Eric Bakker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1902267/publications.pdf

Version: 2024-02-01

364 papers 23,831 citations

73 h-index 140 g-index

374 all docs

374 docs citations

times ranked

374

10939 citing authors

#	Article	IF	CITATIONS
1	Detecting Heparin in Whole Blood for Point of Care Anticoagulation Control During Surgery. Chimia, 2022, 67, 350.	0.3	6
2	Ultra-Sensitive Measurement of Ocean pH. Chimia, 2022, 74, 1021.	0.3	0
3	lon–ionophore interactions in polymeric membranes studied by thin layer voltammetry. Sensors and Actuators B: Chemical, 2022, 358, 131428.	4.0	6
4	Recent improvements to the selectivity of extraction-based optical ion sensors. Chemical Communications, 2022, 58, 4279-4287.	2.2	7
5	Solid-Contact Potentiometric Cell with Symmetry. Analytical Chemistry, 2022, 94, 612-617.	3.2	9
6	Taking Earth's Pulse with Low-Cost Sensors. ACS Sensors, 2022, 7, 1613-1613.	4.0	0
7	Speciation of Cu, Cd, Pb and Zn in a contaminated harbor and comparison to environmental quality standards. Journal of Environmental Management, 2022, 317, 115375.	3.8	6
8	Direct Energy Transfer from a pH Glass Electrode to a Liquid Crystal Display. Analytical Chemistry, 2022, 94, 10408-10414.	3.2	6
9	Separating boundary potential changes at thin solid contact ion transfer voltammetric membrane electrodes. Journal of Electroanalytical Chemistry, 2021, 880, 114800.	1.9	14
10	Newly designed gel-integrated nanostructured gold-based interconnected microelectrode arrays for continuous in situ arsenite monitoring in aquatic systems. Sensors and Actuators B: Chemical, 2021, 328, 128996.	4.0	18
11	Potentiometric Sensing. Analytical Chemistry, 2021, 93, 72-102.	3.2	88
12	2021: A Year Starting Full of Hope. ACS Sensors, 2021, 6, 1-2.	4.0	0
13	<i>In Situ</i> Voltammetric Sensor of Potentially Bioavailable Inorganic Mercury in Marine Aquatic Systems Based on Gel-Integrated Nanostructured Gold-Based Microelectrode Arrays. ACS Sensors, 2021, 6, 925-937.	4.0	18
14	Self-Powered Electrochromic Readout of Potentiometric pH Electrodes. Analytical Chemistry, 2021, 93, 4263-4269.	3.2	18
15	Ion-to-electron capacitance of single-walled carbon nanotube layers before and after ion-selective membrane deposition. Mikrochimica Acta, 2021, 188, 149.	2.5	10
16	Colorimetric ratiometry with ion optodes for spatially resolved concentration analysis. Analytica Chimica Acta, 2021, 1154, 338225.	2.6	8
17	Perspectives and Future Directions of the Division of Analytical Sciences of the Swiss Chemical Society. Chimia, 2021, 75, 455-456.	0.3	1
18	Let Us Aim to Develop Sensors, Not Electroanalytical Techniques: The Direct Detection of Dissolved Inorganic Carbon. ACS Sensors, 2021, 6, 2785-2786.	4.0	0

