
Antonino S AricÃ²

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1904740/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005, 4, 366-377.	27.5	8,114
2	International activities in DMFC R&D: status of technologies and potential applications. Journal of Power Sources, 2004, 127, 112-126.	7.8	635
3	Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation. Solid State Ionics, 1999, 125, 431-437.	2.7	423
4	An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen. Applied Surface Science, 2001, 172, 33-40.	6.1	335
5	Durable Superhydrophobic and Antireflective Surfaces by Trimethylsilanized Silica Nanoparticles-Based Solâ^'Gel Processing. Langmuir, 2009, 25, 6357-6362.	3.5	305
6	Hybrid Nafion–silica membranes doped with heteropolyacids for application in direct methanol fuel cells. Solid State Ionics, 2001, 145, 101-107.	2.7	276
7	Composite Nafion/Zirconium Phosphate Membranes for Direct Methanol Fuel Cell Operation at High Temperature. Electrochemical and Solid-State Letters, 2001, 4, A31.	2.2	268
8	Nanosized IrOx and IrRuOx electrocatalysts for the O2 evolution reaction in PEM water electrolysers. Applied Catalysis B: Environmental, 2015, 164, 488-495.	20.2	213
9	Nafion–TiO2 composite DMFC membranes: physico-chemical properties of the filler versus electrochemical performance. Electrochimica Acta, 2005, 50, 1241-1246.	5.2	212
10	Sulfonated polybenzimidazole membranes — preparation and physico-chemical characterization. Journal of Membrane Science, 2001, 188, 71-78.	8.2	202
11	Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources. Journal of Applied Electrochemistry, 2013, 43, 107-118.	2.9	198
12	CWO of phenol on two differently prepared CuO–CeO2 catalysts. Applied Catalysis B: Environmental, 2000, 28, 113-125.	20.2	193
13	Influence of the acid–base characteristics of inorganic fillers on the high temperature performance of composite membranes in direct methanol fuel cells. Solid State Ionics, 2003, 161, 251-265.	2.7	164
14	Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3â^´Î´based cathode SOFC. Applied Catalysis B: Environmental, 2007, 76, 320-327.	20.2	164
15	Effect of Ptî—,Ru alloy composition on high-temperature methanol electro-oxidation. Electrochimica Acta, 2002, 47, 3723-3732.	5.2	159
16	Electrochemical characterization of single cell and short stack PEM electrolyzers based on a nanosized IrO2 anode electrocatalyst. International Journal of Hydrogen Energy, 2010, 35, 5558-5568.	7.1	138
17	Enhanced performance and durability of low catalyst loading PEM water electrolyser based on a short-side chain perfluorosulfonic ionomer. Applied Energy, 2017, 192, 477-489.	10.1	138
18	Investigation of a carbon-supported quaternary Ptî—,Ruî—,Snî—,W catalyst for direct methanol fuel cells. Journal of Power Sources, 1995, 55, 159-166.	7.8	136

#	Article	IF	CITATIONS
19	An X-ray photoelectron spectroscopic study on the effect of Ru and Sn additions to platinised carbons. Applied Surface Science, 1999, 137, 20-29.	6.1	134
20	Preparation and characterization of titanium suboxides as conductive supports of IrO2 electrocatalysts for application in SPE electrolysers. Electrochimica Acta, 2009, 54, 6292-6299.	5.2	131
21	Investigation of several graphite-based electrodes for vanadium redox flow cell. Journal of Power Sources, 2013, 227, 15-23.	7.8	131
22	Analysis of platinum particle size and oxygen reduction in phosphoric acid. Electrochimica Acta, 1991, 36, 1979-1984.	5.2	126
23	Investigation of direct methanol fuel cells based on unsupported Pt–Ru anode catalysts with different chemical properties. Electrochimica Acta, 2000, 45, 4319-4328.	5.2	125
24	Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation. Journal of Power Sources, 2011, 196, 8925-8930.	7.8	124
25	An electrochemical study of a PEM stack for water electrolysis. International Journal of Hydrogen Energy, 2012, 37, 1939-1946.	7.1	120
26	Performance analysis of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 2013, 243, 519-534.	7.8	118
27	Analysis of the high-temperature methanol oxidation behaviour at carbon-supported Pt–Ru catalysts. Journal of Electroanalytical Chemistry, 2003, 557, 167-176.	3.8	117
28	Influence of flow field design on the performance of a direct methanol fuel cell. Journal of Power Sources, 2000, 91, 202-209.	7.8	115
29	Performance and degradation of high temperature polymer electrolyte fuel cell catalysts. Journal of Power Sources, 2008, 178, 525-536.	7.8	113
30	Performance analysis of a non-platinum group metal catalyst based on iron-aminoantipyrine for direct methanol fuel cells. Applied Catalysis B: Environmental, 2016, 182, 297-305.	20.2	113
31	Insights on the extraordinary tolerance to alcohols of Fe-N-C cathode catalysts in highly performing direct alcohol fuel cells. Nano Energy, 2017, 34, 195-204.	16.0	113
32	New insights into the stability of a high performance nanostructured catalyst for sustainable water electrolysis. Nano Energy, 2017, 40, 618-632.	16.0	112
33	Preparation and evaluation of RuO2–IrO2, IrO2–Pt and IrO2–Ta2O5 catalysts for the oxygen evolution reaction in an SPE electrolyzer. Journal of Applied Electrochemistry, 2009, 39, 191-196.	2.9	111
34	The influence of iridium chemical oxidation state on the performance and durability of oxygen evolution catalysts in PEM electrolysis. Journal of Power Sources, 2017, 366, 105-114.	7.8	110
35	Enhanced oxygen reduction activity and durability of Pt catalysts supported on carbon nanofibers. Applied Catalysis B: Environmental, 2012, 115-116, 269-275.	20.2	109
36	Title is missing!. Journal of Applied Electrochemistry, 1999, 29, 673-678.	2.9	107

