Jerzy W Kupiec-Weglinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1905156/publications.pdf

Version: 2024-02-01

147 papers 9,506 citations

56 h-index 92 g-index

149 all docs 149 docs citations

times ranked

149

7797 citing authors

#	Article	IF	Citations
1	Reply. Hepatology, 2022, 75, 755-755.	3.6	O
2	Liver ischaemia–reperfusion injury: a new understanding of the role of innate immunity. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 239-256.	8.2	115
3	Myeloid Ikaros–SIRT1 signaling axis regulates hepatic inflammation and pyroptosis in ischemia-stressed mouse and human liver. Journal of Hepatology, 2022, 76, 896-909.	1.8	43
4	miR-378 affects metabolic disturbances in the mdx model of Duchenne muscular dystrophy. Scientific Reports, 2022, 12, 3945.	1.6	7
5	Grand Challenges in Organ Transplantation. , 2022, 1, .		8
6	Delivering siRNA Compounds During HOPE to Modulate Organ Function: A Proof-of-concept Study in a Rat Liver Transplant Model. Transplantation, 2022, 106, 1565-1576.	0.5	13
7	Disulfide Highâ€Mobility Group Box 1 Drives Ischemiaâ€Reperfusion Injury in Human Liver Transplantation. Hepatology, 2021, 73, 1158-1175.	3.6	32
8	Ischemia-reperfusion injury and its relationship with early allograft dysfunction in liver transplant patients. American Journal of Transplantation, 2021, 21, 614-625.	2.6	71
9	Functional crosstalk between myeloid Foxo1â€"β-catenin axis and Hedgehog/Gli1 signaling in oxidative stress response. Cell Death and Differentiation, 2021, 28, 1705-1719.	5.0	43
10	CD47â€Mediated Hedgehog/SMO/GLI1 Signaling Promotes Mesenchymal Stem Cell Immunomodulation in Mouse Liver Inflammation. Hepatology, 2021, 74, 1560-1577.	3 . 6	27
11	Donor Hepatic Occult Collagen Deposition Predisposes to Peritransplant Stress and Impacts Human Liver Transplantation. Hepatology, 2021, 74, 2759-2773.	3.6	7
12	Tâ€Cell Immunoglobulin and Mucin Domainâ€Containing Proteinâ€4 Is Critical for Kupffer Cell Homeostatic Function in the Activation and Resolution of Liver Ischemia Reperfusion Injury. Hepatology, 2021, 74, 2118-2132.	3.6	38
13	Ischemia-reperfusion Injury in Allogeneic Liver Transplantation: A Role of CD4 T Cells in Early Allograft Injury. Transplantation, 2021, 105, 1989-1997.	0.5	14
14	Therapeutic Perspectives and Mechanistic Insights of Phage Therapy in Allotransplantation. Transplantation, 2021, 105, 1449-1458.	0.5	13
15	Pattern Recognition Receptor-reactivity Screening of Liver Transplant Patients. Annals of Surgery, 2020, 271, 922-931.	2.1	21
16	Jagged1-mediated myeloid Notch1 signaling activates HSF1/Snail and controls NLRP3 inflammasome activation in liver inflammatory injury. Cellular and Molecular Immunology, 2020, 17, 1245-1256.	4.8	53
17	Therapeutic targets for liver regeneration after acute severe injury: a preclinical overview. Expert Opinion on Therapeutic Targets, 2020, 24, 13-24.	1.5	7
18	Human Antigen R (HuR): A Regulator of Heme Oxygenaseâ€1 Cytoprotection in Mouse and Human Liver Transplant Injury. Hepatology, 2020, 72, 1056-1072.	3.6	15