#	Article	IF	CITATIONS
19	Self-Powered Potentiometric Sensors with Memory. ACS Sensors, 2021, 6, 3650-3656.	4.0	11
20	Electronic control of constant potential capacitive readout of ion-selective electrodes for high precision sensing. Sensors and Actuators B: Chemical, 2021, 344, 130282.	4.0	14
21	Ionic strength-independent potentiometric cation concentration sensing on paper using a tetrabutylammonium-based reference electrode. Sensors and Actuators B: Chemical, 2021, 346, 130527.	4.0	9
22	Advanced multichannel submersible probe for autonomous high-resolution in situ monitoring of the cycling of the potentially bioavailable fraction of a range of trace metals. Chemosphere, 2021, 282, 131014.	4.2	11
23	Unbiased Selectivity Coefficients of Potentiometric Sensors Using Thin Membrane Layers. Electroanalysis, 2021, 33, 1225-1232.	1.5	1
24	Dialysis membranes as liquid junction materials: Simplified model based on the phase boundary potential. Journal of Electroanalytical Chemistry, 2021, , 115886.	1.9	2
25	Protamine/heparin optical nanosensors based on solvatochromism. Chemical Science, 2021, 12, 15596-15602.	3.7	11
26	Surfactants for Optode Emulsion Stabilization without Sacrificing Selectivity or Binding Constants. Analytical Chemistry, 2021, 93, 15941-15948.	3.2	8
27	Renewable magnetic ion-selective colorimetric microsensors based on surface modified polystyrene beads. Analytica Chimica Acta, 2020, 1094, 136-141.	2.6	3
28	A Solidâ€State Reference Electrode Based on a Selfâ€Referencing Pulstrode. Angewandte Chemie - International Edition, 2020, 59, 2294-2298.	7.2	24
29	Thin Layer Membrane Systems as Rapid Development Tool for Potentiometric Solid Contact Ionâ€selective Electrodes. Electroanalysis, 2020, 32, 799-804.	1.5	20
30	A Solidâ€State Reference Electrode Based on a Selfâ€Referencing Pulstrode. Angewandte Chemie, 2020, 132, 2314-2318.	1.6	6
31	Emulsion Doping of Ionophores and Ion-Exchangers into Ion-Selective Electrode Membranes. Analytical Chemistry, 2020, 92, 14319-14324.	3.2	6
32	Triumph and Misery of Measurement Science. ACS Sensors, 2020, 5, 2264-2265.	4.0	0
33	A Scientific Journey with Ionophore-based Sensors. Chimia, 2020, 74, 569-576.	0.3	1
34	Self-Powered Potentiometric Sensor Transduction to a Capacitive Electronic Component for Later Readout. ACS Sensors, 2020, 5, 2909-2914.	4.0	16
35	Rapid Constant Potential Capacitive Measurements with Solid-Contact Ion-Selective Electrodes Coupled to Electronic Capacitor. Analytical Chemistry, 2020, 92, 14174-14180.	3.2	23
36	Giants in Sensing: A Virtual Issue to Celebrate Five Years of ACS Sensors. ACS Sensors, 2020, 5, 1249-1250.	4.0	0

#	Article	IF	Citations
37	Optical Sensing with a Potentiometric Sensing Array by Prussian Blue Film Integrated Closed Bipolar Electrodes. Analytical Chemistry, 2020, 92, 9138-9145.	3.2	28
38	Colorimetric absorbance mapping and quantitation on paper-based analytical devices. Lab on A Chip, 2020, 20, 1441-1448.	3.1	39
39	Potentiometric Sensor Array with Multi-Nernstian Slope. Analytical Chemistry, 2020, 92, 2926-2930.	3.2	19
40	Happy 5th Anniversary for ACS Sensors. ACS Sensors, 2020, 5, 1-2.	4.0	0
41	Direct Potentiometric Sensing of Anion Concentration (Not Activity). ACS Sensors, 2020, 5, 313-318.	4.0	10
42	Ultrasensitive Seawater pH Measurement by Capacitive Readout of Potentiometric Sensors. ACS Sensors, 2020, 5, 650-654.	4.0	36
43	Spatial variability of arsenic speciation in the Gironde Estuary: Emphasis on dynamic (potentially) Tj ETQq $1\ 1\ 0.78$ 4	1314 rgBT 0.9	/Overlock
44	Remembering NJ. ACS Sensors, 2020, 5, 887-888.	4.0	O
45	An Ode to You—Reviewer for ACS Sensors. ACS Sensors, 2019, 4, 1964-1964.	4.0	O
46	Equipment-Free Detection of K ⁺ on Microfluidic Paper-Based Analytical Devices Based on Exhaustive Replacement with Ionic Dye in Ion-selective Capillary Sensors. ACS Sensors, 2019, 4, 670-677.	4.0	57
47	Simplified Fabrication for Ion-Selective Optical Emulsion Sensor with Hydrophobic Solvatochromic Dye Transducer: A Cautionary Tale. Analytical Chemistry, 2019, 91, 8973-8978.	3.2	22
48	From Molecular and Emulsified Ion Sensors to Membrane Electrodes: Molecular and Mechanistic Sensor Design. Accounts of Chemical Research, 2019, 52, 1400-1408.	7.6	14
49	Electrogenerated Chemiluminescence for Chronopotentiometric Sensors. Analytical Chemistry, 2019, 91, 4889-4895.	3.2	32
50	Tunable Optical Sensing with PVC-Membrane-Based Ion-Selective Bipolar Electrodes. ACS Sensors, 2019, 4, 1008-1016.	4.0	22
51	Quantification of Colorimetric Data for Paper-Based Analytical Devices. ACS Sensors, 2019, 4, 3093-3101.	4.0	68
52	Equipment-free Detection of K+ on Paper. Chimia, 2019, 73, 944-944.	0.3	0
53	A tunable detection range of ion-selective nano-optodes by controlling solvatochromic dye transducer lipophilicity. Chemical Communications, 2019, 55, 12539-12542.	2.2	16
54	Paper-supported thin-layer ion transfer voltammetry for ion detection. Sensors and Actuators B: Chemical, 2019, 280, 69-76.	4.0	14