#	Article	IF	CITATIONS
37	Polymer electrolytes based on sulfonated polysulfone for direct methanol fuel cells. Journal of Power Sources, 2008, 179, 34-41.	7.8	104
38	Optimization of operating parameters of a direct methanol fuel cell and physico-chemical investigation of catalyst–electrolyte interface. Electrochimica Acta, 1998, 43, 3719-3729.	5.2	103
39	High temperature operation of a composite membrane-based solid polymer electrolyte water electrolyser. Electrochimica Acta, 2008, 53, 7350-7356.	5.2	101
40	High Performance and Costâ€Effective Direct Methanol Fuel Cells: Feâ€Nâ€C Methanolâ€Tolerant Oxygen Reduction Reaction Catalysts. ChemSusChem, 2016, 9, 1986-1995.	6.8	100
41	High performance fuel cell based on phosphotungstic acid as proton conducting electrolyte. Electrochimica Acta, 1996, 41, 397-403.	5.2	96
42	FTIR spectroscopic investigation of inorganic fillers for composite DMFC membranes. Electrochemistry Communications, 2003, 5, 862-866.	4.7	93
43	Nanosized IrO2 electrocatalysts for oxygen evolution reaction in an SPE electrolyzer. Journal of Nanoparticle Research, 2011, 13, 1639-1646.	1.9	93
44	Methanol electrooxidation on carbon-supported Pt-WO3?x electrodes in sulphuric acid electrolyte. Journal of Applied Electrochemistry, 1995, 25, 528-532.	2.9	92
45	High Temperature Operation of a Solid Polymer Electrolyte Fuel Cell Stack Based on a New Ionomer Membrane. Fuel Cells, 2010, 10, 1013-1023.	2.4	91
46	Electrochemical Impedance Spectroscopy as a Diagnostic Tool in Polymer Electrolyte Membrane Electrolysis. Materials, 2018, 11, 1368.	2.9	88
47	Fuel flexibility: A key challenge for SOFC technology. Fuel, 2012, 102, 554-559.	6.4	86
48	Investigation of IrO2 electrocatalysts prepared by a sulfite-couplex route for the O2 evolution reaction in solid polymer electrolyte water electrolyzers. International Journal of Hydrogen Energy, 2011, 36, 7822-7831.	7.1	85
49	Sulfonated Graphene Oxide Platelets in Nafion Nanocomposite Membrane: Advantages for Application in Direct Methanol Fuel Cells. Journal of Physical Chemistry C, 2014, 118, 24357-24368.	3.1	85
50	Investigation of grafted ETFE-based polymer membranes as alternative electrolyte for direct methanol fuel cells. Journal of Power Sources, 2003, 123, 107-115.	7.8	84
51	Methanol oxidation on carbon-supported platinum-tin electrodes in sulfuric acid. Journal of Power Sources, 1994, 50, 295-309.	7.8	83
52	Performance, methanol tolerance and stability of Fe-aminobenzimidazole derived catalyst for direct methanol fuel cells. Journal of Power Sources, 2016, 319, 235-246.	7.8	83
53	Improved Pd electro-catalysis for oxygen reduction reaction in direct methanol fuel cell by reduced graphene oxide. Applied Catalysis B: Environmental, 2014, 144, 554-560.	20.2	80
54	Towards fuel cell membranes with improved lifetime: Aquivion® Perfluorosulfonic Acid membranes containing immobilized radical scavengers. Journal of Power Sources, 2014, 272, 753-758.	7.8	80

#	Article	IF	CITATIONS
55	Degradation issues of PEM electrolysis MEAs. Renewable Energy, 2018, 123, 52-57.	8.9	80
56	Performance of DMFC anodes with ultra-low Pt loading. Electrochemistry Communications, 2004, 6, 164-169.	4.7	79
57	Optimization of components and assembling in a PEM electrolyzer stack. International Journal of Hydrogen Energy, 2011, 36, 3333-3339.	7.1	79
58	Investigation of bimetallic Pt–M/C as DMFC cathode catalysts. Electrochimica Acta, 2007, 53, 1360-1364.	5.2	77
59	Performance analysis of short-side-chain Aquivion® perfluorosulfonic acid polymer for proton exchange membrane water electrolysis. Journal of Membrane Science, 2014, 466, 1-7.	8.2	77
60	Assessment of the FAA3-50 polymer electrolyte in combination with a NiMn2O4 anode catalyst for anion exchange membrane water electrolysis. International Journal of Hydrogen Energy, 2020, 45, 9285-9292.	7.1	77
61	Influence of Chemistry and Topology Effects on Superhydrophobic CF ₄ -Plasma-Treated Poly(dimethylsiloxane) (PDMS). Langmuir, 2008, 24, 1833-1843.	3.5	75
62	Relationship between physicochemical properties and electrooxidation behaviour of carbon materials. Electrochimica Acta, 1991, 36, 1931-1935.	5.2	74
63	An appraisal of electric automobile power sources. Renewable and Sustainable Energy Reviews, 2001, 5, 137-155.	16.4	74
64	Nanostructured materials for advanced energy conversion and storage devices. , 2010, , 148-159.		74
65	Preparation and sintering of Ce1?xGdxO2?x/2 nanopowders and their electrochemical and EPR characterization. Solid State Ionics, 2004, 175, 361-366.	2.7	73
66	The influence of functional groups on the surface acid-base characteristics of carbon blacks. Carbon, 1989, 27, 337-347.	10.3	72
67	Composite Mesoporous Titania Nafion-Based Membranes for Direct Methanol Fuel Cell Operation at High Temperature. Journal of the Electrochemical Society, 2005, 152, A1373.	2.9	71
68	Solid Polymer Electrolyte Water Electrolyser Based on Nafionâ€TiO ₂ Composite Membrane for High Temperature Operation. Fuel Cells, 2009, 9, 247-252.	2.4	71
69	Nanosized Pt/IrO2 electrocatalyst prepared by modified polyol method for application as dual function oxygen electrode in unitized regenerative fuel cells. International Journal of Hydrogen Energy, 2012, 37, 5508-5517.	7.1	71
70	Fe–N supported on graphitic carbon nano-networks grown from cobalt as oxygen reduction catalysts for low-temperature fuel cells. Applied Catalysis B: Environmental, 2015, 166-167, 75-83.	20.2	69
71	PtCu catalyst for the electro-oxidation of ethanol in an alkaline direct alcohol fuel cell. International Journal of Hydrogen Energy, 2017, 42, 27919-27928.	7.1	66
72	Carbon nanofiber-based counter electrodes for low cost dye-sensitized solar cells. Journal of Power Sources, 2014, 250, 242-249.	7.8	65

#	Article	IF	CITATIONS
73	Selectivity of Direct Methanol Fuel Cell Membranes. Membranes, 2015, 5, 793-809.	3.0	65
74	Stabilisation of composite LSFCO–CGO based anodes for methane oxidation in solid oxide fuel cells. Journal of Power Sources, 2005, 145, 68-73.	7.8	64
75	Solid oxide fuel cells fed with dry ethanol: The effect of a perovskite protective anodic layer containing dispersed Ni-alloy @ FeOx core-shell nanoparticles. Applied Catalysis B: Environmental, 2018, 220, 98-110.	20.2	64
76	Electrocatalytic behaviour for oxygen reduction reaction of small nanostructured crystalline bimetallic Pt–M supported catalysts. Journal of Applied Electrochemistry, 2006, 36, 1143-1149.	2.9	61
77	Hybrid ordered mesoporous carbons doped with tungsten trioxide as supports for Pt electrocatalysts for methanol oxidation reaction. Electrochimica Acta, 2013, 94, 80-91.	5.2	61
78	A combination of CoO and Co nanoparticles supported on electrospun carbon nanofibers as highly stable air electrodes. Journal of Power Sources, 2017, 364, 101-109.	7.8	60
79	Optimization of properties and operating parameters of a passive DMFC mini-stack at ambient temperature. Journal of Power Sources, 2008, 180, 797-802.	7.8	59
80	An NMR and SAXS investigation of DMFC composite recast Nafion membranes containing ceramic fillers. Journal of Membrane Science, 2006, 270, 221-227.	8.2	58
81	Mitigation of carbon deposits formation in intermediate temperature solid oxide fuel cells fed with dry methane by anode doping with barium. Journal of Power Sources, 2009, 193, 160-164.	7.8	58
82	Electrochemical characterization of a PEM water electrolyzer based on a sulfonated polysulfone membrane. Journal of Membrane Science, 2013, 448, 209-214.	8.2	58
83	Zeolite-based composite membranes for high temperature direct methanol fuel cells. Journal of Applied Electrochemistry, 2005, 35, 207-212.	2.9	57
84	Surface Properties of Pt and PtCo Electrocatalysts and Their Influence on the Performance and Degradation of High-Temperature Polymer Electrolyte Fuel Cells. Journal of Physical Chemistry C, 2010, 114, 15823-15836.	3.1	57
85	Performance and life-time behaviour of NiCu–CGO anodes for the direct electro-oxidation of methane in IT-SOFCs. Journal of Power Sources, 2007, 164, 300-305.	7.8	56
86	Development of Pt and Pt–Fe Catalysts Supported on Multiwalled Carbon Nanotubes for Oxygen Reduction in Direct Methanol Fuel Cells. Journal of the Electrochemical Society, 2008, 155, B829.	2.9	56
87	Investigation of low cost carbonaceous materials for application as counter electrode in dye-sensitized solar cells. Journal of Applied Electrochemistry, 2009, 39, 2173-2179.	2.9	56
88	Development and characterization of sulfonated polysulfone membranes for direct methanol fuel cells. Desalination, 2006, 199, 283-285.	8.2	55
89	Cost Analysis of Direct Methanol Fuel Cell Stacks for Mass Production. Energies, 2016, 9, 1008.	3.1	54
90	Surface properties of inorganic fillers for application in composite membranes-direct methanol fuel cells. Journal of Power Sources, 2004, 128, 113-118.	7.8	53