#	Article	IF	Citations
19	Isoform- and Cell Type–Specific Roles of Glycogen Synthase Kinase 3 N-Terminal Serine Phosphorylation in Liver Ischemia Reperfusion Injury. Journal of Immunology, 2020, 205, 1147-1156.	0.4	4
20	Microbiota in organ transplantation: An immunological and therapeutic conundrum?. Cellular Immunology, 2020, 351, 104080.	1.4	10
21	Farnesoid X Receptor Activation Protects Liver From Ischemia/Reperfusion Injury by Upâ€Regulating Small Heterodimer Partner in Kupffer Cells. Hepatology Communications, 2020, 4, 540-554.	2.0	16
22	Heme Oxygenase-1 in liver transplant ischemia-reperfusion injury: From bench-to-bedside. Free Radical Biology and Medicine, 2020, 157, 75-82.	1.3	43
23	PACAP neuropeptide promotes Hepatocellular Protection via CREB-KLF4 dependent autophagy in mouse liver Ischemia Reperfusion Injury. Theranostics, 2020, 10, 4453-4465.	4.6	17
24	Hepatic CEACAM1 expression indicates donor liver quality and prevents early transplantation injury. Journal of Clinical Investigation, 2020, 130, 2689-2704.	3.9	37
25	Recipient HO-1 inducibility is essential for posttransplant hepatic HO-1 expression and graft protection: From bench-to-bedside. American Journal of Transplantation, 2019, 19, 356-367.	2.6	17
26	Heme Oxygenase-1 dictates innate – adaptive immune phenotype in human liver transplantation. Archives of Biochemistry and Biophysics, 2019, 671, 162-166.	1.4	6
27	Impact of Rifaximin Therapy on Ischemia/Reperfusion Injury in Liver Transplantation: A Propensity Score–Matched Analysis. Liver Transplantation, 2019, 25, 1778-1789.	1.3	19
28	The Evolving Role of Neutrophils in Liver Transplant Ischemia-Reperfusion Injury. Current Transplantation Reports, 2019, 6, 78-89.	0.9	35
29	Activation of YAP attenuates hepatic damage and fibrosis in liver ischemia-reperfusion injury. Journal of Hepatology, 2019, 71, 719-730.	1.8	136
30	Hippo Signaling Controls NLR Family Pyrin Domain Containing 3 Activation and Governs Immunoregulation of Mesenchymal Stem Cells in Mouse Liver Injury. Hepatology, 2019, 70, 1714-1731.	3.6	90
31	Relaxin in liver transplantation: A personal perspective. Molecular and Cellular Endocrinology, 2019, 487, 75-79.	1.6	1
32	Vertical Sleeve Gastrectomy Attenuates the Progression of Non-Alcoholic Steatohepatitis in Mice on a High-Fat High-Cholesterol Diet. Obesity Surgery, 2019, 29, 2420-2429.	1.1	4
33	Vascularized composite allotransplantation versus solid organ transplantation: innate-adaptive immune interphase. Current Opinion in Organ Transplantation, 2019, 24, 714-720.	0.8	8
34	Inhibition of Cyclin-dependent Kinase 2 Signaling Prevents Liver Ischemia and Reperfusion Injury. Transplantation, 2019, 103, 724-732.	0.5	10
35	Innate immunity in ischemia-reperfusion injury and graft rejection. Current Opinion in Organ Transplantation, 2019, 24, 687-693.	0.8	24
36	Cross-examination of Oxidative Stress–induced DNA Glycosylase OGG1, a Mediator of Innate Inflammation. Transplantation, 2019, 103, 1071-1073.	0.5	1