#	Article	IF	Citations
55	Potentiometric Sensing. Analytical Chemistry, 2019, 91, 2-26.	3.2	219
56	In Situ Detection of Macronutrients and Chloride in Seawater by Submersible Electrochemical Sensors. Analytical Chemistry, 2018, 90, 4702-4710.	3.2	59
57	lon Transfer Voltammetry in Polyurethane Thin Films Based on Functionalised Cationic [6]Helicenes for Carbonate Detection. Electroanalysis, 2018, 30, 1378-1385.	1.5	18
58	An Exciting Year Ahead for ACS Sensors. ACS Sensors, 2018, 3, 1-2.	4.0	1
59	Ion Transfer Voltammetry at Thin Films Based on Functionalized Cationic [6]Helicenes. Electroanalysis, 2018, 30, 650-657.	1.5	21
60	Surfaceâ€Doped Polystyrene Microsensors Containing Lipophilic Solvatochromic Dye Transducers. Chemistry - A European Journal, 2018, 24, 7921-7925.	1.7	15
61	Selective Distance-Based K ⁺ Quantification on Paper-Based Microfluidics. Analytical Chemistry, 2018, 90, 4894-4900.	3.2	99
62	Fluorinated tripodal receptors for potentiometric chloride detection in biological fluids. Biosensors and Bioelectronics, 2018, 99, 70-76.	5.3	29
63	Electron Hopping between Fe 3 d States in Ethynylferroceneâ€doped Poly(Methyl) Tj ETQq1 1 0.784314 rgl	BT <u> Q</u> verloo	ck <u>1</u> 0 Tf 50 4
64	Agarose hydrogel containing immobilized pH buffer microemulsion without increasing permselectivity. Talanta, 2018, 177, 191-196.	2.9	2
65	Describing Ion Exchange at Membrane Electrodes for Ions of Different Charge. Electroanalysis, 2018, 30, 633-640.	1.5	7
66	Lightâ€Addressable Ion Sensing for Real‶ime Monitoring of Extracellular Potassium. Angewandte Chemie, 2018, 130, 17043-17047.	1.6	3
67	Lightâ€Addressable Ion Sensing for Realâ€Time Monitoring of Extracellular Potassium. Angewandte Chemie - International Edition, 2018, 57, 16801-16805.	7.2	31
68	In-Line Seawater Phosphate Detection with Ion-Exchange Membrane Reagent Delivery. ACS Sensors, 2018, 3, 2455-2462.	4.0	17
69	So, You Have a Great New Sensor. How Will You Validate It?. ACS Sensors, 2018, 3, 1431-1431.	4.0	13
70	Fast Potentiometric CO ₂ Sensor for High-Resolution in Situ Measurements in Fresh Water Systems. Environmental Science & Environmental Scien	4.6	19
71	Electrochemically Switchable Polymeric Membrane Ion-Selective Electrodes. Analytical Chemistry, 2018, 90, 7591-7599.	3.2	26
72	Colorimetric Readout for Potentiometric Sensors with Closed Bipolar Electrodes. Analytical Chemistry, 2018, 90, 6376-6379.	3.2	41