#	Article	IF	CITATIONS
91	Performance and selectivity of PtxSn/C electro-catalysts for ethanol oxidation prepared by reduction with different formic acid concentrations. Electrochimica Acta, 2012, 70, 255-265.	5.2	53
92	The effect of thermal treatment on structure and surface composition of PtCo electro-catalysts for application in PEMFCs operating under automotive conditions. Journal of Power Sources, 2012, 208, 35-45.	7.8	52
93	Investigation of the electrochemical behaviour in DMFCs of chabazite and clinoptilolite-based composite membranes. Electrochimica Acta, 2005, 50, 5181-5188.	5.2	50
94	Investigation of passive DMFC mini-stacks at ambient temperature. Electrochimica Acta, 2009, 54, 2004-2009.	5.2	50
95	Towards an optimal synthesis route for the preparation of highly mesoporous carbon xerogel-supported Pt catalysts for the oxygen reduction reaction. Applied Catalysis B: Environmental, 2014, 147, 947-957.	20.2	48
96	Commercial platinum group metal-free cathodic electrocatalysts for highly performed direct methanol fuel cell applications. Journal of Power Sources, 2019, 437, 226948.	7.8	48
97	Chemically stabilised extruded and recast short side chain Aquivion® proton exchange membranes for high current density operation in water electrolysis. Journal of Membrane Science, 2019, 578, 136-148.	8.2	48
98	Methanol oxidation on carbon-supported Ptî—,Sn electrodes in silicotungstic acid. Electrochimica Acta, 1994, 39, 691-700.	5.2	46
99	CO 2 reduction to alcohols in a polymer electrolyte membrane co-electrolysis cell operating at low potentials. Electrochimica Acta, 2017, 241, 28-40.	5.2	46
100	Electrospun carbon nanofibers loaded with spinel-type cobalt oxide as bifunctional catalysts for enhanced oxygen electrocatalysis. Journal of Energy Storage, 2019, 23, 269-277.	8.1	46
101	Electrospun NiMn2O4 and NiCo2O4 spinel oxides supported on carbon nanofibers as electrocatalysts for the oxygen evolution reaction in an anion exchange membrane-based electrolysis cell. International Journal of Hydrogen Energy, 2019, 44, 20987-20996.	7.1	46
102	Tape casting fabrication and co-sintering of solid oxide "half cells―with a cathode–electrolyte porous interface. Solid State Ionics, 2006, 177, 2093-2097.	2.7	45
103	Local environment of Barium, Cerium and Yttrium in BaCe1â^'xYxO3â^'δ ceramic protonic conductors. Solid State Ionics, 2007, 178, 587-591.	2.7	45
104	Optimizing the synthesis of carbon nanofiber based electrocatalysts for fuel cells. Applied Catalysis B: Environmental, 2013, 132-133, 22-27.	20.2	45
105	Photoactive screen-printed pyrite anodes for electrochemical photovoltaic cells. Solar Cells, 1991, 31, 119-141.	0.6	44
106	A.cimpedance spectroscopy study of oxygen reduction at Nafion� coated gas-diffusion electrodes in sulphuric acid: Teflon loading and methanol cross-over effects. Journal of Applied Electrochemistry, 1993, 23, 1107-1116.	2.9	44
107	Proton exchange membranes based on the short-side-chain perfluorinated ionomer for high temperature direct methanol fuel cells. Desalination, 2006, 199, 271-273.	8.2	44
108	Investigation of Pt–Fe catalysts for oxygen reduction in low temperature direct methanol fuel cells. Journal of Power Sources, 2006, 159, 900-904.	7.8	44

#	Article	IF	CITATIONS
109	Immobilized transition metal-based radical scavengers and their effect on durability of Aquivion® perfluorosulfonic acid membranes. Journal of Power Sources, 2016, 301, 317-325.	7.8	44
110	Investigation of Pt–Ru nanoparticle catalysts for low temperature methanol electro-oxidation. Journal of Solid State Electrochemistry, 2007, 11, 1229-1238.	2.5	42
111	Performance analysis of Fe–N–C catalyst for DMFC cathodes: Effect of water saturation in the cathodic catalyst layer. International Journal of Hydrogen Energy, 2016, 41, 22605-22618.	7.1	42
112	Analysis of the chemical cross-over in a phosphotungstic acid electrolyte based fuel cell. Electrochimica Acta, 1997, 42, 1645-1652.	5.2	41
113	Direct utilization of methanol in solid oxide fuel cells: An electrochemical and catalytic study. International Journal of Hydrogen Energy, 2011, 36, 9977-9986.	7.1	41
114	Glycerol oxidation in solid oxide fuel cells based on a Ni-perovskite electrocatalyst. Biomass and Bioenergy, 2011, 35, 1075-1084.	5.7	41
115	A nanostructured bifunctional Pd/C gas-diffusion electrode for metal-air batteries. Electrochimica Acta, 2015, 174, 508-515.	5.2	41
116	Development and operation of a 150 W air-feed direct methanol fuel cell stack. Journal of Applied Electrochemistry, 2001, 31, 275-279.	2.9	40
117	Investigation of carbon-supported Pt and PtCo catalysts for oxygen reduction in direct methanol fuel cells. Electrochimica Acta, 2009, 54, 4844-4850.	5.2	40
118	Performance of a PEM water electrolyser combining an IrRu-oxide anode electrocatalyst and a short-side chain Aquivion membrane. International Journal of Hydrogen Energy, 2015, 40, 14430-14435.	7.1	40
119	Carbon-supported Pd and Pd-Co cathode catalysts for direct methanol fuel cells (DMFCs) operating with high methanol concentration. Journal of Electroanalytical Chemistry, 2018, 808, 464-473.	3.8	40
120	Investigation of the activity and stability of Pd-based catalysts towards the oxygen reduction (ORR) and evolution reactions (OER) in iron–air batteries. RSC Advances, 2015, 5, 25424-25427.	3.6	39
121	Simple and functional direct methanol fuel cell stack designs for application in portable and auxiliary power units. International Journal of Hydrogen Energy, 2016, 41, 12320-12329.	7.1	39
122	Investigation of unsupported Pt–Ru catalysts for high temperature methanol electro-oxidation. Electrochemistry Communications, 2000, 2, 466-470.	4.7	38
123	Electrochemical investigation of a propane-fed solid oxide fuel cell based on a composite Ni–perovskite anode catalyst. Applied Catalysis B: Environmental, 2009, 89, 49-57.	20.2	38
124	Bifunctional oxygen electrode based on a perovskite/carbon composite for electrochemical devices. Journal of Electroanalytical Chemistry, 2018, 808, 412-419.	3.8	37
125	Analysis of performance degradation during steady-state and load-thermal cycles of proton exchange membrane water electrolysis cells. Journal of Power Sources, 2020, 468, 228390.	7.8	37
126	The role of Pt-loading, thermal treatment and exposure to air on the acid-base behavior of a Pt/Carbon black catalyst. Carbon, 1990, 28, 599-609.	10.3	36

