
Janet L Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1905169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of acute intermittent hypoxia on human limb motoneurone output. Experimental Physiology, 2022, 107, 615-630.	2.0	8
2	Effects of reciprocal inhibition and wholeâ€body relaxation on persistent inward currents estimated by two different methods. Journal of Physiology, 2022, 600, 2765-2787.	2.9	25
3	5â€HT ₂ receptor antagonism reduces human motoneuron output to antidromic activation but not to stimulation of corticospinal axons. European Journal of Neuroscience, 2022, 56, 3674-3686.	2.6	8
4	Effects of different modalities of afferent stimuli of the lumboâ€sacral area on control of lumbar paravertebral muscles. European Journal of Neuroscience, 2022, 56, 3687-3704.	2.6	1
5	Locationâ€specific cutaneous electrical stimulation of the footsole modulates corticospinal excitability to the plantarflexors and dorsiflexors during standing. Physiological Reports, 2022, 10, .	1.7	3
6	H-reflex and M-wave responses after voluntary and electrically evoked muscle cramping. European Journal of Applied Physiology, 2021, 121, 659-672.	2.5	1
7	Voluntary activation of knee extensor muscles with transcranial magnetic stimulation. Journal of Applied Physiology, 2021, 130, 589-604.	2.5	7
8	Involuntary sustained firing of plantar flexor motor neurones: effect of electrical stimulation parameters during tendon vibration. European Journal of Applied Physiology, 2021, 121, 881-891.	2.5	10
9	Human corticospinal-motoneuronal output is reduced with 5-HT ₂ receptor antagonism. Journal of Neurophysiology, 2021, 125, 1279-1288.	1.8	15
10	Effects of postexercise blood flow occlusion on quadriceps responses to transcranial magnetic stimulation. Journal of Applied Physiology, 2021, 130, 1326-1336.	2.5	0
11	Early Detection of Prolonged Decreases in Maximal Voluntary Contraction Force after Eccentric Exercise of the Knee Extensors. Medicine and Science in Sports and Exercise, 2021, Publish Ahead of Print, 267-279.	0.4	1
12	Quadriceps Muscle Fatigue Reduces Extension and Flexion Power During Maximal Cycling. Frontiers in Sports and Active Living, 2021, 3, 797288.	1.8	1
13	Effect of fatigue-related group III/IV afferent firing on intracortical inhibition and facilitation in hand muscles. Journal of Applied Physiology, 2020, 128, 149-158.	2.5	10
14	Genioglossus motor unit activity in supine and upright postures in obstructive sleep apnea. Sleep, 2020, 43, .	1.1	9
15	Supraspinal fatigue in human inspiratory muscles with repeated sustained maximal efforts. Journal of Applied Physiology, 2020, 129, 1365-1372.	2.5	3
16	Passive muscle stretching reduces estimates of persistent inward current strength in soleus motor units. Journal of Experimental Biology, 2020, 223, .	1.7	27
17	A timeâ€efficient method to determine parameters for measurement of shortâ€interval intracortical inhibition for quadriceps. European Journal of Neuroscience, 2020, 52, 4751-4761.	2.6	7
18	Impaired central drive to plantarflexors and minimal ankle proprioceptive deficit in people with multiple sclerosis. Multiple Sclerosis and Related Disorders, 2020, 46, 102584.	2.0	7

#	Article	IF	CITATIONS
19	Fatigue-related Feedback from Calf Muscles Impairs Knee Extensor Voluntary Activation. Medicine and Science in Sports and Exercise, 2020, 52, 2136-2144.	0.4	10
20	Enhanced serotonin availability amplifies fatigue perception and modulates the TMSâ€induced silent period during sustained lowâ€intensity elbow flexions. Journal of Physiology, 2020, 598, 2685-2701.	2.9	30
21	High-intensity, low-frequency repetitive transcranial magnetic stimulation enhances excitability of the human corticospinal pathway. Journal of Neurophysiology, 2020, 123, 1969-1978.	1.8	8
22	Age has no effect on ankle proprioception when movement history is controlled. Journal of Applied Physiology, 2020, 128, 1365-1372.	2.5	14
23	Scrambling the skin: A psychophysical study of adaptation to scrambled tactile apparent motion. PLoS ONE, 2020, 15, e0227462.	2.5	0
24	Scrambling the skin: A psychophysical study of adaptation to scrambled tactile apparent motion. , 2020, 15, e0227462.		0
25	Scrambling the skin: A psychophysical study of adaptation to scrambled tactile apparent motion. , 2020, 15, e0227462.		0