#	Article	IF	Citations
73	First Impact Factor for ACS Sensors – 5.711. ACS Sensors, 2018, 3, 1218-1219.	4.0	O
74	Ion-Selective Electrodes., 2018,, 231-231.		3
75	Colorimetric ionophore-based coextraction titrimetry of potassium ions. Analytica Chimica Acta, 2018, 1029, 37-43.	2.6	7
76	Ionâ€exchange Microemulsions for Eliminating Dilute Interferences in Potentiometric Determinations. Electroanalysis, 2018, 30, 2462-2466.	1.5	5
77	Nucleic acid hybridization on an electrically reconfigurable network of gold-coated magnetic nanoparticles enables microRNA detection in blood. Nature Nanotechnology, 2018, 13, 1066-1071.	15.6	244
78	Capacitive Model for Coulometric Readout of Ion-Selective Electrodes. Analytical Chemistry, 2018, 90, 8700-8707.	3.2	59
79	Welcome to the First Anniversary Issue of <i>ACS Sensors</i> . ACS Sensors, 2017, 2, 1-2.	4.0	0
80	Electrochemical Mechanism of Ferrocene-Based Redox Molecules in Thin Film Membrane Electrodes. Electrochimica Acta, 2017, 238, 357-367.	2.6	36
81	Ionophore-Based Titrimetric Detection of Alkali Metal Ions in Serum. ACS Sensors, 2017, 2, 606-612.	4.0	25
82	Reflecting on How <i>ACS Sensors</i> Can Help Advance the Field of Sensing. ACS Sensors, 2017, 2, 455-456.	4.0	0
83	Robust Solid-Contact Ion Selective Electrodes for High-Resolution <i>In Situ</i> Measurements in Fresh Water Systems. Environmental Science and Technology Letters, 2017, 4, 286-291.	3.9	46
84	Voltammetric Thin-Layer Ionophore-Based Films: Part 2. Semi-Empirical Treatment. Analytical Chemistry, 2017, 89, 595-602.	3.2	19
85	In-Line Acidification for Potentiometric Sensing of Nitrite in Natural Waters. Analytical Chemistry, 2017, 89, 571-575.	3.2	39
86	Voltammetric Thin-Layer Ionophore-Based Films: Part 1. Experimental Evidence and Numerical Simulations. Analytical Chemistry, 2017, 89, 586-594.	3.2	39
87	In Situ Detection of Species Relevant to the Carbon Cycle in Seawater with Submersible Potentiometric Probes. Environmental Science and Technology Letters, 2017, 4, 410-415.	3.9	59
88	Should There Be Minimum Information Reporting Standards for Sensors?. ACS Sensors, 2017, 2, 1377-1379.	4.0	3
89	August 2017: Two Years of Submissions. ACS Sensors, 2017, 2, 1068-1069.	4.0	0
90	Celebrating Electrochemical Sensors at the 2017 Matrafured Meeting. ACS Sensors, 2017, 2, 854-854.	4.0	0