#	Article	IF	CITATIONS
127	Performance evaluation of a solid oxide fuel cell coupled to an external biogas tri-reforming process. Fuel Processing Technology, 2013, 115, 238-245.	7.2	36
128	NiCo-loaded carbon nanofibers obtained by electrospinning: Bifunctional behavior as air electrodes. Renewable Energy, 2018, 125, 250-259.	8.9	36
129	Methanol-Tolerant M–N–C Catalysts for Oxygen Reduction Reactions in Acidic Media and Their Application in Direct Methanol Fuel Cells. Catalysts, 2018, 8, 650.	3.5	36
130	A voltammetric study of the electrodeposition chemistry in the Feî—,S system. Electrochimica Acta, 1991, 36, 581-590.	5.2	35
131	The role of Gadolinia Doped Ceria support on the promotion of CO2 methanation over Ni and Ni Fe catalysts. International Journal of Hydrogen Energy, 2017, 42, 26828-26842.	7.1	35
132	EDTA-derived Co N C and Fe N C electro-catalysts for the oxygen reduction reaction in acid environment. Renewable Energy, 2018, 120, 342-349.	8.9	35
133	Barrier properties of sulfonated polysulfone/layered double hydroxides nanocomposite membrane for direct methanol fuel cell operating at high methanol concentrations. International Journal of Hydrogen Energy, 2020, 45, 20647-20658.	7.1	35
134	Preparation and characterization of thin film ZnCuTe semiconductors. Solar Energy Materials and Solar Cells, 1998, 53, 255-267.	6.2	34
135	An NMR spectroscopic study of water and methanol transport properties in DMFC composite membranes: Influence on the electrochemical behaviour. Journal of Power Sources, 2006, 163, 52-55.	7.8	34
136	The influence of carbon nanofiber support properties on the oxygen reduction behavior in proton conducting electrolyte-based direct methanol fuel cells. International Journal of Hydrogen Energy, 2012, 37, 6253-6260.	7.1	33
137	Towards new generation fuel cell electrocatalysts based on xerogel–nanofiber carbon composites. Journal of Materials Chemistry A, 2014, 2, 13713.	10.3	33
138	Oxidized carbon nanofibers supporting PtRu nanoparticles for direct methanol fuel cells. International Journal of Hydrogen Energy, 2014, 39, 5414-5423.	7.1	33
139	Thermoelectric characterization of an intermediate temperature solid oxide fuel cell system directly fed by dry biogas. Energy Conversion and Management, 2016, 127, 90-102.	9.2	33
140	Solid polymer electrolyte based on sulfonated polysulfone membranes and acidic silica for direct methanol fuel cells. Solid State Ionics, 2012, 216, 90-94.	2.7	32
141	Preparation and characterisation of Ti oxide based catalyst supports for low temperature fuel cells. International Journal of Hydrogen Energy, 2013, 38, 11600-11608.	7.1	32
142	Design and testing of a compact PEM electrolyzer system. International Journal of Hydrogen Energy, 2013, 38, 11519-11529.	7.1	32
143	Synthesis of Pd ₃ Co ₁ @Pt/C Coreâ€Shell Catalysts for Methanolâ€Tolerant Cathodes of Direct Methanol Fuel Cells. Chemistry - A European Journal, 2014, 20, 10679-10684.	3.3	32
144	ac Impedance spectroscopy of porous gas diffusion electrode in sulphuric acid. Electrochimica Acta, 1992, 37, 523-529.	5.2	31

#	Article	IF	CITATIONS
145	Pt–Fe cathode catalysts to improve the oxygen reduction reaction and methanol tolerance in direct methanol fuel cells. Journal of Solid State Electrochemistry, 2008, 12, 643-649.	2.5	31
146	Endurance study of a solid polymer electrolyte direct ethanol fuel cell based on a Pt–Sn anode catalyst. International Journal of Hydrogen Energy, 2013, 38, 11576-11582.	7.1	31
147	Enhancing ethanol oxidation rate at PtRu electro-catalysts using metal-oxide additives. Electrochimica Acta, 2016, 191, 183-191.	5.2	31
148	N-Doped Carbon Xerogels as Pt Support for the Electro-Reduction of Oxygen. Materials, 2017, 10, 1092.	2.9	31
149	PEM fuel cells analysis for grid connected applications. International Journal of Hydrogen Energy, 2011, 36, 10908-10916.	7.1	30
150	Oxide-supported PtCo alloy catalyst for intermediate temperature polymer electrolyte fuel cells. Applied Catalysis B: Environmental, 2013, 142-143, 15-24.	20.2	30
151	Investigation of Supported Pd-Based Electrocatalysts for the Oxygen Reduction Reaction: Performance, Durability and Methanol Tolerance. Materials, 2015, 8, 7997-8008.	2.9	30
152	Investigation of Ni-based alloy/CGO electro-catalysts as protective layer for a solid oxide fuel cell anode fed with ethanol. Journal of Applied Electrochemistry, 2015, 45, 647-656.	2.9	30
153	New insights on the co-electrolysis of CO2 and H2O through a solid oxide electrolyser operating at intermediate temperatures. Electrochimica Acta, 2019, 296, 458-464.	5.2	30
154	Flammability reduction in a pressurised water electrolyser based on a thin polymer electrolyte membrane through a Pt-alloy catalytic approach. Applied Catalysis B: Environmental, 2019, 246, 254-265.	20.2	30
155	Oxygen reduction kinetics in phosphotungstic acid at low temperature. Electrochimica Acta, 1993, 38, 1733-1741.	5.2	29
156	Composite anode electrode based on iridium oxide promoter for direct methanol fuel cells. Electrochimica Acta, 2014, 128, 304-310.	5.2	29
157	Graphene‣upported Substoichiometric Sodium Tantalate as a Methanolâ€Tolerant, Nonâ€Nobleâ€Metal Catalyst for the Electroreduction of Oxygen. ChemCatChem, 2015, 7, 911-915.	3.7	29
158	Carbon-Supported Pd and PdFe Alloy Catalysts for Direct Methanol Fuel Cell Cathodes. Materials, 2017, 10, 580.	2.9	29
159	One-pot synthesis of naturanol from α-pinene oxide on bifunctional Pt-Sn/SiO2 heterogeneous catalysts. Applied Catalysis A: General, 2007, 325, 15-24.	4.3	28
160	Propane conversion over a Ru/CGO catalyst and its application in intermediate temperature solid oxide fuel cells. Journal of Applied Electrochemistry, 2007, 37, 203-208.	2.9	28
161	Design of efficient methanol impermeable membranes for fuel cell applications. Physical Chemistry Chemical Physics, 2012, 14, 2718.	2.8	28
162	Metal oxide promoters for methanol electro-oxidation. International Journal of Hydrogen Energy, 2014, 39, 9782-9790.	7.1	28