26	Scrambling the skin: A psychophysical study of adaptation to scrambled tactile apparent motion. , 2020, 15, e0227462.		0
27	Scrambling the skin: A psychophysical study of adaptation to scrambled tactile apparent motion. , 2020, 15, e0227462.		0
28	Scrambling the skin: A psychophysical study of adaptation to scrambled tactile apparent motion. , 2020, 15, e0227462.		0
29	Scrambling the skin: A psychophysical study of adaptation to scrambled tactile apparent motion. , 2020, 15, e0227462.		0
30	Scrambling the skin: A psychophysical study of adaptation to scrambled tactile apparent motion. , 2020, 15, e0227462.		0
31	Scrambling the skin: A psychophysical study of adaptation to scrambled tactile apparent motion. , 2020, 15, e0227462.		0
32	Scrambling the skin: A psychophysical study of adaptation to scrambled tactile apparent motion. , 2020, 15, e0227462.		0
33	Scrambling the skin: A psychophysical study of adaptation to scrambled tactile apparent motion. , 2020, 15, e0227462.		0
34	Elbow angle modulates corticospinal excitability to the resting biceps brachii at both spinal and supraspinal levels. Experimental Physiology, 2019, 104, 546-555.	2.0	5
35	The effect of paired corticospinal–motoneuronal stimulation on maximal voluntary elbow flexion in cervical spinal cord injury: an experimental study. Spinal Cord, 2019, 57, 796-804.	1.9	8
36	Biases in tactile localization by pointing: compression for weak stimuli and centering for distributions of stimuli. Journal of Neurophysiology, 2019, 121, 764-772.	1.8	11

#	Article	IF	CITATIONS
37	Test-retest reliability of elbow flexor contraction characteristics with tensiomyography for different elbow joint angles. Journal of Electromyography and Kinesiology, 2019, 45, 26-32.	1.7	9
38	Aerobic Exercise Reduces Pressure More Than Heat Pain Sensitivity in Healthy Adults. Pain Medicine, 2019, 20, 1534-1546.	1.9	8
39	Enhanced availability of serotonin increases activation of unfatigued muscle but exacerbates central fatigue during prolonged sustained contractions. Journal of Physiology, 2019, 597, 319-332.	2.9	60
40	Reflex response to airway occlusion in human inspiratory muscles when recruited for breathing and posture. Journal of Applied Physiology, 2019, 126, 132-140.	2.5	3
41	CORP: Measurement of upper and lower limb muscle strength and voluntary activation. Journal of Applied Physiology, 2019, 126, 513-543.	2.5	49
42	Differences in muscle performance during fatigue may explain the differences in motoneurone excitability between acute and chronic hypoxia. Journal of Physiology, 2018, 596, 3425-3425.	2.9	1
43	Effects of acute isometric resistance exercise on cervicomedullary motor evoked potentials. Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 1514-1522.	2.9	2
44	Knee extensor fatigue developed during high-intensity exercise limits lower-limb power production. Journal of Sports Sciences, 2018, 36, 1030-1037.	2.0	4
45	Paired corticospinal-motoneuronal stimulation increases maximal voluntary activation of human adductor pollicis. Journal of Neurophysiology, 2018, 119, 369-376.	1.8	14
46	Involvement of <i>N</i> -methyl- <scp>d</scp> -aspartate receptors in plasticity induced by paired corticospinal-motoneuronal stimulation in humans. Journal of Neurophysiology, 2018, 119, 652-661.	1.8	19
47	Motoneuron excitability of the quadriceps decreases during a fatiguing submaximal isometric contraction. Journal of Applied Physiology, 2018, 124, 970-979.	2.5	27
48	Muscle Vibration-Induced Illusions: Review of Contributing Factors, Taxonomy of Illusions andÂUser'sÂGuide. Multisensory Research, 2017, 30, 25-63.	1.1	44
49	Human motoneurone excitability is depressed by activation of serotonin 1A receptors with buspirone. Journal of Physiology, 2017, 595, 1763-1773.	2.9	31
50	Occlusion of blood flow attenuates exercise-induced hypoalgesia in the occluded limb of healthy adults. Journal of Applied Physiology, 2017, 122, 1284-1291.	2.5	18
51	Recovery of central and peripheral neuromuscular fatigue after exercise. Journal of Applied Physiology, 2017, 122, 1068-1076.	2.5	164
52	Concurrent electrical cervicomedullary stimulation and cervical transcutaneous spinal direct current stimulation result in a stimulus interaction. Experimental Physiology, 2017, 102, 1309-1320.	2.0	10