#	Article	IF	CITATIONS
91	Electrochemical ion transfer mediated by a lipophilic Os(<scp>ii</scp>)/Os(<scp>iii</scp>) dinonyl bipyridyl probe incorporated in thin film membranes. Chemical Communications, 2017, 53, 10757-10760.	2.2	19
92	Time-Dependent Determination of Unbiased Selectivity Coefficients of Ion-Selective Electrodes for Multivalent Ions. Analytical Chemistry, 2017, 89, 13441-13448.	3.2	6
93	Overcoming Pitfalls in Boundary Elements Calculations with Computer Simulations of Ion Selective Membrane Electrodes. Analytical Chemistry, 2017, 89, 7828-7831.	3.2	17
94	Environmental water analysis with membrane electrodes. Current Opinion in Electrochemistry, 2017, 3, 97-105.	2.5	36
95	Can Calibration-Free Sensors Be Realized?. ACS Sensors, 2016, 1, 838-841.	4.0	45
96	Evidence of double layer/capacitive charging in carbon nanomaterial-based solid contact polymeric ion-selective electrodes. Chemical Communications, 2016, 52, 9703-9706.	2.2	33
97	Complexometric titrations: new reagents and concepts to overcome old limitations. Analyst, The, 2016, 141, 4252-4261.	1.7	23
98	Polyurethane Ionophore-Based Thin Layer Membranes for Voltammetric Ion Activity Sensing. Analytical Chemistry, 2016, 88, 5649-5654.	3.2	53
99	Should <i>ACS Sensors </i> Publish Papers on Fluorescent Sensors for Metal Ions at All?. ACS Sensors, 2016, 1, 324-325.	4.0	2
100	Wearable Sensors – An Exciting Area of Research for Sensor Scientists. ACS Sensors, 2016, 1, 834-834.	4.0	3
101	Reversible pH-independent optical potassium sensor with lipophilic solvatochromic dye transducer on surface modified microporous nylon. Chemical Communications, 2016, 52, 14254-14257.	2.2	25
102	Electrochemical Ion Transfer with Thin Films of Poly(3-octylthiophene). Analytical Chemistry, 2016, 88, 6939-6946.	3.2	27
103	Selective Imaging of Late Endosomes with a pH-Sensitive Diazaoxatriangulene Fluorescent Probe. Journal of the American Chemical Society, 2016, 138, 1752-1755.	6.6	77
104	Electroanalysis with Membrane Electrodes and Liquid–Liquid Interfaces. Analytical Chemistry, 2016, 88, 395-413.	3.2	92
105	Phenytoin speciation with potentiometric and chronopotentiometric ion-selective membrane electrodes. Biosensors and Bioelectronics, 2016, 79, 114-120.	5.3	15
106	Alkalinization of Thin Layer Samples with a Selective Proton Sink Membrane Electrode for Detecting Carbonate by Carbonate-Selective Electrodes. Analytical Chemistry, 2016, 88, 3444-3448.	3.2	12
107	Welcome to <i>ACS Sensors</i> i>. ACS Sensors, 2016, 1, 1-2.	4.0	0
108	What Should an <i>ACS Sensors</i> Paper Look Like?. ACS Sensors, 2016, 1, 102-103.	4.0	0

#	Article	IF	Citations
109	Determination of p <i>K</i> _a Values of Hydrophobic Colorimetric pH Sensitive Probes in Nanospheres. Analytical Chemistry, 2016, 88, 3015-3018.	3.2	30
110	Flow Chronopotentiometry with Ion-Selective Membranes for Cation, Anion, and Polyion Detection. Analytical Chemistry, 2016, 88, 3945-3952.	3.2	8
111	Ion-Selective Optical Nanosensors Based on Solvatochromic Dyes of Different Lipophilicity: From Bulk Partitioning to Interfacial Accumulation. ACS Sensors, 2016, 1, 516-520.	4.0	46
112	lonophore-Based Voltammetric Ion Activity Sensing with Thin Layer Membranes. Analytical Chemistry, 2016, 88, 1654-1660.	3.2	57
113	Local Acidification of Membrane Surfaces for Potentiometric Sensing of Anions in Environmental Samples. ACS Sensors, 2016, 1, 48-54.	4.0	26
114	Potassium ion-selective fluorescent and pH independent nanosensors based on functionalized polyether macrocycles. Chemical Science, 2016, 7, 525-533.	3.7	56
115	Thin‣ayer Chemical Modulations by a Combined Selective Proton Pump and pH Probe for Direct Alkalinity Detection. Angewandte Chemie, 2015, 127, 8228-8231.	1.6	16
116	Thin‣ayer Chemical Modulations by a Combined Selective Proton Pump and pH Probe for Direct Alkalinity Detection. Angewandte Chemie - International Edition, 2015, 54, 8110-8113.	7.2	25
117	Potentiometric sensing array for monitoring aquatic systems. Environmental Sciences: Processes and Impacts, 2015, 17, 906-914.	1.7	30
118	Characterization of Salophen Co(III) Acetate Ionophore for Nitrite Recognition. Electrochimica Acta, 2015, 179, 16-23.	2.6	8
119	Potassium Sensitive Optical Nanosensors Containing Voltage Sensitive Dyes. Chimia, 2015, 69, 196.	0.3	5
120	Thin Layer Samples Controlled by Dynamic Electrochemistry. Chimia, 2015, 69, 203.	0.3	18
121	GalvaPot, a custom-made combination galvanostat/potentiostat and high impedance potentiometer for decentralized measurements of ionophore-based electrodes. Sensors and Actuators B: Chemical, 2015, 207, 631-639.	4.0	10
122	Ion selective optodes: from the bulk to the nanoscale. Analytical and Bioanalytical Chemistry, 2015, 407, 3899-3910.	1.9	125
123	Ion-Selective Optode Nanospheres as Heterogeneous Indicator Reagents in Complexometric Titrations. Analytical Chemistry, 2015, 87, 2827-2831.	3.2	18
124	Paper-Based Thin-Layer Coulometric Sensor for Halide Determination. Analytical Chemistry, 2015, 87, 1981-1990.	3.2	82
125	Thin Layer Coulometry of Nitrite with Ionâ€Selective Membranes. Electroanalysis, 2015, 27, 609-615.	1.5	10
126	Concanavalin A electrochemical sensor based on the surface blocking principle at an ion-selective polymeric membrane. Mikrochimica Acta, 2015, 182, 129-137.	2.5	20