#	Article	IF	CITATIONS
37	Pituitary Adenylate Cyclase-activating Polypeptides Prevent Hepatocyte Damage by Promoting Yes-associated Protein in Liver Ischemia-Reperfusion Injury. Transplantation, 2019, 103, 1639-1648.	0.5	11
38	Relaxin in liver transplantation: A personal perspective. Molecular and Cellular Endocrinology, 2019, 482, 57-61.	1.6	5
39	Antibiotic pretreatment alleviates liver transplant damage in mice and humans. Journal of Clinical Investigation, 2019, 129, 3420-3434.	3.9	67
40	Serelaxin induces Notch1 signaling and alleviates hepatocellular damage in orthotopic liver transplantation. American Journal of Transplantation, 2018, 18, 1755-1763.	2.6	28
41	Glycogen synthase kinase $3\hat{l}^2$ promotes liver innate immune activation by restraining AMP-activated protein kinase activation. Journal of Hepatology, 2018, 69, 99-109.	1.8	64
42	Recombinant relaxin protects liver transplants from ischemia damage by hepatocyte glucocorticoid receptor: From benchâ€toâ€bedside. Hepatology, 2018, 68, 258-273.	3.6	44
43	Outside-in HLA class I signaling regulates ICAM-1 clustering and endothelial cell-monocyte interactions via mTOR in transplant antibody-mediated rejection. American Journal of Transplantation, 2018, 18, 1096-1109.	2.6	29
44	Myeloid Notch1 deficiency activates the RhoA/ROCK pathway and aggravates hepatocellular damage in mouse ischemic livers. Hepatology, 2018, 67, 1041-1055.	3.6	52
45	Peacekeepers are crossâ€dressed in the liver land. Hepatology, 2018, 67, 1221-1223.	3.6	0
46	Heme oxygenase-1 regulates sirtuin- $1\hat{a}$ "autophagy pathway in liver transplantation: From mouse to human. American Journal of Transplantation, 2018, 18, 1110-1121.	2.6	60
47	Myeloid HO-1 modulates macrophage polarization and protects against ischemia-reperfusion injury. JCI Insight, 2018, 3, .	2.3	91
48	Reply to: "Protective effects of heme oxygenase 1 during ischemia-reperfusion injury: Hepatocytes or non parenchymal cells?― Journal of Hepatology, 2018, 69, 753-755.	1.8	2
49	Phosphatase and tensin homolog–βâ€catenin signaling modulates regulatory T cells and inflammatory responses in mouse liver ischemia/reperfusion injury. Liver Transplantation, 2017, 23, 813-825.	1.3	18
50	Prolonged Ischemia Triggers Necrotic Depletion of Tissue-Resident Macrophages To Facilitate Inflammatory Immune Activation in Liver Ischemia Reperfusion Injury. Journal of Immunology, 2017, 198, 3588-3595.	0.4	58
51	Macrophage heme oxygenase-1-SIRT1-p53 axis regulates sterile inflammation in liver ischemia-reperfusion injury. Journal of Hepatology, 2017, 67, 1232-1242.	1.8	160
52	Sirtuin 1 attenuates inflammation and hepatocellular damage in liver transplant ischemia/Reperfusion: From mouse to human. Liver Transplantation, 2017, 23, 1282-1293.	1.3	49
53	Bruton Tyrosine Kinase Inhibition Attenuates Liver Damage in a Mouse Warm Ischemia and Reperfusion Model. Transplantation, 2017, 101, 322-331.	0.5	31
54	The myeloid heat shock transcription factor 1/βâ€catenin axis regulates NLR family, pyrin domainâ€containing 3 inflammasome activation in mouse liver ischemia/reperfusion injury. Hepatology, 2016, 64, 1683-1698.	3.6	84

#	Article	IF	Citations
55	Innate Immune Regulations and Liver Ischemia-Reperfusion Injury. Transplantation, 2016, 100, 2601-2610.	0.5	133
56	Early cytokine signatures of ischemia/reperfusion injury in human orthotopic liver transplantation. JCI Insight, 2016, 1, e89679.	2.3	51
57	Recipient T cell TIM-3 and hepatocyte galectin-9 signalling protects mouse liver transplants against ischemia-reperfusion injury. Journal of Hepatology, 2015, 62, 563-572.	1.8	46
58	Negative CD4 + TIM-3 Signaling Confers Resistance Against Cold Preservation Damage in Mouse Liver Transplantation. American Journal of Transplantation, 2015, 15, 954-964.	2.6	21
59	Ischemia-Reperfusion Injury in Liver Transplantation. , 2015, , 1438-1451.		O
60	Rapamycin Protection of Livers From Ischemia and Reperfusion Injury Is Dependent on Both Autophagy Induction and Mammalian Target of Rapamycin Complex 2-Akt Activation. Transplantation, 2015, 99, 48-55.	0.5	53
61	Ischemia–Reperfusion Injury in Reconstructive Transplantation: An Undefined Conundrum. Pancreatic Islet Biology, 2015, , 377-397.	0.1	O
62	Adoptive Transfer of Heme Oxygenase-1 (HO-1)-Modified Macrophages Rescues the Nuclear Factor Erythroid 2-Related Factor (Nrf2) Antiinflammatory Phenotype in Liver Ischemia/Reperfusion Injury. Molecular Medicine, 2014, 20, 448-455.	1.9	45
63	Nuclear Factor Erythroid 2–Related Factor 2 Regulates Toll-Like Receptor 4 Innate Responses in Mouse Liver Ischemia-Reperfusion Injury Through Akt-Forkhead box Protein O1 Signaling Network. Transplantation, 2014, 98, 721-728.	0.5	35
64	Myeloid PTEN Deficiency Protects Livers from Ischemia Reperfusion Injury by Facilitating M2 Macrophage Differentiation. Journal of Immunology, 2014, 192, 5343-5353.	0.4	74
65	Tâ€eell immunoglobulin and mucin domain 4 (TIMâ€4) signaling in innate immuneâ€mediated liver ischemiaâ€reperfusion injury. Hepatology, 2014, 60, 2052-2064.	3.6	63
66	PTEN-mediated akt/\hat{l}^2 -Catenin/foxo1 signaling regulates innate immune responses in mouse liver ischemia/reperfusion injury. Hepatology, 2013, 57, 289-298.	3.6	84
67	Ischaemia–reperfusion injury in liver transplantation—from bench to bedside. Nature Reviews Gastroenterology and Hepatology, 2013, 10, 79-89.	8.2	633
68	ASC/caspase- $1/\text{IL}-1\hat{l}^2$ signaling triggers inflammatory responses by promoting HMGB1 induction in liver ischemia/reperfusion injury. Hepatology, 2013, 58, 351-362.	3.6	144
69	\hat{l}^2 -catenin regulates innate and adaptive immunity in mouse liver ischemia-reperfusion injury. Hepatology, 2013, 57, 1203-1214.	3.6	60
70	Regulatory T cells in pediatric living donor liver transplantation. Pediatric Transplantation, 2013, 17, 199-201.	0.5	0
71	KEAP1-NRF2 complex in ischemia-induced hepatocellular damage of mouse liver transplants. Journal of Hepatology, 2013, 59, 1200-1207.	1.8	132
72	The Innate Immune System and Transplantation. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a015479-a015479.	2.9	59

