol(NH3)n clusters: Wavelength-dependence of the picosecond pump–probe spectra. Physical Chemistry Chemical Physics, 2000, 2, 4335-4340.	2.8	34
41	Hochgespannte Heterocyclen, gebildet aus Borâ€Borâ€Mehrfachbindungen und höheren Homologen der Chalcogene. Angewandte Chemie, 2016, 128, 5697-5700.	2.0	34
42	Theoretical study of the electronic states of BeLi and Be2+. Chemical Physics, 1991, 151, 295-308.	1.9	33
43	Resonance enhancement effects in coherent twoâ€photon ionization of CH3I. Journal of Chemical Physics, 1993, 99, 733-736.	3.0	33
44	Time- and frequency-resolved photoionisation of the allyl radical. Faraday Discussions, 2000, 115, 17-31.	3.2	33
45	Zero kinetic energy photoelectron spectra of the allyl radical, C3H5. Journal of Chemical Physics, 2000, 113, 561-566.	3.0	31
46	Phenylpropargyl Radicals and Their Dimerization Products: An IR/UV Double Resonance Study. Journal of Physical Chemistry A, 2012, 116, 8515-8522.	2.5	31
47	Formation of polycyclic aromatic hydrocarbons from bimolecular reactions of phenyl radicals at high temperatures. Physical Chemistry Chemical Physics, 2015, 17, 29064-29071.	2.8	31
48	High-resolution photoelectron-spectroscopy of radicals. International Journal of Mass Spectrometry, 2002, 216, 131-153.	1.5	30
49	Isomerâ€6elective Generation and Spectroscopic Characterization of Picolyl Radicals. Angewandte Chemie - International Edition, 2017, 56, 8000-8003.	13.8	30
50	Twoâ€photon ionization and dissociation of ethyl iodide. Journal of Chemical Physics, 1995, 103, 5417-5427.	3.0	29
51	Intermolecular Excitedâ€State Proton Transfer in Clusters of 1â€Naphthol with Water and with Ammonia. Israel Journal of Chemistry, 1999, 39, 221-230.	2.3	29
52	The photodissociation dynamics of the ethyl radical, C2H5, investigated by velocity map imaging. Journal of Chemical Physics, 2012, 137, 014303.	3.0	29
53	Photoionization and dissociative photoionization of the allyl radical, C3H5. International Journal of Mass Spectrometry, 2007, 261, 227-233.	1.5	28
54	Threshold Photoelectron Spectra of Combustion Relevant C ₄ H ₅ and C ₄ H ₇ Isomers. Journal of Physical Chemistry A, 2015, 119, 3995-4000.	2.5	28

#	Article	IF	CITATIONS
55	Kinetics of the a-C ₃ H ₅ + O ₂ reaction, investigated by photoionization using synchrotron radiation. Physical Chemistry Chemical Physics, 2018, 20, 10721-10731.	2.8	28
56	The simplest heteronuclear metal cluster: LiBe. Chemical Physics Letters, 1990, 170, 485-491.	2.6	27
57	Photodissociation dynamics of the 2-propyl radical, C3H7. Journal of Chemical Physics, 2007, 126, 144302.	3.0	27
58	Photodissociation of thetert-butyl Radical, C4H9â€. Journal of Physical Chemistry A, 2004, 108, 8125-8130.	2.5	26
59	Probing antiaromaticity: resonance Raman investigation of a series of differently substituted boroles. Journal of Raman Spectroscopy, 2010, 41, 636-641.	2.5	26
60	Paracyclophanes as model compounds for strongly interacting π-systems. Part 1. Pseudo-ortho-dihydroxy[2.2]paracyclophane. Physical Chemistry Chemical Physics, 2010, 12, 9339.	2.8	26
61	Ponderomotive effects in zero kinetic energy photoelectron spectroscopy with intense femtosecond pulses. Chemical Physics Letters, 1995, 234, 281-288.	2.6	25
62	Threshold Photoelectron Spectroscopy of Cyclopropenylidene, Chlorocyclopropenylidene, and Their Deuterated Isotopomeresâ€. Journal of Physical Chemistry A, 2010, 114, 11269-11276.	2.5	25