53	Voluntary activation of the trapezius muscle in cases with neck/shoulder pain compared to healthy controls. Journal of Electromyography and Kinesiology, 2017, 36, 56-64.	1.7	9
54	Explicit Education About Exercise-Induced Hypoalgesia Influences Pain Responses to Acute Exercise in Healthy Adults: A Randomized Controlled Trial. Journal of Pain, 2017, 18, 1409-1416.	1.4	29

#	Article	IF	CITATIONS
55	Effects of Four Weeks of Strength Training on the Corticomotoneuronal Pathway. Medicine and Science in Sports and Exercise, 2017, 49, 2286-2296.	0.4	35
56	The effects of cervical transcutaneous spinal direct current stimulation on motor pathways supplying the upper limb in humans. PLoS ONE, 2017, 12, e0172333.	2.5	21
57	Questionable science and reproducibility in electrical brain stimulation research. PLoS ONE, 2017, 12, e0175635.	2.5	52
58	Exploring the Mechanisms of Exercise-Induced Hypoalgesia Using Somatosensory and Laser Evoked Potentials. Frontiers in Physiology, 2016, 7, 581.	2.8	16
59	Time course of human motoneuron recovery after sustained low-level voluntary activity. Journal of Neurophysiology, 2016, 115, 803-812.	1.8	11
60	Stability of biceps brachii M _{Max} with one session of strength training. Muscle and Nerve, 2016, 54, 791-793.	2.2	2
61	Unexpected factors affecting the excitability of human motoneurones in voluntary and stimulated contractions. Journal of Physiology, 2016, 594, 2707-2717.	2.9	13
62	Velocity of motion across the skin influences perception of tactile location. Journal of Neurophysiology, 2016, 115, 674-684.	1.8	8
63	Short-interval cortical inhibition and intracortical facilitation during submaximal voluntary contractions changes with fatigue. Experimental Brain Research, 2016, 234, 2541-2551.	1.5	52
64	Arm posture-dependent changes in corticospinal excitability are largely spinal in origin. Journal of Neurophysiology, 2016, 115, 2076-2082.	1.8	39
65	Measurement of voluntary activation based on transcranial magnetic stimulation over the motor cortex. Journal of Applied Physiology, 2016, 121, 678-686.	2.5	69
66	Reply from S. C. Gandevia, S. L. Khan and J. L. Taylor. Journal of Physiology, 2016, 594, 3847-3848.	2.9	0
67	Effects of fatigue on corticospinal excitability of the human knee extensors. Experimental Physiology, 2016, 101, 1552-1564.	2.0	43
68	Kinesthetic Inputs. , 2016, , 1055-1089.		2
69	Human intersegmental reflexes from intercostal afferents to scalene muscles. Experimental Physiology, 2016, 101, 1301-1308.	2.0	11
70	Feedforward consequences of isometric contractions: effort and ventilation. Physiological Reports, 2016, 4, e12882.	1.7	4
71	Limited Association Between Aerobic Fitness and Pain in Healthy Individuals: A Cross-Sectional Study. Pain Medicine, 2016, 17, 1799-1808.	1.9	12
72	Acute Strength Training Increases Responses to Stimulation of Corticospinal Axons. Medicine and Science in Sports and Exercise, 2016, 48, 139-150.	0.4	52

#	Article	IF	CITATIONS
73	Neural Contributions to Muscle Fatigue. Medicine and Science in Sports and Exercise, 2016, 48, 2294-2306.	0.4	330
74	More conditioning stimuli enhance synaptic plasticity in the human spinal cord. Clinical Neurophysiology, 2016, 127, 724-731.	1.5	27
75	The Effect of Transcranial Direct Current Stimulation (tDCS) Electrode Size and Current Intensity on Motor Cortical Excitability: Evidence From Single and Repeated Sessions. Brain Stimulation, 2016, 9, 1-7.	1.6	118
76	Comparison of the Effects of Transcranial Random Noise Stimulation and Transcranial Direct Current Stimulation on Motor Cortical Excitability. Journal of ECT, 2015, 31, 67-72.	0.6	23
77	Letter to the Editor. Journal of Spinal Cord Medicine, 2015, 38, 420-420.	1.4	Ο
78	Fatigue-related firing of muscle nociceptors reduces voluntary activation of ipsilateral but not contralateral lower limb muscles. Journal of Applied Physiology, 2015, 118, 408-418.	2.5	62
79	Weaker Seniors Exhibit Motor Cortex Hypoexcitability and Impairments in Voluntary Activation. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 1112-1119.	3.6	42
80	Ability Versus Hazard: Risk-Taking and Falls in Older People. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 628-634.	3.6	48
81	TMS-evoked silent periods in scalene and parasternal intercostal muscles during voluntary breathing. Respiratory Physiology and Neurobiology, 2015, 216, 15-22.	1.6	9