#	Article	IF	Citations
7 3	Reply. Hepatology, 2013, 58, 2212-2213.	3.6	2
74	Neuropeptide PACAP in mouse liver ischemia and reperfusion injury: Immunomodulation by the cAMP-PKA pathway. Hepatology, 2013, 57, 1225-1237.	3.6	61
7 5	Vasoactive intestinal peptide attenuates liver ischemia/reperfusion injury in mice via the cyclic adenosine monophosphate-protein kinase a pathway. Liver Transplantation, 2013, 19, 945-956.	1.3	14
76	Interleukin-22. Transplantation, 2012, 93, 485-492.	0.5	58
77	Endoplasmic Reticulum Stress Modulates Liver Inflammatory Immune Response in the Pathogenesis of Liver Ischemia and Reperfusion Injury. Transplantation, 2012, 94, 211-217.	0.5	51
78	HO-1–STAT3 axis in mouse liver ischemia/reperfusion injury: Regulation of TLR4 innate responses through PI3K/PTEN signaling. Journal of Hepatology, 2012, 56, 359-366.	1.8	91
79	Activation of cyclic adenosine monophosphate-dependent protein kinase a signaling prevents liver ischemia/reperfusion injury in mice. Liver Transplantation, 2012, 18, 659-670.	1.3	29
80	Type I Interferon Pathway Mediates Renal Ischemia/Reperfusion Injury. Transplantation, 2011, 92, 131-138.	0.5	42
81	Native macrophages genetically modified to express heme oxygenase 1 protect rat liver transplants from ischemia/reperfusion injury. Liver Transplantation, 2011, 17, 201-210.	1.3	24
82	Inhibition of glycogen synthase kinase 3 beta ameliorates liver ischemia reperfusion injury by way of an interleukin-10-mediated immune regulatory mechanism. Hepatology, 2011, 54, 687-696.	3.6	71
83	Interleukin-13 Protects Mouse Intestine From Ischemia and Reperfusion Injury Through Regulation of Innate and Adaptive Immunity. Transplantation, 2011, 91, 737-743.	0.5	17
84	The Protective Function of Neutrophil Elastase Inhibitor in Liver Ischemia/Reperfusion Injury. Transplantation, 2010, 89, 1050-1056.	0.5	65
85	The emerging role of T cell immunoglobulin mucin-1 in the mechanism of liver ischemia and reperfusion injury in the mouse. Hepatology, 2010, 51, 1363-1372.	3.6	61
86	Programmed death-1/B7-H1 negative costimulation protects mouse liver against ischemia and reperfusion injury. Hepatology, 2010, 52, 1380-1389.	3.6	61
87	Blockade of Janus kinase-2 signaling ameliorates mouse liver damage due to ischemia and reperfusion. Liver Transplantation, 2010, 16, 600-610.	1.3	49
88	Adoptive Transfer of Ex Vivo HO-1 Modified Bone Marrow–derived Macrophages Prevents Liver Ischemia and Reperfusion Injury. Molecular Therapy, 2010, 18, 1019-1025.	3.7	42
89	T-Cell Immunoglobulin Mucin-3 Determines Severity of Liver Ischemia/Reperfusion Injury in Mice in a TLR4-Dependent Manner. Gastroenterology, 2010, 139, 2195-2206.	0.6	109
90	Small Interfering RNA Targeting Heme Oxygenase-1 (HO-1) Reinforces Liver Apoptosis Induced by Ischemia–Reperfusion Injury in Mice: HO-1 Is Necessary for Cytoprotection. Human Gene Therapy, 2009, 20, 1133-1142.	1.4	38