63	Bonding in a Borylene Complex Investigated by Photoionization and Dissociative Photoionization. Chemistry - A European Journal, 2012, 18, 4533-4540.	3.3	25
64	H2CN+ and H2CNH+: New insight into the structure and dynamics from mass-selected threshold photoelectron spectra. Journal of Chemical Physics, 2013, 138, 214310.	3.0	25
65	Femtosecond Dynamics of the tert-Butyl Radical, t-C4H9. Journal of Physical Chemistry A, 2007, 111, 1771-1779.	2.5	24
66	Self-Reaction of <i>ortho</i> -Benzyne at High Temperatures Investigated by Infrared and Photoelectron Spectroscopy. Journal of Physical Chemistry A, 2018, 122, 9563-9571.	2.5	24
67	Photodissociation of thymine. Physical Chemistry Chemical Physics, 2006, 8, 3017.	2.8	23
68	Dynamics of Isolated 1,8-Naphthalimide and N-Methyl-1,8-naphthalimide: An Experimental and Computational Study. Journal of Physical Chemistry A, 2016, 120, 2089-2095.	2.5	23
69	Generation of tunable visible and near-IR light from 2.5 ps, high-power Ti: sapphire pulses by Raman shifting in hydrogen. Applied Physics B: Lasers and Optics, 1996, 64, 15-20.	2.2	22
70	Time-resolved photoionisation of radicals, clusters and biomolecules: relevant model systems. Chemical Society Reviews, 2003, 32, 59-69.	38.1	22
71	Photoionization and Pyrolysis of a 1,4â€Azaborinine: Retroâ€Hydroboration in the Cation and Identification of Novel Organoboron Ring Systems. Chemistry - A European Journal, 2014, 20, 9683-9692.	3.3	22
72	Photodissociation dynamics of the <i>ortho</i> and <i>para</i> xylyl radicals. Journal of Chemical Physics, 2017, 147, 084303.	3.0	22

#	Article	IF	CITATIONS
73	Ultrafast Dynamics of Isolated Phenylcarbenes Followed by Femtosecond Time-Resolved Velocity Map Imaging. Journal of Physical Chemistry A, 2009, 113, 3041-3050.	2.5	21
74	Paracyclophanes as model compounds for strongly interacting π-systems. Part 2: mono-hydroxy[2.2]paracyclophane. Physical Chemistry Chemical Physics, 2011, 13, 11076.	2.8	21
75	The electronic structure of pyracene: a spectroscopic and computational study. Physical Chemistry Chemical Physics, 2013, 15, 8151.	2.8	20
76	On the absolute photoionization cross section and dissociative photoionization of cyclopropenylidene. Physical Chemistry Chemical Physics, 2016, 18, 9240-9247.	2.8	20
77	Products of the Propargyl Self-Reaction at High Temperatures Investigated by IR/UV Ion Dip Spectroscopy. Journal of Physical Chemistry A, 2017, 121, 181-191.	2.5	19
78	Observing Femtosecond Fragmentation Using Ultrafast X-ray-Induced Auger Spectra. Applied Sciences (Switzerland), 2017, 7, 681.	2.5	19
79	Diborene: Generation and Photoelectron Spectroscopy of an Inorganic Biradical. Journal of Physical Chemistry Letters, 2018, 9, 5921-5925.	4.6	19
80	Pyrolysis of 3-Methoxypyridine. Detection and Characterization of the Pyrrolyl Radical by Threshold Photoelectron Spectroscopy. Journal of Physical Chemistry A, 2016, 120, 4702-4710.	2.5	18
81	Dimerization of the Benzyl Radical in a Highâ€Temperature Pyrolysis Reactor Investigated by IR/UV Ion Dip Spectroscopy. Chemistry - A European Journal, 2018, 24, 7647-7652.	3.3	18
82	Facile synthesis and photophysics of graphene quantum dots. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 671-678.	3.9	18
83	Pentadiynylidene and Its Methyl-Substituted Derivates: Threshold Photoelectron Spectroscopy of R ₁ -C ₅ -R ₂ Triplet Carbon Chains. Journal of Physical Chemistry A, 2019, 123, 2008-2017.	2.5	18