82	The Use and Abuse of Transcranial Magnetic Stimulation to Modulate Corticospinal Excitability in Humans. PLoS ONE, 2015, 10, e0144151.	2.5	41
83	Somatosensory Space Abridged: Rapid Change in Tactile Localization Using a Motion Stimulus. PLoS ONE, 2014, 9, e90892.	2.5	16
84	Voluntary Activation is Reduced in Both the More- and Less-Affected Upper Limbs after Unilateral Stroke. Frontiers in Neurology, 2014, 5, 239.	2.4	30
85	Hand function is impaired in healthy older adults at risk of Parkinson's disease. Journal of Neural Transmission, 2014, 121, 1377-1386.	2.8	3
86	Fatigue-related firing of distal muscle nociceptors reduces voluntary activation of proximal muscles of the same limb. Journal of Applied Physiology, 2014, 116, 385-394.	2.5	52
87	Changes in H reflex and neuromechanical properties of the trapezius muscle after 5 weeks of eccentric training: a randomized controlled trial. Journal of Applied Physiology, 2014, 116, 1623-1631.	2.5	20
88	Increase in PAS-induced neuroplasticity after a treatment courseof transcranial direct current stimulation for depression. Journal of Affective Disorders, 2014, 167, 140-147.	4.1	55
89	Crossed responses found in human trapezius muscles are not Hâ€reflexes. Muscle and Nerve, 2014, 49, 362-369.	2.2	6
90	Modulation of transcallosal inhibition by bilateral activation of agonist and antagonist proximal arm muscles. Journal of Neurophysiology, 2014, 111, 405-414.	1.8	54

#	Article	IF	CITATIONS
91	Aerobic Training Increases Pain Tolerance in Healthy Individuals. Medicine and Science in Sports and Exercise, 2014, 46, 1640-1647.	0.4	78
92	Proprioceptive Mechanisms and the Human Hand. Springer Tracts in Advanced Robotics, 2014, , 123-141.	0.4	0
93	Neuroplasticity in Depressed Individuals Compared with Healthy Controls. Neuropsychopharmacology, 2013, 38, 2101-2108.	5.4	149
94	Firing of antagonist smallâ€diameter muscle afferents reduces voluntary activation and torque of elbow flexors. Journal of Physiology, 2013, 591, 3591-3604.	2.9	49
95	Eccentric exercise inhibits the H reflex in the middle part of the trapezius muscle. European Journal of Applied Physiology, 2013, 113, 77-87.	2.5	23
96	Kinesthetic Inputs. , 2013, , 931-964.		5
97	Twitch interpolation: superimposed twitches decline progressively during a tetanic contraction of human adductor pollicis. Journal of Physiology, 2013, 591, 1373-1383.	2.9	32
98	Testing the excitability of human motoneurons. Frontiers in Human Neuroscience, 2013, 7, 152.	2.0	163
99	Origin of the low-level EMG during the silent period following transcranial magnetic stimulation. Clinical Neurophysiology, 2012, 123, 1409-1414.	1.5	25
100	Paired associative stimulation increases motor cortex excitability more effectively than theta-burst stimulation. Clinical Neurophysiology, 2012, 123, 2220-2226.	1.5	51
101	A checklist for assessing the methodological quality of studies using transcranial magnetic stimulation to study the motor system: An international consensus study. Clinical Neurophysiology, 2012, 123, 1698-1704.	1.5	196
102	Activityâ€dependent depression of the recurrent discharge of human motoneurones after maximal voluntary contractions. Journal of Physiology, 2012, 590, 4957-4969.	2.9	34
103	Daily transcranial direct current stimulation (tDCS) leads to greater increases in cortical excitability than second daily transcranial direct current stimulation. Brain Stimulation, 2012, 5, 208-213.	1.6	174
104	Training in a ballistic task but not a visuomotor task increases responses to stimulation of human corticospinal axons. Journal of Neurophysiology, 2012, 107, 2485-2492.	1.8	19
105	Evoked corticospinal output to the human scalene muscles is altered by lung volume. Respiratory Physiology and Neurobiology, 2012, 180, 263-268.	1.6	3
106	Effect of experimental muscle pain on maximal voluntary activation of human biceps brachii muscle. Journal of Applied Physiology, 2011, 111, 743-750.	2.5	33
107	Overestimation of force during matching of externally generated forces. Journal of Physiology, 2011, 589, 547-557.	2.9	67
108	Proprioceptive signals contribute to the sense of body ownership. Journal of Physiology, 2011, 589, 3009-3021.	2.9	144

#	Article	IF	CITATIONS
109	Behaviour of the motoneurone pool in a fatiguing submaximal contraction. Journal of Physiology, 2011, 589, 3533-3544.	2.9	110