#	Article	IF	CITATIONS
91	CD4 T cells promote tissue inflammation via CD40 signaling without de novo activation in a murine model of liver ischemia/reperfusion injury. Hepatology, 2009, 50, 1537-1546.	3.6	86
92	The inhibition of neutrophil elastase ameliorates mouse liver damage due to ischemia and reperfusion. Liver Transplantation, 2009, 15, 939-947.	1.3	48
93	Type I, but not type II, interferon is critical in liver injury induced after ischemia and reperfusion. Hepatology, 2008, 47, 199-206.	3.6	87
94	CXCL10 regulates liver innate immune response against ischemia and reperfusion injury. Hepatology, 2008, 47, 207-214.	3.6	111
95	The membrane attack complex (C5b-9) in liver cold ischemia and reperfusion injury. Liver Transplantation, 2008, 14, 1133-1141.	1.3	51
96	Evidence for the Pivotal Role of Endogenous Toll-Like Receptor 4 Ligands in Liver Ischemia and Reperfusion Injury. Transplantation, 2008, 85, 1016-1022.	0.5	65
97	Molecular Mediators of Liver Ischemia and Reperfusion Injury: A Brief Review. Molecular Medicine, 2008, 14, 337-345.	1.9	134
98	Heme Oxygenase-1 Mediated Cytoprotection Against Liver Ischemia and Reperfusion Injury: Inhibition of Type-1 Interferon Signaling. Transplantation, 2007, 83, 1628-1634.	0.5	69
99	Organ preservation injury and innate immunity. Current Opinion in Organ Transplantation, 2007, 12, 135-140.	0.8	1
100	Viral Interleukin-10 Gene Transfer Prevents Liver Ischemia–Reperfusion Injury: Toll-Like Receptor-4 and Heme Oxygenase-1 Signaling in Innate and Adaptive Immunity. Human Gene Therapy, 2007, 18, 355-366.	1.4	40
101	A caspase inhibitor, IDN-6556, ameliorates early hepatic injury in an ex vivo rat model of warm and cold ischemia. Liver Transplantation, 2007, 13, 361-366.	1.3	41
102	Absence of toll-like receptor 4 (TLR4) signaling in the donor organ reduces ischemia and reperfusion injury in a murine liver transplantation model. Liver Transplantation, 2007, 13, 1435-1443.	1.3	101
103	Vascular Endothelial Growth Factor Antagonist Modulates Leukocyte Trafficking and Protects Mouse Livers against Ischemia/Reperfusion Injury. American Journal of Pathology, 2006, 168, 695-705.	1.9	45
104	Recent developments in ischemic reperfusion injury in liver transplantation. Current Opinion in Organ Transplantation, 2006, 11, 271-276.	0.8	2
105	Gene Therapy in Liver Ischemia and Reperfusion Injury. Current Pharmaceutical Design, 2006, 12, 2969-2975.	0.9	28
106	Cytoprotective gene bi-1 is required for intrinsic protection from endoplasmic reticulum stress and ischemia-reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2809-2814.	3.3	158
107	CXCR3+CD4+ T Cells Mediate Innate Immune Function in the Pathophysiology of Liver Ischemia/Reperfusion Injury. Journal of Immunology, 2006, 176, 6313-6322.	0.4	51
108	Molecular Characterization of Rat Leukocyte P-Selectin Glycoprotein Ligand-1 and Effect of Its Blockade: Protection from Ischemia-Reperfusion Injury in Liver Transplantation. Journal of Immunology, 2006, 176, 616-624.	0.4	58