84	Photoelectron spectroscopy in molecular physical chemistry. Physical Chemistry Chemical Physics, 2022, 24, 1944-1959.	2.8	18
85	Electronic spectroscopy of 1-naphthol/solvent clusters 1-NpOH/S, S=H2O, Ar and N2. Chemical Physics, 2004, 305, 123-133.	1.9	17
86	Femtosecond Dynamics of Isolated Phenylcarbenes. Journal of the American Chemical Society, 2008, 130, 14908-14909.	13.7	17
87	A pass too far: dissociation of internal energy selected paracyclophane cations, theory and experiment. Physical Chemistry Chemical Physics, 2012, 14, 11920.	2.8	17
88	Photodissociation dynamics of fulvenallene, C7H6. Physical Chemistry Chemical Physics, 2013, 15, 13162.	2.8	17
89	Photoionisation of the tropyl radical. Beilstein Journal of Organic Chemistry, 2013, 9, 681-688.	2.2	17
90	Photodissociation of uracil. Physical Chemistry Chemical Physics, 2007, 9, 6021.	2.8	16

#	Article	IF	Citations
91	Femtosecond dynamics of electron transfer in a neutral organic mixed-valence compound. Chemical Physics, 2008, 347, 436-445.	1.9	16
92	Ultrafast Dynamics of Isolated Fluorenone. Journal of Physical Chemistry A, 2011, 115, 14249-14253.	2.5	16
93	Paracyclophanes as Model Compounds for Strongly Interacting π-Systems, Part 3: Influence of the Substitution Pattern on Photoabsorption Properties. Journal of Physical Chemistry A, 2011, 115, 3583-3591.	2.5	16
94	Femtosecond dynamics of cyclopropenylidene, c-C ₃ H ₂ . Physical Chemistry Chemical Physics, 2012, 14, 6173-6178.	2.8	16
95	The ortho-benzyne cation is not planar. Physical Chemistry Chemical Physics, 2018, 20, 3988-3996.	2.8	16
96	Normal and resonant Auger spectroscopy of isocyanic acid, HNCO. Journal of Chemical Physics, 2018, 149, 034308.	3.0	16
97	Excited-state lifetime of propadienylidene, I-C3H2. Physical Chemistry Chemical Physics, 2009, 11, 5353.	2.8	15
98	The B 1B1 State of Cyclopropenylidene, c-C3H2. Journal of Physical Chemistry Letters, 2010, 1, 228-231.	4.6	15
99	The photoionisation of propargylene and diazopropyne. Physical Chemistry Chemical Physics, 2011, 13, 17956.	2.8	15
100	Threshold Photoionization of Fluorenyl, Benzhydryl, Diphenylmethylene, and Their Dimers. Journal of Physical Chemistry A, 2013, 117, 5260-5268.	2.5	14
101	A photoionization study of 2-propyl and t-butyl radicals. Journal of Analytical and Applied Pyrolysis, 2017, 124, 454-460.	5.5	14
102	Space charge and plasma effects in zero kinetic energy (ZEKE)photoelectron spectroscopy. Journal of Chemical Physics, 1997, 107, 5310-5318.	3.0	13
103	On the photodissociation of propadienylidene, l-C3H2. Physical Chemistry Chemical Physics, 2008, 10, 5196.	2.8	13
104	The photoionisation of two phenylcarbenes and their diazirine precursors investigated using synchrotron radiation. Physical Chemistry Chemical Physics, 2009, 11, 5384.	2.8	13
105	Time- and frequency-resolved photoionization of the C A22 state of the benzyl radical, C7H7. Journal of Chemical Physics, 2010, 133, 074304.	3.0	13
106	Transient stimulated Raman scattering in gas mixtures. Optics Letters, 1999, 24, 1623.	3.3	12
107	Excited-state dynamics in a neutral organic mixed-valence compound. Chemical Physics Letters, 2005, 408, 264-268.	2.6	12
108	Time-Domain Study of the S ₃ State of 9-Fluorenone. Journal of Physical Chemistry A, 2014, 118, 1397-1402.	2.5	12

#	Article	IF	CITATIONS
109	Photodissociation dynamics of propargylene, HCCCH. Physical Chemistry Chemical Physics, 2014, 16, 6294-6302.	2.8	12