#	Article	IF	CITATIONS
163	Reduced methanol crossover and enhanced proton transport in nanocomposite membranes based on clayâ^'CNTs hybrid materials for direct methanol fuel cells. Ionics, 2017, 23, 2113-2123.	2.4	28
164	High performance solid-state iron-air rechargeable ceramic battery operating at intermediate temperatures (500–650â€ ⁻ °C). Applied Energy, 2019, 233-234, 386-394.	10.1	28
165	Investigation of sulfonated polysulfone membranes as electrolyte in a passive-mode direct methanol fuel cell mini-stack. Journal of Power Sources, 2010, 195, 7727-7733.	7.8	27
166	Biogas-fed solid oxide fuel cell (SOFC) coupled to tri-reformingÂprocess: Modelling and simulation. International Journal of Hydrogen Energy, 2015, 40, 14640-14650.	7.1	27
167	Investigation of PtNi/C as methanol tolerant electrocatalyst for the oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2016, 763, 10-17.	3.8	27
168	Performance and stability of counter electrodes based on reduced few-layer graphene oxide sheets and reduced graphene oxide quantum dots for dye-sensitized solar cells. Electrochimica Acta, 2019, 306, 396-406.	5.2	27
169	Electrocatalysis of Oxygen on Bifunctional Nickelâ€Cobaltite Spinel. ChemElectroChem, 2020, 7, 124-130.	3.4	27
170	Electrodeposited Thin Film ZnTe Semiconductors for Photovoltaic Applications. Materials Technology, 1997, 4, 115-125.	0.3	26
171	Electrochemical behaviour of an all-perovskite-based intermediate temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 2013, 38, 14773-14778.	7.1	26
172	Optimization of perfluorosulphonic ionomer amount in gas diffusion electrodes for PEMFC operation under automotive conditions. Electrochimica Acta, 2015, 165, 450-455.	5.2	26
173	Methanol and proton transport in layered double hydroxide and smectite clay-based composites: influence on the electrochemical behavior of direct methanol fuel cells at intermediate temperatures. Journal of Solid State Electrochemistry, 2015, 19, 2053-2061.	2.5	26
174	Electrochemical analysis of high temperature methanol electro-oxidation at Pt-decorated Ru catalysts. Journal of Electroanalytical Chemistry, 2005, 576, 161-169.	3.8	25
175	NMR and Electrochemical Investigation of the Transport Properties of Methanol and Water in Nafion and Clay-Nanocomposites Membranes for DMFCs. Membranes, 2012, 2, 325-345.	3.0	25
176	A high-performance, bifunctional oxygen electrode catalysed with palladium and nickel-iron hexacyanoferrate. Electrochimica Acta, 2016, 206, 127-133.	5.2	25
177	Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density. Applied Energy, 2020, 279, 115809.	10.1	25
178	TowardÂmore efficient and stable bifunctional electrocatalysts for oxygen electrodes using FeCo2O4/carbon nanofiber prepared by electrospinning. Materials Today Energy, 2020, 18, 100508.	4.7	25
179	Nickel–Copper/Gadoliniumâ€Đoped Ceria (CGO) Composite Electrocatalyst as a Protective Layer for a Solidâ€Oxide Fuel Cell Anode Fed with Ethanol. ChemElectroChem, 2014, 1, 1395-1402.	3.4	24
180	IrO2 as a promoter of Pt–Ru for methanol electro-oxidation. Physical Chemistry Chemical Physics, 2014, 16, 10414.	2.8	24

#	Article	IF	CITATIONS
181	Influence of Metal Oxide Additives on the Activity and Stability of PtRu/C for Methanol Electro-Oxidation. Journal of the Electrochemical Society, 2015, 162, F713-F717.	2.9	24
182	Ni–Cu based catalysts prepared by two different methods and their catalytic activity toward the ATR of methane. Chemical Engineering Research and Design, 2015, 93, 269-277.	5.6	24
183	Lanthanum Ferrites-Based Exsolved Perovskites as Fuel-Flexible Anode for Solid Oxide Fuel Cells. Materials, 2020, 13, 3231.	2.9	24
184	Influence of annealing temperature on the opto-electronic characteristics of znte electrodeposited semiconductors. Materials Chemistry and Physics, 1997, 51, 130-134.	4.0	23
185	Electrochemical behaviour of propane-fed solid oxide fuel cells based on low Ni content anode catalysts. Electrochimica Acta, 2009, 54, 5280-5285.	5.2	23
186	Pd supported on Ti-suboxides as bifunctional catalyst for air electrodes of metal-air batteries. International Journal of Hydrogen Energy, 2016, 41, 19579-19586.	7.1	23
187	Investigation of Pd-based electrocatalysts for oxygen reduction in PEMFCs operating under automotive conditions. Journal of Power Sources, 2013, 222, 390-399.	7.8	22
188	Performance comparison of portable direct methanol fuel cell mini-stacks based on a low-cost fluorine-free polymer electrolyte and Nafion membrane. Electrochimica Acta, 2010, 55, 6022-6027.	5.2	21
189	Development of a planar μDMFC operating at room temperature. International Journal of Hydrogen Energy, 2011, 36, 8088-8093.	7.1	21
190	Fuel cell performance and durability investigation of bimetallic radical scavengers in Aquivion ® perfluorosulfonic acid membranes. International Journal of Hydrogen Energy, 2017, 42, 27987-27994.	7.1	21
191	Towards Highly Performing and Stable PtNi Catalysts in Polymer Electrolyte Fuel Cells for Automotive Application. Materials, 2017, 10, 317.	2.9	21
192	Increasing the stability of membrane-electrode assemblies based on Aquivion® membranes under automotive fuel cell conditions by using proper catalysts and ionomers. Journal of Electroanalytical Chemistry, 2019, 842, 59-65.	3.8	21
193	Engineering of a Low ost, Highly Active, and Durable Tantalate–Graphene Hybrid Electrocatalyst for Oxygen Reduction. Advanced Energy Materials, 2020, 10, 2000075.	19.5	21
194	Enhanced performance of a PtCo recombination catalyst for reducing the H2 concentration in the O2 stream of a PEM electrolysis cell in the presence of a thin membrane and a high differential pressure. Electrochimica Acta, 2020, 344, 136153.	5.2	21
195	Electrochemical deposition of ZnFeS thin film semiconductors on tin oxide substrates. Solar Energy Materials and Solar Cells, 1995, 37, 43-53.	6.2	20
196	Partial oxidation of methane in solid oxide fuel cells: an experimental evaluation. Journal of Power Sources, 1996, 62, 95-99.	7.8	20
197	PEO–PPO–PEO triblock copolymer/Nafion blend as membrane material for intermediate temperature DMFCs. Journal of Applied Electrochemistry, 2008, 38, 543-550.	2.9	20
198	Platinum Ruthenium Catalysts Supported on Carbon Xerogel for Methanol Electroâ€Oxidation: Influence of the Catalyst Synthesis Method. ChemCatChem, 2013, 5, 3770-3780.	3.7	20