110	The reduction in human motoneurone responsiveness during muscle fatigue is not prevented by increased muscle spindle discharge. Journal of Physiology, 2011, 589, 3731-3738.	2.9	50
111	Dynamic changes in the perceived posture of the hand during ischaemic anaesthesia of the arm. Journal of Physiology, 2011, 589, 5775-5784.	2.9	36
112	Differential effects of low-intensity motor cortical stimulation on the inspiratory activity in scalene muscles during voluntary and involuntary breathing. Respiratory Physiology and Neurobiology, 2011, 175, 265-271.	1.6	14
113	Long-interval intracortical inhibition in a human hand muscle. Experimental Brain Research, 2011, 209, 287-297.	1.5	47
114	Altered corticospinal transmission to the hand after maximum voluntary efforts . Muscle and Nerve, 2011, 43, 679-687.	2.2	21
115	Age-Related Changes in Motor Cortical Properties and Voluntary Activation of Skeletal Muscle. Current Aging Science, 2011, 4, 192-199.	1.2	150
116	A novel way to test human motoneurone behaviour during muscle fatigue. , 2011, , 29-31.		5
117	Comments on Point:Counterpoint: Afferent feedback from fatigued locomotor muscles is/is not an important determinant of endurance exercise performance. Journal of Applied Physiology, 2010, 108, 458-468.	2.5	26
118	Cast immobilization increases longâ€interval intracortical inhibition. Muscle and Nerve, 2010, 42, 363-372.	2.2	44
119	Probing the corticospinal link between the motor cortex and motoneurones: some neglected aspects of human motor cortical function. Acta Physiologica, 2010, 198, 403-416.	3.8	43
120	Illusory movements of a phantom hand grade with the duration and magnitude of motor commands. Journal of Physiology, 2010, 588, 1269-1280.	2.9	39
121	Change in manipulation with muscle fatigue. European Journal of Neuroscience, 2010, 32, 1686-1694.	2.6	17
122	Voluntary Activation of the Different Compartments of the Flexor Digitorum Profundus. Journal of Neurophysiology, 2010, 104, 3213-3221.	1.8	19
123	Facilitation and Inhibition of Tibialis Anterior Responses to Corticospinal Stimulation After Maximal Voluntary Contractions. Journal of Neurophysiology, 2010, 103, 1350-1356.	1.8	21
124	Substantia nigra echomorphology and motor cortex excitability. NeuroImage, 2010, 50, 1351-1356.	4.2	11
125	Reproducible Measurement of Human Motoneuron Excitability With Magnetic Stimulation of the Corticospinal Tract. Journal of Neurophysiology, 2009, 102, 606-613.	1.8	28
126	Voluntary Motor Output Is Altered by Spike-Timing-Dependent Changes in the Human Corticospinal Pathway. Journal of Neuroscience, 2009, 29, 11708-11716.	3.6	121

#	Article	IF	CITATIONS
127	Signals of motor command bias joint position sense in the presence of feedback from proprioceptors. Journal of Applied Physiology, 2009, 106, 950-958.	2.5	95
128	Perception of movement extent depends on the extent of previous movements. Experimental Brain Research, 2009, 195, 167-172.	1.5	3
129	The combined effect of muscle contraction history and motor commands on human position sense. Experimental Brain Research, 2009, 195, 603-610.	1.5	24
130	The effect of high-frequency cutaneous vibration on different inputs subserving detection of joint movement. Experimental Brain Research, 2009, 197, 347-355.	1.5	18
131	Coupling between mechanical and neural behaviour in the human first dorsal interosseous muscle. Journal of Physiology, 2009, 587, 917-925.	2.9	30
132	The response to paired motor cortical stimuli is abolished at a spinal level during human muscle fatigue. Journal of Physiology, 2009, 587, 5601-5612.	2.9	112
133	Voluntary activation of trapezius measured with twitch interpolation. Journal of Electromyography and Kinesiology, 2009, 19, 584-590.	1.7	11
134	Point:Counterpoint: The interpolated twitch does/does not provide a valid measure of the voluntary activation of muscle. Journal of Applied Physiology, 2009, 107, 354-355.	2.5	121
135	Last Word on Point:Counterpoint: The interpolated twitch does/does not provide a valid measure of the voluntary activation of muscle. Journal of Applied Physiology, 2009, 107, 367-367.	2.5	7
136	Group III and IV muscle afferents differentially affect the motor cortex and motoneurones in humans. Journal of Physiology, 2008, 586, 1277-1289.	2.9	174
137	Local subcutaneous and muscle pain impairs detection of passive movements at the human thumb. Journal of Physiology, 2008, 586, 3183-3193.	2.9	50