110	The photodissociation dynamics of alkyl radicals. Journal of Chemical Physics, 2015, 142, 044304.	3.0	12
111	Assignment of high-lying bending mode levels in the threshold photoelectron spectrum of NH ₂ : a comparison between pyrolysis and fluorine-atom abstraction radical sources. Physical Chemistry Chemical Physics, 2015, 17, 19507-19514.	2.8	12
112	Femtosecond dynamics of the 2-methylallyl radical: A computational and experimental study. Journal of Chemical Physics, 2017, 147, 013902.	3.0	12
113	Excimer formation dynamics in the isolated tetracene dimer. Chemical Science, 2021, 12, 11965-11975.	7.4	12
114	Exploring the Excited-State Dynamics of Hydrocarbon Radicals, Biradicals, and Carbenes Using Time-Resolved Photoelectron Spectroscopy and Field-Induced Surface Hopping Simulations. Journal of Physical Chemistry A, 2019, 123, 10643-10662.	2.5	11
115	Photoelectron spectroscopy of boron-containing reactive intermediates using synchrotron radiation: BH ₂ , BH, and BF. Physical Chemistry Chemical Physics, 2020, 22, 1027-1034.	2.8	11
116	Two-Photon Photoelectron Spectrum of Methyl Iodide through a Dissociative Intermediate State. Journal of Physical Chemistry A, 1997, 101, 5031-5034.	2.5	10
117	Femtosecond time-resolved photoelectron spectroscopy of the benzyl radical. Physical Chemistry Chemical Physics, 2017, 19, 12365-12374.	2.8	10
118	High power tunable femtosecond visible and infrared light from a synchronized Ti:sapphire/Nd:YAG laser system by difference frequency mixing. Optics Communications, 1995, 114, 141-146.	2.1	9
119	Decomposition of Diazomeldrum's Acid: A Threshold Photoelectron Spectroscopy Study. Journal of Physical Chemistry A, 2014, 118, 11235-11243.	2.5	9
120	Photodissociation Dynamics of Cyclopropenylidene, <i>c</i> à€€ ₃ H ₂ . Chemistry - A European Journal, 2015, 21, 14486-14495.	3.3	9
121	Time-Resolved Study of 1,8-Naphthalic Anhydride and 1,4,5,8-Naphthalene-tetracarboxylic Dianhydride. Journal of Physical Chemistry A, 2015, 119, 6006-6016.	2.5	9
122	Threshold photoelectron spectroscopy of unstable N-containing compounds: Resolution of Î"K subbands in HNCO+ and vibrational resolution in NCO+. Journal of Chemical Physics, 2015, 142, 184306.	3.0	9
123	Kinetics of 1- and 2-methylallyl + O ₂ reaction, investigated by photoionisation using synchrotron radiation. Physical Chemistry Chemical Physics, 2021, 23, 1539-1549.	2.8	9
124	Improved Ionization Energies for the Two Isomers of Phenylpropargyl Radical. ChemPhysChem, 2014, 15, 3489-3492.	2.1	8
125	Fragmentation of isocyanic acid, HNCO, following core excitation and ionization. Journal of Chemical Physics, 2021, 154, 114302.	3.0	8
126	Threshold Photoelectron Spectrum of Cyclobutadiene: Comparison with Time-Dependent Wavepacket Simulations. Journal of Physical Chemistry Letters, 2021, 12, 6901-6906.	4.6	8

#	Article	IF	CITATIONS
127	Multiphoton ionization and zero kinetic energy photoelectron spectroscopy of the 1-naphthol(H2O) cluster. Chemical Physics Letters, 2003, 381, 346-353.	2.6	7
128	Photoionization of two substituted methyl radicals: Cyanomethyl and bromomethyl. Chemical Physics Letters, 2010, 500, 232-236.	2.6	7
129	The Gas-Phase Infrared Spectra of Xylyl Radicals. Journal of Physical Chemistry A, 2019, 123, 9573-9578.	2.5	7
130	Auger electron spectroscopy of fulminic acid, HCNO: an experimental and theoretical study. Physical Chemistry Chemical Physics, 2022, 24, 15217-15229.	2.8	7