#	Article	IF	Citations
109	Basal Rather Than Induced Heme Oxygenase-1 Levels Are Crucial in the Antioxidant Cytoprotection. Journal of Immunology, 2006, 177, 4749-4757.	0.4	68
110	The CD154-CD40 T-Cell Co-stimulation Pathway in Liver Ischemia and Reperfusion Inflammatory Responses. Transplantation, 2005, 79, 1078-1083.	0.5	39
111	Disruption of P-Selectin Signaling Modulates Cell Trafficking and Results in Improved Outcomes after Mouse Warm Intestinal Ischemia and Reperfusion Injury. Transplantation, 2005, 80, 828-835.	0.5	30
112	Toll-Like Receptor and Heme Oxygenase-1 Signaling in Hepatic Ischemia/Reperfusion Injury. American Journal of Transplantation, 2005, 5, 1793-1800.	2.6	159
113	Inflammatory responses in a new mouse model of prolonged hepatic cold ischemia followed by arterialized orthotopic liver transplantation. Liver Transplantation, 2005, 11, 1273-1281.	1.3	44
114	Ischemia-Reperfusion Injury of the Liver. , 2005, , 1403-1414.		2
115	Heme Oxygenase System. , 2005, , 291-298.		1
116	Interleukin 13 Gene Transfer in Liver Ischemia and Reperfusion Injury: Role of Stat6 and TLR4 Pathways in Cytoprotection. Human Gene Therapy, 2004, 15, 691-698.	1.4	32
117	Cutting Edge: TLR4 Activation Mediates Liver Ischemia/Reperfusion Inflammatory Response via IFN Regulatory Factor 3-Dependent MyD88-Independent Pathway. Journal of Immunology, 2004, 173, 7115-7119.	0.4	429
118	Gene Therapy for Liver Transplantation Using Adenoviral Vectors: CD40–CD154 Blockade by Gene Transfer of CD40lg Protects Rat Livers from Cold Ischemia and Reperfusion Injury. Molecular Therapy, 2004, 9, 38-45.	3.7	21
119	Biliverdin therapy protects rat livers from ischemia and reperfusion injury. Hepatology, 2004, 40, 1333-1341.	3.6	146
120	Heme oxygenase-1 and heat shock proteins in ischemia/reperfusion injury. Current Opinion in Organ Transplantation, 2004, 9, 145-152.	0.8	10
121	Heme oxygenase system in ischemia and reperfusion injury. Annals of Transplantation, 2004, 9, 84-7.	0.5	65
122	Stat4 and Stat6 signaling in hepatic ischemia/reperfusion injury in mice: HO-1 dependence of Stat4 disruption-mediated cytoprotection. Hepatology, 2003, 37, 296-303.	3.6	100
123	Cytoprotective and Antiapoptotic Effects of IL-13 in Hepatic Cold Ischemia/Reperfusion Injury Are Heme Oxygenase-1 Dependent. American Journal of Transplantation, 2003, 3, 1076-1082.	2.6	42
124	Hepatic ischemia/reperfusion injury—a fresh look. Experimental and Molecular Pathology, 2003, 74, 86-93.	0.9	380
125	Systemic Rather Than Local Heme Oxygenase-1 Overexpression Improves Cardiac Allograft Outcomes in a New Transgenic Mouse. Journal of Immunology, 2003, 171, 1572-1580.	0.4	78
126	Gene Transfer-Induced Local Heme Oxygenase-1 Overexpression Protects Rat Kidney Transplants From Ischemia/Reperfusion Injury. Journal of the American Society of Nephrology: JASN, 2003, 14, 745-754.	3.0	124