138	A comparison of central aspects of fatigue in submaximal and maximal voluntary contractions. Journal of Applied Physiology, 2008, 104, 542-550.	2.5	427
139	Commentaries on Viewpoint: Fatigue mechanisms determining exercise performance: Integrative physiology is systems physiology. Journal of Applied Physiology, 2008, 104, 1543-1546.	2.5	11
140	Noninvasive Stimulation of Human Corticospinal Axons Innervating Leg Muscles. Journal of Neurophysiology, 2008, 100, 1080-1086.	1.8	51
141	Increased ventilation does not impair maximal voluntary contractions of the elbow flexors. Journal of Applied Physiology, 2008, 104, 1674-1682.	2.5	8
142	Recovery from supraspinal fatigue is slowed in old adults after fatiguing maximal isometric contractions. Journal of Applied Physiology, 2008, 105, 1199-1209.	2.5	93
143	A study using transcranial magnetic stimulation to investigate motor mechanisms in psychomotor retardation in depression. International Journal of Neuropsychopharmacology, 2008, 11, 935-46.	2.1	15
144	Use of motor cortex stimulation to measure simultaneously the changes in dynamic muscle properties and voluntary activation in human muscles. Journal of Applied Physiology, 2007, 102, 1756-1766.	2.5	53

#	Article	IF	CITATIONS
145	Sustained contraction at very low forces produces prominent supraspinal fatigue in human elbow flexor muscles. Journal of Applied Physiology, 2007, 103, 560-568.	2.5	115
146	Proprioceptive Movement Illusions Due to Prolonged Stimulation: Reversals and Aftereffects. PLoS ONE, 2007, 2, e1037.	2.5	45
147	Magnetic muscle stimulation produces fatigue without effort. Journal of Applied Physiology, 2007, 103, 733-734.	2.5	9
148	Muscle fatigue changes cutaneous suppression of propriospinal drive to human upper limb muscles. Journal of Physiology, 2007, 580, 211-223.	2.9	17
149	Impairment of human proprioception by high-frequency cutaneous vibration. Journal of Physiology, 2007, 581, 971-980.	2.9	52
150	Stimulus waveform influences the efficacy of repetitive transcranial magnetic stimulation. Journal of Affective Disorders, 2007, 97, 271-276.	4.1	58
151	Decreased input to the motor cortex increases motor cortical excitability. Clinical Neurophysiology, 2006, 117, 2496-2503.	1.5	18
152	Theta burst stimulation does not reliably depress all regions of the human motor cortex. Clinical Neurophysiology, 2006, 117, 2684-2690.	1.5	52
153	Stimulation at the cervicomedullary junction in human subjects. Journal of Electromyography and Kinesiology, 2006, 16, 215-223.	1.7	108
154	Tonic and Phasic Respiratory Drives to Human Genioglossus Motoneurons During Breathing. Journal of Neurophysiology, 2006, 95, 2213-2221.	1.8	133
155	Supraspinal fatigue: the effects of caffeine on human muscle performance. Journal of Applied Physiology, 2006, 100, 1749-1750.	2.5	11
156	Output of Human Motoneuron Pools to Corticospinal Inputs During Voluntary Contractions. Journal of Neurophysiology, 2006, 95, 3512-3518.	1.8	115
157	EVIDENCE FOR A SUPRASPINAL CONTRIBUTION TO HUMAN MUSCLE FATIGUE. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 400-405.	1.9	238
158	Length-dependent changes in voluntary activation, maximum voluntary torque and twitch responses after eccentric damage in humans. Journal of Physiology, 2006, 571, 243-252.	2.9	89
159	Motor commands contribute to human position sense. Journal of Physiology, 2006, 571, 703-710.	2.9	195
160	The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles. Journal of Physiology, 2006, 573, 511-523.	2.9	239
161	Subthreshold transcranial magnetic stimulation during the long latency component of the cutaneomotor reflex. Experimental Brain Research, 2006, 170, 285-294.	1.5	4
162	The origin of activity in the biceps brachii muscle during voluntary contractions of the contralateral elbow flexor muscles. Experimental Brain Research, 2006, 175, 526-535.	1.5	73

#	Article	IF	CITATIONS
163	Fatigue-Sensitive Afferents Inhibit Extensor but Not Flexor Motoneurons in Humans. Journal of Neuroscience, 2006, 26, 4796-4802.	3.6	160
164	Supraspinal fatigue does not explain the sex difference in muscle fatigue of maximal contractions. Journal of Applied Physiology, 2006, 101, 1036-1044.	2.5	181
165	Muscle damage and exercise: does the brain contribute to muscle weakness?. , 2006, , 21-22.		0