#	Article	IF	CITATIONS
199	Carbon Nanofibers as Advanced Pd Catalyst Supports for the Air Electrode of Alkaline Metal–Air Batteries. ChemPlusChem, 2015, 80, 1384-1388.	2.8	20
200	Analysis of the surface acid-base characteristics of Pt/C catalysts for phosphoric acid fuel cells. Applied Catalysis A: General, 1994, 114, 257-272.	4.3	19
201	PtCo catalyst with modulated surface characteristics for the cathode of direct methanol fuel cells. International Journal of Hydrogen Energy, 2014, 39, 5399-5405.	7.1	19
202	Sulfated titania as additive in Nafion membranes for water electrolysis applications. International Journal of Hydrogen Energy, 2017, 42, 27851-27858.	7.1	19
203	Performance and stability of a critical raw materials-free anion exchange membrane electrolysis cell. Electrochimica Acta, 2022, 413, 140078.	5.2	19
204	Investigation of a Pt–Fe/C catalyst for oxygen reduction reaction in direct ethanol fuel cells. Journal of Nanoparticle Research, 2010, 12, 357-365.	1.9	18
205	Catalytic behavior of Ni-modified perovskite and doped ceria composite catalyst for the conversion of odorized propane to syngas. Fuel Processing Technology, 2013, 113, 28-33.	7.2	18
206	Iron–Air Battery Operating at High Temperature. Energy Technology, 2017, 5, 670-680.	3.8	18
207	Application of Low-Cost Me-N-C (Me = Fe or Co) Electrocatalysts Derived from EDTA in Direct Methanol Fuel Cells (DMFCs). Materials, 2018, 11, 1193.	2.9	18
208	Investigation of NiFe-Based Catalysts for Oxygen Evolution in Anion-Exchange Membrane Electrolysis. Energies, 2020, 13, 1720.	3.1	18
209	Photoelectrochemical behavior of thermally activated natural pyrite-based photoelectrodes. Materials Chemistry and Physics, 1991, 28, 75-87.	4.0	17
210	Propane-fed Solid Oxide Fuel Cell Based on a Composite Ni-La-CGO Anode Catalyst. Catalysis Letters, 2010, 136, 57-64.	2.6	17
211	An electro-kinetic study of oxygen reduction in polymer electrolyte fuel cells at intermediate temperatures. International Journal of Hydrogen Energy, 2013, 38, 675-681.	7.1	17
212	Production of syngas by solid oxide electrolysis: AÂcase study. International Journal of Hydrogen Energy, 2017, 42, 27859-27865.	7.1	17
213	Photoeffects at the polycrystalline pyrrhotite-electrolyte interface. Solar Energy Materials and Solar Cells, 1990, 20, 323-340.	0.4	16
214	Investigation of composite Ni-doped perovskite anode catalyst for electrooxidation of hydrogen in solid oxide fuel cell. International Journal of Hydrogen Energy, 2008, 33, 3150-3152.	7.1	16
215	Durability of a PtSn Ethanol Oxidation Electrocatalyst. ChemElectroChem, 2014, 1, 1403-1406.	3.4	16
216	Nickel–Iron/Gadoliniumâ€Doped Ceria (CGO) Composite Electrocatalyst as a Protective Layer for a Solidâ€Ωxide Fuel Cell Anode Fed with Biofuels. ChemCatChem. 2016. 8, 648-655	3.7	16

#	Article	IF	CITATIONS
217	Polymer Electrolyte Membranes for Water Photo-Electrolysis. Membranes, 2017, 7, 25.	3.0	16
218	Enhanced Ionic Conductivity in Planar Sodiumâ€Î²â€â€Alumina Electrolyte for Electrochemical Energy Storage Applications. ChemSusChem, 2010, 3, 1390-1397.	6.8	15
219	Composite Anode Electrocatalyst for Direct Methanol Fuel Cells. Electrocatalysis, 2013, 4, 235-240.	3.0	15
220	Evaluation of materials and components degradation of a PEM electrolyzer for marine applications. International Journal of Hydrogen Energy, 2013, 38, 7612-7615.	7.1	15
221	Morphological variation of platinum catalysts in phosphotungstic acid fuel cell. Journal of Power Sources, 1998, 70, 91-101.	7.8	14
222	A Half Cell Study of Performance and Degradation of Oxygen Reduction Catalysts for Application in Low Temperature Fuel Cells. Fuel Cells, 2009, 9, 201-208.	2.4	14
223	Insight on Single Cell Proton Exchange Membrane Fuel Cell Performance of Pt-Cu/C Cathode. Catalysts, 2019, 9, 544.	3.5	14
224	Improving the stability and discharge capacity of nanostructured Fe2O3/C anodes for iron-air batteries and investigation of 1-octhanethiol as an electrolyte additive. Electrochimica Acta, 2019, 318, 625-634.	5.2	14
225	Evaluation of hot pressing parameters on the electrochemical performance of MEAs based on Aquivion® PFSA membranes. Journal of Energy Chemistry, 2019, 35, 168-173.	12.9	14
226	Ionic conductivity in heteropolyacid-tin mordenite composite electrolytes. Materials Letters, 1995, 24, 399-405.	2.6	13
227	Accelerated Degradation Tests for Pt/C Catalysts in Sulfuric Acid. ECS Transactions, 2006, 3, 633-641.	0.5	13
228	Comparison of the electrochemical properties of intermediate temperature solid oxide fuel cells based on protonic and anionic electrolytes. Journal of Applied Electrochemistry, 2009, 39, 477-483.	2.9	13
229	Influence of powders thermal activation process on the production of planar β-alumina ceramic membranes. Journal of Alloys and Compounds, 2017, 696, 1080-1089.	5.5	13
230	Enhanced production of methane through the use of a catalytic Ni–Fe pre-layer in a solid oxide co-electrolyser. International Journal of Hydrogen Energy, 2020, 45, 5134-5142.	7.1	13
231	Enhanced Photoelectrochemical Water Splitting at Hematite Photoanodes by Effect of a NiFe-Oxide co-Catalyst. Catalysts, 2020, 10, 525.	3.5	13
232	Electrodeposition and characterization of iron sulphide thin films. Materials Letters, 1992, 13, 12-17.	2.6	12
233	Study of a Solid Oxide Fuel Cell fed with n-dodecane reformate. Part I: Endurance test. International Journal of Hydrogen Energy, 2016, 41, 5741-5747.	7.1	12
234	Enhanced durability of a cost-effective perovskite-carbon catalyst for the oxygen evolution and reduction reactions in alkaline environment. International Journal of Hydrogen Energy, 2017, 42, 28063-28069.	7.1	12