#	Article	IF	CITATIONS
127	Anion-Exchange Nanospheres as Titration Reagents for Anionic Analytes. Analytical Chemistry, 2015, 87, 8347-8352.	3.2	9
128	Antifouling membrane integrated renewable gold microelectrode for in situ detection of As(<scp>iii</scp>). Analytical Methods, 2015, 7, 7503-7510.	1.3	10
129	Tandem Electrochemical Desalination–Potentiometric Nitrate Sensing for Seawater Analysis. Analytical Chemistry, 2015, 87, 8084-8089.	3.2	47
130	Thin Layer Ionophore-Based Membrane for Multianalyte Ion Activity Detection. Analytical Chemistry, 2015, 87, 7729-7737.	3.2	78
131	Direct arsenic(<scp>iii</scp>) sensing by a renewable gold plated Ir-based microelectrode. Analyst, The, 2015, 140, 3526-3534.	1.7	34
132	Charged Solvatochromic Dyes as Signal Transducers in pH Independent Fluorescent and Colorimetric Ion Selective Nanosensors. Analytical Chemistry, 2015, 87, 9954-9959.	3.2	62
133	Determination of Effective Stability Constants of Ion-Carrier Complexes in Ion Selective Nanospheres with Charged Solvatochromic Dyes. Analytical Chemistry, 2015, 87, 11587-11591.	3.2	24
134	All-Solid-State Potentiometric Sensors with a Multiwalled Carbon Nanotube Inner Transducing Layer for Anion Detection in Environmental Samples. Analytical Chemistry, 2015, 87, 8640-8645.	3.2	130
135	A Miniature Wastewater Cleaning Plant to Demonstrate Primary Treatment in the Classroom. Journal of Chemical Education, 2015, 92, 1889-1891.	1.1	4
136	Coulometric Calcium Pump for Thin Layer Sample Titrations. Analytical Chemistry, 2015, 87, 10125-10130.	3.2	13
137	Transportation and Accumulation of Redox Active Species at the Buried Interfaces of Plasticized Membrane Electrodes. Langmuir, 2015, 31, 10599-10609.	1.6	13
138	<i>In Situ</i> Ammonium Profiling Using Solid-Contact Ion-Selective Electrodes in Eutrophic Lakes. Analytical Chemistry, 2015, 87, 11990-11997.	3.2	53
139	Solvatochromic Dyes as pH-Independent Indicators for Ionophore Nanosphere-Based Complexometric Titrations. Analytical Chemistry, 2015, 87, 12318-12323.	3.2	20
140	Environmental Sensing of Aquatic Systems at the University of Geneva. Chimia, 2014, 68, 772-777.	0.3	1
141	Ionophore-Based Optical Sensors. Annual Review of Analytical Chemistry, 2014, 7, 483-512.	2.8	88
142	Nitrite‧elective Electrode Based On Cobalt(II) <i>tert</i> å€Butyl‧alophen Ionophore. Electroanalysis, 2014, 26, 473-480.	1.5	19
143	Potentiometric Sensors. Nanostructure Science and Technology, 2014, , 193-238.	0.1	7
144	Chemical Modification of Polymer Ionâ€Selective Membrane Electrode Surfaces. Electroanalysis, 2014, 26, 1121-1131.	1.5	29