166	Hyperthermia: a failure of the motor cortex and the muscle. Journal of Physiology, 2005, 563, 621-631.	2.9	199
167	Maximal force, voluntary activation and muscle soreness after eccentric damage to human elbow flexor muscles. Journal of Physiology, 2005, 567, 337-348.	2.9	169
168	Muscle Fiber and Motor Unit Behavior in the Longest Human Skeletal Muscle. Journal of Neuroscience, 2005, 25, 8528-8533.	3.6	50
169	Independent control of voluntary movements and associated anticipatory postural responses in a bimanual task. Clinical Neurophysiology, 2005, 116, 2083-2090.	1.5	12
170	Reproducible measurement of voluntary activation of human elbow flexors with motor cortical stimulation. Journal of Applied Physiology, 2004, 97, 236-242.	2.5	99
171	Noninvasive stimulation of the human corticospinal tract. Journal of Applied Physiology, 2004, 96, 1496-1503.	2.5	171
172	Effect of Muscle Contraction on Proprioceptive Function at the Ankle. Medicine and Science in Sports and Exercise, 2004, 36, S340.	0.4	0
173	The effect of a contralateral contraction on maximal voluntary activation and central fatigue in elbow flexor muscles. Experimental Brain Research, 2003, 150, 308-313.	1.5	75
174	Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation. Journal of Physiology, 2003, 551, 661-671.	2.9	308
175	SAVANT-LIKE SKILLS EXPOSED IN NORMAL PEOPLE BY SUPPRESSING THE LEFT FRONTO-TEMPORAL LOBE. Journal of Integrative Neuroscience, 2003, 02, 149-158.	1.7	101
176	Changes in Segmental and Motor Cortical Output With Contralateral Muscle Contractions and Altered Sensory Inputs in Humans. Journal of Neurophysiology, 2003, 90, 2451-2459.	1.8	246
177	Responses of Human Motoneurons to Corticospinal Stimulation during Maximal Voluntary Contractions and Ischemia. Journal of Neuroscience, 2003, 23, 10224-10230.	3.6	134
178	Depression of Activity in the Corticospinal Pathway during Human Motor Behavior after Strong Voluntary Contractions. Journal of Neuroscience, 2003, 23, 7974-7980.	3.6	64
179	Effects of galvanic vestibular stimulation on human posture and perception while standing. Journal of Physiology, 2003, 551, 1033-1042.	2.9	75
180	Balancing Acts: Respiratory Sensations, Motor Control And Human Posture. Clinical and Experimental Pharmacology and Physiology, 2002, 29, 118-121.	1.9	58

#	Article	IF	CITATIONS
181	Cortically evoked neural volleys to the human hand are increased during ischaemic block of the forearm. Journal of Physiology, 2002, 538, 279-288.	2.9	45
182	Interaction of transcranial magnetic stimulation and electrical transmastoid stimulation in human subjects. Journal of Physiology, 2002, 541, 949-958.	2.9	81
183	The effect of electrical stimulation of the corticospinal tract on motor units of the human biceps brachii. Journal of Physiology, 2002, 544, 277-284.	2.9	87
184	The history of contraction of the wrist flexors can change cortical excitability. Journal of Physiology, 2002, 545, 731-737.	2.9	24
185	Corticospinal Transmission After Voluntary Contractions. Advances in Experimental Medicine and Biology, 2002, 508, 435-441.	1.6	11
186	Transcranial magnetic stimulation and human muscle fatigue. Muscle and Nerve, 2001, 24, 18-29.	2.2	146
187	Changes in respiratory sensations induced by lobeline after human bilateral lung transplantation. Journal of Physiology, 2001, 534, 583-593.	2.9	46
188	Mechanisms of motorâ€evoked potential facilitation following prolonged dual peripheral and central stimulation in humans. Journal of Physiology, 2001, 537, 623-631.	2.9	115
189	Unexpected reflex response to transmastoid stimulation in human subjects during nearâ€maximal effort. Journal of Physiology, 2001, 536, 305-312.	2.9	7
190	Stimulus Intensity in Transcranial Magnetic Stimulation (TMS) Studies. Journal of ECT, 2001, 17, 294-295.	0.6	4
191	Ischaemia after exercise does not reduce responses of human motoneurones to cortical or corticospinal tract stimulation. Journal of Physiology, 2000, 525, 793-801.	2.9	76
192	Changes in muscle afferents, motoneurons and motor drive during muscle fatigue. European Journal of Applied Physiology, 2000, 83, 106-115.	2.5	166
193	Supraspinal fatigue during intermittent maximal voluntary contractions of the human elbow flexors. Journal of Applied Physiology, 2000, 89, 305-313.	2.5	200