131	Infrared Spectra of Reactive Species Generated by Flash Pyrolysis in a Free Jet. ChemPhysChem, 2010, 11, 3228-3230.	2.1	6
132	Side-Chain Effects on the Electronic Relaxation of Radicals followed by Time-Resolved Pumpâ^Probe Spectroscopy: 2,3-Dimethylbut-2-yl vs <i>tert</i> -Butyl. Journal of Physical Chemistry A, 2010, 114, 3045-3049.	2.5	6
133	Gas-phase-IR and Solid-State Raman Investigation of Paracyclophanes. Zeitschrift Fur Physikalische Chemie, 2013, 227, 23-34.	2.8	6
134	Excitedâ€State Dynamics of the 2â€Methylallyl Radical. ChemPhysChem, 2013, 14, 3906-3908.	2.1	6
135	Electronic Spectroscopy of 1-(Phenylethynyl)naphthalene. Journal of Physical Chemistry A, 2014, 118, 2915-2921.	2.5	6
136	Electronic Structure and Excitedâ€State Dynamics of an Arduengoâ€Type Carbene and its Imidazolone Oxidation Product. Chemistry - A European Journal, 2017, 23, 3084-3090.	3.3	6
137	Isomerenselektive Erzeugung und spektroskopische Charakterisierung der Picolylâ€Radikale. Angewandte Chemie, 2017, 129, 8113-8116.	2.0	6
138	Excited state dynamics and time-resolved photoelectron spectroscopy of <i>para</i> -xylylene. Faraday Discussions, 2018, 212, 83-100.	3.2	6
139	A time-resolved photoelectron imaging study on isolated tolane: observation of the biradicalic ¹ A _u state. Physical Chemistry Chemical Physics, 2019, 21, 13157-13164.	2.8	6
140	Decomposition of Picolyl Radicals at High Temperature: A Mass Selective Threshold Photoelectron Spectroscopy Study. Chemistry - A European Journal, 2019, 25, 16652-16659.	3.3	6
141	Ammonia Borane, NH ₃ BH ₃ : A Threshold Photoelectron–Photoion Coincidence Study of a Potential Hydrogenâ€5torage Material. Chemistry - A European Journal, 2022, 28, .	3.3	6
142	Threshold Photoelectron Spectroscopy of IO and HOI. ChemPhysChem, 2019, 20, 2413-2416.	2.1	5
143	Do Xylylenes Isomerize in Pyrolysis?. ChemPhysChem, 2020, 21, 1515-1518.	2.1	5
144	Photodissociation of Benzoyl Chloride: A Velocity Map Imaging Study Using VUV Detection of Chlorine Atoms. Journal of Physical Chemistry A, 2021, 125, 2816-2825.	2.5	5

#	Article	IF	Citations
145	Threshold photoelectron spectroscopy of iminoborane, HBNH. Physical Chemistry Chemical Physics, 2021, 24, 20-24.	2.8	5
146	Photoelectron spectroscopy of low valent organophosphorus compounds, P–CH ₃ , H–Pî€CH ₂ and Pî€CH ₂ . Physical Chemistry Chemical Physics, 2022, 24, 10993-10999). ^{2.8}	5
147	The excited-state structure and photophysics of isolated acenaphthylene. Chemical Physics, 2018, 515, 744-749.	1.9	4
148	The gas-phase infrared spectra of the 2-methylallyl radical and its high-temperature reaction products. Physical Chemistry Chemical Physics, 2022, 24, 7682-7690.	2.8	4
149	Gas-Phase Infrared Spectra of the C ₇ H ₅ Radical and Its Bimolecular Reaction Products. Journal of Physical Chemistry A, 2022, 126, 2532-2540.	2.5	4
150	Resonanceâ€Enhanced Multiphoton Ionisation of Purine. ChemPhysChem, 2009, 10, 634-636.	2.1	3
151	Ultrafast charge-transfer dynamics of donor-substituted truxenones. Physical Chemistry Chemical Physics, 2012, 14, 11081.	2.8	3
152	Tuning of the dimensional linkage from the complex to the framework by thermal conversion in the system Fe/Cl/piperazine. Dalton Transactions, 2014, 43, 15398-15406.	3.3	3
153	The threshold photoelectron spectrum of cyanovinylacetylene leads to an upward revision of the ionization energy. Chemical Physics Letters, 2015, 638, 201-204.	2.6	3