#	Article	IF	Citations
145	Enhancing ion-selective polymeric membrane electrodes by instrumental control. TrAC - Trends in Analytical Chemistry, 2014, 53, 98-105.	5.8	62
146	Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nature Chemistry, 2014, 6, 202-207.	6.6	153
147	Potentiometric Response from Ion-Selective Nanospheres with Voltage-Sensitive Dyes. Journal of the American Chemical Society, 2014, 136, 16465-16468.	6.6	36
148	Exhaustive Thin-Layer Cyclic Voltammetry for Absolute Multianalyte Halide Detection. Analytical Chemistry, 2014, 86, 11387-11395.	3.2	31
149	Ionophore-based ion-exchange emulsions as novel class of complexometric titration reagents. Chemical Communications, 2014, 50, 12659-12661.	2.2	22
150	Potassium-selective optical microsensors based on surface modified polystyrene microspheres. Chemical Communications, 2014, 50, 4592-4595.	2.2	32
151	Creating electrochemical gradients by light: from bio-inspired concepts to photoelectric conversion. Physical Chemistry Chemical Physics, 2014, 16, 19781-19789.	1.3	25
152	pH Independent Nano-Optode Sensors Based on Exhaustive Ion-Selective Nanospheres. Analytical Chemistry, 2014, 86, 2853-2856.	3.2	75
153	Chronopotentiometry of pure electrolytes with anion-exchange donnan exclusion membranes. Journal of Electroanalytical Chemistry, 2014, 731, 100-106.	1.9	7
154	lonophore-Based Ion-Selective Optical NanoSensors Operating in Exhaustive Sensing Mode. Analytical Chemistry, 2014, 86, 8770-8775.	3.2	53
155	Chronopotentiometric Carbonate Detection with All-Solid-State Ionophore-Based Electrodes. Analytical Chemistry, 2014, 86, 6307-6314.	3.2	30
156	Camping Burner-Based Flame Emission Spectrometer for Classroom Demonstrations. Journal of Chemical Education, 2014, 91, 1655-1660.	1.1	11
157	Visible light induced photoacid generation within plasticized PVC membranes for copper (II) ion extraction. Sensors and Actuators B: Chemical, 2014, 204, 807-810.	4.0	4
158	Photoelectric Conversion Based on Proton-Coupled Electron Transfer Reactions. Journal of the American Chemical Society, 2014, 136, 7857-7860.	6.6	28
159	Evaluation of Egorov's Improved Separate Solution Method for Determination of Low Selectivity Coefficients by Numerical Simulation. Analytical Chemistry, 2014, 86, 8021-8024.	3.2	18
160	A low-cost thin layer coulometric microfluidic device based on an ion-selective membrane for calcium determination. Analyst, The, 2014, 139, 48-51.	1.7	17
161	Light-Controlled Reversible Release and Uptake of Potassium Ions from Ion-Exchanging Nanospheres. ACS Applied Materials & Diterfaces, 2014, 6, 2666-2670.	4.0	28
162	Direct Alkalinity Detection with Ion-Selective Chronopotentiometry. Analytical Chemistry, 2014, 86, 6461-6470.	3.2	24