#	Article	IF	CITATIONS
127	Interleukin-13 gene transfer protects rat livers from antigen-independent injury induced by ischemia and reperfusion1. Transplantation, 2003, 75, 1118-1123.	0.5	33
128	Heme Oxygenase 1 Gene Transfer Prevents CD95/Fas Ligand-Mediated Apoptosis and Improves Liver Allograft Survival via Carbon Monoxide Signaling Pathway. Human Gene Therapy, 2002, 13, 1189-1199.	1.4	121
129	Heme Oxygenase 1 Mediates the Immunomodulatory and Antiapoptotic Effects of Interleukin 13 Gene Therapyln Vivoandln Vitro. Human Gene Therapy, 2002, 13, 1845-1857.	1.4	53
130	Heme oxygenase-1 gene transfer inhibits inducible nitric oxide synthase expression and protects genetically fat Zucker rat livers from ischemia-reperfusion injury1. Transplantation, 2002, 74, 96-102.	0.5	140
131	HEME OXYGENASE-1 OVEREXPRESSION PROTECTS RAT HEARTS FROM COLD ISCHEMIA/REPERFUSION INJURY VIA AN ANTIAPOPTOTIC PATHWAY1. Transplantation, 2002, 73, 287-292.	0.5	143
132	Heme oxygenase-1 system in organ transplantation1. Transplantation, 2002, 74, 905-912.	0.5	185
133	CD154-CD40 T-cell costimulation pathway is required in the mechanism of hepatic ischemia/reperfusion injury, and its blockade facilitates and depends on heme oxygenase-1 mediated cytoprotection. Transplantation, 2002, 74, 315-319.	0.5	118
134	Upregulation of Bag-1 by Ex Vivo Gene Transfer Protects Rat Livers from Ischemia/Reperfusion Injury. Human Gene Therapy, 2002, 13, 1495-1504.	1.4	34
135	A novel strategy against ischemia and reperfusion injury: cytoprotection with heme oxygenase system. Transplant Immunology, 2002, 9, 227-233.	0.6	83
136	P-Selectin Glycoprotein Ligand-1 (rPSGL-Ig)-Mediated Blockade of CD62 Selectin Molecules Protects Rat Steatotic Liver Grafts from Ischemia/Reperfusion Injury. American Journal of Transplantation, 2002, 2, 600-608.	2.6	59
137	FTY720 Pretreatment Reduces Warm Hepatic Ischemia Reperfusion Injury Through Inhibition of T-Lymphocyte Infiltration. American Journal of Transplantation, 2002, 2, 843-849.	2.6	70
138	Selectin-Mediated Interactions Regulate Cytokine Networks and Macrophage Heme Oxygenase-1 Induction in Cardiac Allograft Recipients. Laboratory Investigation, 2002, 82, 61-70.	1.7	24
139	Ex vivoexposure to carbon monoxide prevents hepatic ischemia/reperfusion injury through p38 MAP kinase pathway. Hepatology, 2002, 35, 815-823.	3.6	216
140	Heme Oxygenase-1 Overexpression Protects Rat Livers from Ischemia/Reperfusion Injury with Extended Cold Preservation. American Journal of Transplantation, 2001, 1, 121-128.	2.6	165
141	Heme Oxygenase-1 Overexpression Protects Rat Livers from Ischemia/Reperfusion Injury with Extended Cold Preservation. American Journal of Transplantation, 2001, 1, 121.	2.6	10
142	HEME OXYGENASE-1 OVEREXPRESSION PROTECTS RAT HEARTS FROM COLD ISCHEMIA/REPERFUSION INJURY VIA ANTI-APOPTOTIC PATHWAY Transplantation, 2000, 69, S303.	0.5	2
143	Regulatory Cells Potentiate the Efficacy of IL-4 Gene Transfer by Up-Regulating Th2-Dependent Expression of Protective Molecules in the Infectious Tolerance Pathway in Transplant Recipients. Journal of Immunology, 2000, 164, 5739-5745.	0.4	52
144	Fibronectin-Mononuclear Cell Interactions Regulate Type 1 Helper T Cell Cytokine Network in Tolerant Transplant Recipients. American Journal of Pathology, 2000, 157, 1207-1218.	1.9	16

#	Article	IF	CITATIONS
145	Current status of ischemia and reperfusion injury in the liver. Transplantation Reviews, 2000, 14, 106-126.	1.2	100
146	Upregulation of heme oxygenase-1 protects genetically fat Zucker rat livers from ischemia/reperfusion injury. Journal of Clinical Investigation, 1999, 104, 1631-1639.	3.9	458
147	Reduction of Hepatic Ischemia/Reperfusion Injury by a Soluble P-Selectin Glycoprotein Ligand-1. Annals of Surgery, 1998, 227, 832-840.	2.1	102