154	Disentangling the photochemistry of benzocyclobutenedione. Physical Chemistry Chemical Physics, 2018, 20, 15434-15444.	2.8	3
155	Isolated 2-hydroxypyrene and its dimer: a frequency- and time-resolved spectroscopic study. New Journal of Chemistry, 2021, 45, 14949-14956.	2.8	3
156	Photoelectron Photoion Coincidence Spectroscopy of NCl 3 and NCl 2. ChemPhysChem, 2021, 22, 2164-2167.	2.1	3
157	Time-resolved ultrafast spectroscopy: general discussion. Faraday Discussions, 2021, 228, 329-348.	3.2	2
158	Time-resolved diffraction: general discussion. Faraday Discussions, 2021, 228, 161-190.	3.2	2
159	Laser vaporization: A versatile method for studying metal clusters. Journal of Chemical Sciences, 1991, 103, 313-323.	1.5	2
160	Spectroscopy and dynamics of radicals, clusters and ions. Physical Chemistry Chemical Physics, 2005, 7, 721.	2.8	1
161	Competition between van der Waals and Hydrogen Bonding Interactions:Â Structure of thetrans-1-Naphthol/N2Cluster. Journal of Physical Chemistry A, 2005, 109, 9584-9589.	2.5	1
162	Threshold Photoelectron Spectrum of Isolated NTCDA. Zeitschrift Fur Physikalische Chemie, 2011, 225, 715-722.	2.8	1

#	Article	IF	CITATIONS
163	Formation of Coordination Polymers and Complexes at Room Temperature from Thiazole and Lanthanideâ€trichlorides. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 362-368.	1.2	1
164	Precise characterisation of isolated molecules: general discussion. Faraday Discussions, 2018, 212, 137-155.	3.2	1
165	Structural changes of 1-(phenylethynyl)naphthalene upon electronic excitation from Franck–Condon fits of several fluorescence emission spectra. Journal of Molecular Structure, 2021, 1250, 131910.	3.6	1
166	Extending the Tuning Range of Short-Pulse Lasers by Transient Stimulated Raman Scattering in Gases. Zeitschrift Fur Physikalische Chemie, 2002, 216, .	2.8	0
167	Time-Resolved Photoionization of Radicals, Clusters and Biomolecules: Relevant Model Systems. ChemInform, 2003, 34, no.	0.0	0
168	Dimerization of the Benzyl Radical in a High-Temperature Pyrolysis Reactor Investigated by IR/UV Ion Dip Spectroscopy. Chemistry - A European Journal, 2018, 24, 7535-7535.	3.3	0
169	Ultrafast X-ray science: general discussion. Faraday Discussions, 2021, 228, 597-621.	3.2	O
170	Femtosecond dynamics of diphenylpropynylidene in ethanol and dichloromethane. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 254, 119606.	3.9	0
171	Gas-phase-IR and Solid-State Raman Investigation of Paracyclophanes. Zeitschrift Fur Physikalische Chemie, 0, , 121029001030001.	2.8	O
172	Wavepacket Dynamics via Femtosecond Time-Resolved Photoelectron and Photoionization Spectroscopy. Springer Series in Chemical Physics, 1996, , 187-189.	0.2	0
173	The UV Band System of the Allyl Radical, Studied by Time-Resolved Photoelectron Spectroscopy. Springer Series in Chemical Physics, 1998, , 511-513.	0.2	O
174	Photodissociation of the trichloromethyl radical: photofragment imaging and femtosecond photoelectron spectroscopy. Physical Chemistry Chemical Physics, 2022, 24, 928-940.	2.8	0
175	Cover Feature: Ammonia Borane, NH ₃ BH ₃ : A Threshold Photoelectron–Photoion Coincidence Study of a Potential Hydrogenâ€Storage Material (Chem. Eur. J.) Tj ETQq	1 3.0.7843	3 104 rgBT /0

Photoelectron–Photoion Coincidence Study of a Potential Hydrogenâ€Storage Material (Chem. Eur. J.) Tj ETQq1 3.9.7843 1 rgBT /