#	Article	IF	CITATIONS
235	Direct methanol fuel cell stack for auxiliary power units applications based on fumapem® F-1850 membrane. International Journal of Hydrogen Energy, 2017, 42, 26889-26896.	7.1	12
236	Study of a solid oxide fuel cell fed with n-dodecane reformate. Part II: Effect of the reformate composition. International Journal of Hydrogen Energy, 2017, 42, 1751-1757.	7.1	12
237	Anionic Exchange Membrane for Photo-Electrolysis Application. Polymers, 2020, 12, 2991.	4.5	12
238	Investigating the durability of a direct methanol fuel cell equipped with commercial Platinum Group Metal-free cathodic electro-catalysts. Electrochimica Acta, 2021, 394, 139108.	5.2	12
239	Influence of annealing temperature on the crystallographic and optical properties of electrodeposited ZnFeS thin film semiconductors. Materials Chemistry and Physics, 1995, 41, 55-60.	4.0	11
240	Evaluation of High Temperature Degradation of Pt/C Catalysts in PEM Fuel Cells. ECS Transactions, 2006, 3, 765-774.	0.5	11
241	Pt dendrimer nanocomposites for oxygen reduction reaction in direct methanol fuel cells. Journal of Solid State Electrochemistry, 2010, 14, 835-840.	2.5	11
242	The influence of polydimethylsiloxane curing ratio on capillary pressure in microfluidic devices. Applied Surface Science, 2012, 258, 8032-8039.	6.1	11
243	PtRu Nanoparticles Deposited by the Sulfite Complex Method on Highly Porous Carbon Xerogels: Effect of the Thermal Treatment. Catalysts, 2013, 3, 744-756.	3.5	11
244	AC impedance spectroscopy investigation of carbon supported Pt3Co and Pt cathode catalysts in direct methanol fuel cell. International Journal of Hydrogen Energy, 2014, 39, 8026-8033.	7.1	11
245	Titanium–tantalum oxide as a support for Pd nanoparticles for the oxygen reduction reaction in alkaline electrolytes. Materials for Renewable and Sustainable Energy, 2018, 7, 1.	3.6	11
246	Fractal surface characterization of chalcogenide electrodeposits. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 38, 9-15.	3.5	10
247	Pt catalysts supported on zeolitized-pumice for the selective hydrogenation of campholenic aldehyde: A characterization and kinetic study. Applied Catalysis A: General, 2008, 350, 169-177.	4.3	10
248	Toward Tandem Solar Cells for Water Splitting Using Polymer Electrolytes. ACS Applied Materials & Interfaces, 2018, 10, 25393-25400.	8.0	10
249	Insights on a Ruddlesden-Popper phase as an active layer for a solid oxide fuel cell fed with dry biogas. Renewable Energy, 2022, 192, 784-792.	8.9	10
250	Digital simulation of galvanostatic current-potential data for gas-diffusion electrodes and estimation of electrode-kinetic parameters. Journal of Power Sources, 1994, 50, 177-186.	7.8	9
251	Characterization of direct methanol fuel cell components by electron microscopy and X-ray microchemical analysis. Materials Chemistry and Physics, 1997, 47, 257-262.	4.0	9
252	Membranes for portable direct alcohol fuel cells. Desalination, 2006, 200, 653-655.	8.2	9

#	Article	IF	CITATIONS
253	Composite Polymer Electrolyte for Direct Ethanol Fuel Cell Application ECS Transactions, 2006, 3, 1317-1323.	0.5	9
254	High surface area Ti-based mixed oxides nanofibers prepared by electrospinning. Materials Letters, 2014, 134, 281-285.	2.6	9
255	Electrocatalytic Activity and Durability of Pt-Decorated Non-Covalently Functionalized Graphitic Structures. Catalysts, 2015, 5, 1622-1635.	3.5	9
256	Performance Improvement in Direct Methanol Fuel Cells by Using CaTiO3-δ Additive at the Cathode. Catalysts, 2019, 9, 1017.	3.5	9
257	Dry Hydrogen Production in a Tandem Critical Raw Material-Free Water Photoelectrolysis Cell Using a Hydrophobic Gas-Diffusion Backing Layer. Catalysts, 2020, 10, 1319.	3.5	9
258	Selective electro-oxidation of dopamine on Co or Fe supported onto N-doped ketjenblack. Electrochimica Acta, 2022, 409, 139943.	5.2	9
259	Recent Advances on the Development of NiCu Alloy Catalysts for IT-SOFCs. ECS Transactions, 2007, 7, 1685-1693.	0.5	8
260	Degradation of oxygen-depolarized Ag-based gas diffusion electrodes for chlor-alkali cells. Journal of Applied Electrochemistry, 2008, 38, 1637-1646.	2.9	8
261	Evaluation of Palladium-based electrocatalyst for oxygen reduction and hydrogen oxidation in intermediate temperature polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2014, 39, 21581-21587.	7.1	8
262	Facile synthesis of Zr- and Ta-based catalysts for the oxygen reduction reaction. Chinese Journal of Catalysis, 2015, 36, 484-489.	14.0	8
263	Influence of Nitrogen and Sulfur Doping of Carbon Xerogels on the Performance and Stability of Counter Electrodes in Dye Sensitized Solar Cells. Catalysts, 2022, 12, 264.	3.5	8
264	Influence of Operating Conditions on the Direct Electrochemical Oxidation of Methane on Cermet Based Anodes. Fuel Cells, 2006, 6, 137-140.	2.4	7
265	Preparation and Application of IrO2/Pt Electrocatalyst for Regenerative Fuel Cells. ECS Transactions, 2007, 11, 191-196.	0.5	7
266	Enhancing Oxygen Reduction Reaction Catalytic Activity Using a Subâ€ 5 toichiometric CaTiO 3â^' δAdditive. ChemElectroChem, 2019, 6, 5941-5945.	3.4	7
267	Sucrose-Assisted Solution Combustion Synthesis of Doped Strontium Ferrate Perovskite-Type Electrocatalysts: Primary Role of the Secondary Fuel. Catalysts, 2020, 10, 134.	3.5	7
268	Water Splitting with Enhanced Efficiency Using a Nickel-Based Co-Catalyst at a Cupric Oxide Photocathode. Catalysts, 2021, 11, 1363.	3.5	7
269	Insights on the electrochemical performance of indirect internal reforming of biogas into a solid oxide fuel cell. Electrochimica Acta, 2022, 409, 139940.	5.2	7
270	Electrochemical deposition of iron sulphide thin films on tin oxide substrates. Materials Chemistry and Physics, 1993, 34, 263-269.	4.0	6

#	Article	IF	CITATIONS
271	Effect of platinum particle size on the performance of PAFC O2 reduction electrocatalysts. International Journal of Hydrogen Energy, 1994, 19, 165-168.	7.1	6
272	The role of CuSn alloy in the co-electrolysis of CO2 and H2O through an intermediate temperature solid oxide electrolyser. Journal of Energy Storage, 2020, 27, 100820.	8.1	6
273	New Insights into Properties of Methanol Transport in Sulfonated Polysulfone Composite Membranes for Direct Methanol Fuel Cells. Polymers, 2021, 13, 1386.	4.5	6
274	Reinforced short-side-chain Aquivion® membrane for proton exchange membrane water electrolysis. International Journal of Hydrogen Energy, 2022, 47, 15557-15570.	7.1	6
275	Ageing effects of electrodes in ceramic fuel cells. Journal of the European Ceramic Society, 1998, 18, 113-122.	5.7	5
276	High Temperature Operation of a Solid Polymer Electrolyte Fuel Cell Stack Based on a New Ionomer Membrane. ECS Transactions, 2009, 25, 1999-2007.	0.5	5
277	Enhancement of Oxygen Reduction and Mitigation of Ionomer Dry-Out Using Insoluble Heteropoly Acids in Intermediate Temperature Polymer-Electrolyte Membrane Fuel Cells. Energies, 2015, 8, 7805-7817.	3.1	5
278	Synthesis and physical-chemical characterization of nanocrystalline Ta modified TiO 2 as potential support of electrocatalysts for fuel cells and electrolyzers. International Journal of Hydrogen Energy, 2017, 42, 28011-28021.	7.1	5
279	Influence of Ionomer Content in the Catalytic Layer of MEAs Based on Aquivion® Ionomer. Polymers, 2021, 13, 3832.	4.5	5
280	Natural pyrite-based electrodes for photoelectrochemical applications. Electrochimica Acta, 1993, 38, 123-128.	5.2	4
281	A New Polymorph of the Heteronuclear Cluster Ru4Pt2(CO)18. Journal of Cluster Science, 2001, 12, 293-301.	3.3	4
282	Ni-Modified Perovskite Materials for Solid Oxide Fuel Cell Anodes Fed With Glycerol. ECS Transactions, 2009, 25, 2241-2248.	0.5	4
283	ACâ€Impedance Investigation of Different MEA Configurations for Passiveâ€Mode DMFC Miniâ€&tack Applications. Fuel Cells, 2010, 10, 124-131.	2.4	4
284	Electro-oxidation of CO on Pd black in phosphotungstic acid. Journal of Solid State Electrochemistry, 1999, 3, 205-209.	2.5	3
285	Structural investigation of electrochemically synthesized ZnCuTe thin films. Journal of Solid State Electrochemistry, 2001, 6, 16-20.	2.5	3
286	Polymer-silica composite membranes for Direct Methanol Fuel Cells. Studies in Surface Science and Catalysis, 2001, , 37-45.	1.5	3
287	Mitigation of Carbon Deposits Formation in IT-SOFCs Fed with Dry Methane by Anode Doping with Barium. ECS Transactions, 2009, 25, 2083-2090.	0.5	3
288	Investigation of Carbon Supported Pt and PtCo Electrocatalysts by Low-Energy Ion Scattering and X-ray Photoelectron Spectroscopy: Influence of the Surface Characteristics on Performance and Degradation. ECS Transactions, 2011, 35, 83-91.	0.5	3