194	Stopping Exercise: Role of Pulmonary C Fibers and Inhibition Of Motoneurons. Physiology, 2000, 15, 241-245.	3.1	4
195	Transcranial magnetic stimulation (TMS) in controlled treatment studies: are some "sham―forms active?. Biological Psychiatry, 2000, 47, 325-331.	1.3	260
196	Impaired response of human motoneurones to corticospinal stimulation after voluntary exercise. Journal of Physiology, 1999, 521, 749-759.	2.9	172
197	Effects of galvanic vestibular stimulation during human walking. Journal of Physiology, 1999, 517, 931-939.	2.9	144
198	Altered responses of human elbow flexors to peripheral-nerve and cortical stimulation during a sustained maximal voluntary contraction. Experimental Brain Research, 1999, 127, 108-115.	1.5	101

#	Article	IF	CITATIONS
199	No laughing matter. Lancet, The, 1999, 354, 2086.	13.7	5
200	Absence of viscerosomatic inhibition with injections of lobeline designed to activate human pulmonary C fibres. Journal of Physiology, 1998, 511, 289-300.	2.9	38
201	Movement detection at the human big toe. Journal of Physiology, 1998, 513, 307-314.	2.9	27
202	Inhibition of muscle sympathetic outflow following transcranial cortical stimulation. Journal of the Autonomic Nervous System, 1998, 68, 49-57.	1.9	25
203	Reduced excitability of the cortico-spinal system during the warning period of a reaction time task. Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control, 1998, 109, 489-495.	1.4	84
204	Effect of contraction strength on responses in biceps brachii and adductor pollicis to transcranial magnetic stimulation. Experimental Brain Research, 1997, 117, 472-478.	1.5	113
205	Effect of transcranial magnetic stimulation over the cerebellum on the excitability of human motor cortex. Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control, 1996, 101, 58-66.	1.4	117
206	Effects of arterial perfusion pressure on force production in working human hand muscles Journal of Physiology, 1996, 495, 885-891.	2.9	41
207	Changes in motor cortical excitability during human muscle fatigue Journal of Physiology, 1996, 490, 519-528.	2.9	299
208	Selection of motor responses on the basis of unperceived stimuli. Experimental Brain Research, 1996, 110, 62-6.	1.5	42
209	Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex Journal of Physiology, 1996, 490, 529-536.	2.9	520
210	The effect of voluntary contraction on cortico ortical inhibition in human motor cortex Journal of Physiology, 1995, 487, 541-548.	2.9	335
211	Detection of movements imposed on human hip, knee, ankle and toe joints Journal of Physiology, 1995, 488, 231-241.	2.9	90
212	Ipsilateral cortical stimulation inhibited the long-latency response to stretch in the long finger flexors in humans Journal of Physiology, 1995, 488, 821-831.	2.9	24
213	Mapping of cortical sites where transcranial magnetic stimulation results in delay of voluntary movement. Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control, 1995, 97, 341-348.	1.4	16
214	Physiological evidence for a slow K+ conductance in human cutaneous afferents Journal of Physiology, 1992, 453, 575-589.	2.9	38
215	Detection of slow movements imposed at the elbow during active flexion in man Journal of Physiology, 1992, 457, 503-513.	2.9	62
216	Ankle stiffness of standing humans in response to imperceptible perturbation: reflex and taskâ€dependent components Journal of Physiology, 1992, 454, 533-547.	2.9	165

#	Article	IF	CITATIONS
217	Perception of the Orientation of the Head on the Body in Man. , 1992, , 488-490.		9
218	ILLUSIONS OF HEAD AND VISUAL TARGET DISPLACEMENT INDUCED BY VIBRATION OF NECK MUSCLES. Brain, 1991, 114, 755-759.	7.6	240
219	ABILITY TO DETECT ANGULAR DISPLACEMENTS OF THE FINGERS MADE AT AN IMPERCEPTIBLY SLOW SPEED. Brain, 1990, 113, 157-166.	7.6	42
220	Proprioceptive sensation in rotation of the trunk. Experimental Brain Research, 1990, 81, 413-6.	1.5	157
221	Triggering of preprogrammed movements as reactions to masked stimuli. Journal of Neurophysiology, 1990, 63, 439-446.	1.8	212
222	Task-dependent changes in gain of the reflex response to imperceptible perturbations of joint position in man Journal of Physiology, 1990, 429, 309-321.	2.9	64
223	Proprioception in the neck. Experimental Brain Research, 1988, 70, 351-60.	1.5	186
224	Pointing. Behavioural Brain Research, 1988, 29, 1-5.	2.2	50