#	Article	IF	CITATIONS
289	Electrochemical Behavior of Direct Methanol Fuel Cells Based on Acidic Silica - Sulfonated Polysulfone Composite Membranes. ECS Transactions, 2011, 41, 2003-2009.	0.5	3
290	Bifunctional CuO-Ag/KB Catalyst for the Electrochemical Reduction of CO2 in an Alkaline Solid-State Electrolysis Cell. Catalysts, 2022, 12, 293.	3.5	3
291	Mixed semiconductor materials: Photoelectrochemical behavior of (TiNb)ox at the isoelectric point of the interface. International Journal of Hydrogen Energy, 1990, 15, 557-562.	7.1	2
292	Influence of Ionomer Loading on the Performance of Pt-Ru and Pt-Fe Electrodes Used in DMFCs. ECS Transactions, 2006, 1, 283-291.	0.5	2
293	Nanomaterials for Fuel Cell Technologies. , 0, , 79-109.		2
294	Direct Methanol Fuel Cell Stack Design and Test in the Framework of DURAMET Project. Advances in Science and Technology, 0, , .	0.2	2
295	Ceramic membranes for intermediate temperature solid oxide fuel cells (SOFCs): state of the art and perspectives. , 2014, , 237-265.		2
296	Design of Supported PtCo Electrocatalysts for Pemfcs. ECS Transactions, 2015, 69, 263-272.	0.5	2
297	Ni-based Alloys as Protective Layer for a Conventional Solid Oxide Fuel Cell Fed with Biofuels. ECS Transactions, 2015, 68, 2653-2658.	0.5	2
298	Non platinum-based cathode catalyst systems for direct methanol fuel cells. , 2020, , 289-316.		2
299	The Effect of Ni-Modified LSFCO Promoting Layer on the Gas Produced through Co-Electrolysis of CO2 and H2O at Intermediate Temperatures. Catalysts, 2021, 11, 56.	3.5	2
300	Fuel Flexible Anode for Solid Oxide Fuel Cells: An Electrochemical and Catalytic Study. ECS Transactions, 2011, 35, 1753-1760.	0.5	1
301	Investigation of a PEM Water Electrolyzer Based on a Sulfonated Polysulfone Membrane. ECS Transactions, 2013, 58, 615-620.	0.5	1
302	Composite Anode Catalysts Based on PtRu and Metal Oxide Nanoparticles for DMFCs. Advances in Science and Technology, 0, , .	0.2	1
303	Electrocatalysis of Direct Methanol and Ethanol Oxidation in Polymer Electrolyte Fuel Cells. ECS Transactions, 2015, 69, 833-845.	0.5	1
304	Solid oxide fuel cells. , 2016, , 89-114.		1
305	Modifications of Sulfonic Acid-Based Membranes. , 2016, , 5-36.		1
306	Direct Methanol Fuel Cell (DMFC) 2014 1-3		1

Methanol Fuel Cell (DMFC)., 2014, , 1-3.

0

#	Article	IF	CITATIONS
307	Synthesis and sintering of Ce1-xGdxO2-x/2 nanopowders via chemical routes Materials Research Society Symposia Proceedings, 2002, 756, 1.	0.1	0
308	Composite Inorganic Filler Based Electrolyte Membranes for Fuel Cells Applications. Materials Research Society Symposia Proceedings, 2004, 835, K7.1.1.	0.1	0
309	Intermediate Temperature Electrochemical Ceramic Oxygen Generators. Materials Research Society Symposia Proceedings, 2004, 835, K2.9.1.	0.1	0
310	Investigation of Composite Ni-Doped Perovskite Anode for Direct Oxidation of Hydrocarbons. ECS Transactions, 2007, 7, 1761-1767.	0.5	0
311	Planar Structure μDMFCs. ECS Transactions, 2009, 17, 485-489.	0.5	0
312	Development of a Compact PEM Electrolyzer System for Applications with Microdistributed Renewable Sources. ECS Transactions, 2012, 42, 95-100.	0.5	0
313	Solid Oxide Fuel Cells Based on Perovskite Components for Intermediate Temperature Operation. ECS Transactions, 2013, 58, 153-158.	0.5	0
314	Investigation of a Solid Oxide Fuel Cell Coupled to a Tri-reforming Process. ECS Transactions, 2013, 57, 2923-2928.	0.5	0
315	Current SOFC R&D Activities at CNR-ITAE. ECS Transactions, 2013, 57, 429-436.	0.5	0
316	Reliability of an All Perovskite-Based Solid Oxide Fuel Cell. ECS Transactions, 2013, 57, 781-787.	0.5	0
317	Investigation of a Cathodic Bimetallic Catalyst Based on Platinum and Cobalt for Application in Direct Methanol Fuel Cells. ECS Transactions, 2013, 58, 1715-1721.	0.5	0
318	Improved Durability and Cost-Effective Components for New Generation Direct Methanol Fuel Cells - DURAMET Project. Advances in Science and Technology, 0, , .	0.2	0
319	Electrochemical Investigation of a Large SOFC Fed with n-Dodecane Reformate. ECS Transactions, 2015, 68, 2845-2849.	0.5	0
320	Hydrogen production via PEM electrolysis. , 2020, , 241-277.		0
321	International activities in DMFC R&D. , 2005, , 167-187.		0
322	Composite Membrane with Inorganic Fillers: Electrolyser Application. , 2014, , 1-2.		0
323	Electrolyzers. , 2014, , 1-2.		0

324 Electrolyzers. , 2016, , 644-645.

0

#	Article	IF	CITATIONS
325	Composite Membrane with Inorganic Fillers: Electrolyser Application. , 2016, , 432-434.		Ο

Direct Methanol Fuel Cell (DMFC). , 2016, , 568-570.