#	Article	IF	Citations
163	Counter electrode based on an ion-exchanger Donnan exclusion membrane for bioelectroanalysis. Biosensors and Bioelectronics, 2014, 61, 64-69.	5.3	7
164	Thin Layer Coulometry Based on Ion-Exchanger Membranes for Heparin Detection in Undiluted Human Blood. Analytical Chemistry, 2014, 86, 1357-1360.	3.2	21
165	Advancing Schwarzenbach's Complexometry: Nano-scale Titration Reagents Based on Heterogeneous Reactions. Chimia, 2014, 68, 899.	0.3	0
166	Transport and accumulation of ferrocene tagged poly(vinyl chloride) at the buried interfaces of plasticized membrane electrodes. Analyst, The, 2013, 138, 4266.	1.7	13
167	Non-Severinghaus Potentiometric Dissolved CO ₂ Sensor with Improved Characteristics. Analytical Chemistry, 2013, 85, 1332-1336.	3.2	49
168	Molecularly Imprinted Polymer Microspheres Containing Photoswitchable Spiropyran-Based Binding Sites. ACS Applied Materials & Enterfaces, 2013, 5, 8537-8545.	4.0	57
169	All solid state chronopotentiometric ion-selective electrodes based on ferrocene functionalized PVC. Journal of Electroanalytical Chemistry, 2013, 709, 118-125.	1.9	22
170	Ultrasmall Fluorescent Ion-Exchanging Nanospheres Containing Selective Ionophores. Analytical Chemistry, 2013, 85, 9932-9938.	3.2	68
171	Dynamic electrochemistry with ionophore based ion-selective membranes. RSC Advances, 2013, 3, 25461.	1.7	49
172	Oxazinoindolines as Fluorescent H ⁺ Turn-On Chromoionophores For Optical and Electrochemical Ion Sensors. Analytical Chemistry, 2013, 85, 7434-7440.	3.2	26
173	PVCâ€Based Ionâ€Selective Electrodes with Enhanced Biocompatibility by Surface Modification with "Click―Chemistry. Electroanalysis, 2013, 25, 1840-1846.	1.5	34
174	Evidence for a Surface Confined Ion-to-Electron Transduction Reaction in Solid-Contact Ion-Selective Electrodes Based on Poly(3-octylthiophene). Analytical Chemistry, 2013, 85, 10495-10502.	3.2	46
175	A Label-Free Potentiometric Sensor Principle for the Detection of Antibody–Antigen Interactions. Analytical Chemistry, 2013, 85, 4770-4776.	3.2	45
176	Potentiometric Sensors with Ion-Exchange Donnan Exclusion Membranes. Analytical Chemistry, 2013, 85, 6208-6212.	3.2	50
177	Photoresponsive Ion Extraction/Release Systems: Dynamic Ion Optodes for Calcium and Sodium Based on Photochromic Spiropyran. Analytical Chemistry, 2013, 85, 2983-2990.	3.2	34
178	Reversible Photodynamic Chloride-Selective Sensor Based on Photochromic Spiropyran. Journal of the American Chemical Society, 2012, 134, 16929-16932.	6.6	136
179	Direct Detection of Acidity, Alkalinity, and pH with Membrane Electrodes. Analytical Chemistry, 2012, 84, 10165-10169.	3.2	34
180	Reversible Sensing of the Anticoagulant Heparin with Protamine Permselective Membranes. Angewandte Chemie - International Edition, 2012, 51, 12575-12578.	7.2	62

#	Article	IF	Citations
181	Detection Limits of Thin Layer Coulometry with Ionophore Based Ion-Selective Membranes. Analytical Chemistry, 2012, 84, 8038-8044.	3.2	25
182	Interference Compensation for Thin Layer Coulometric Ion-Selective Membrane Electrodes by the Double Pulse Technique. Analytical Chemistry, 2012, 84, 1327-1335.	3.2	18
183	Direct Optical Carbon Dioxide Sensing Based on a Polymeric Film Doped with a Selective Molecular Tweezer-Type Ionophore. Analytical Chemistry, 2012, 84, 3163-3169.	3.2	47
184	Photodynamic ion sensor systems with spiropyran: photoactivated acidity changes in plasticized poly(vinyl chloride). Chemical Communications, 2012, 48, 5662.	2.2	31
185	Electrogenerated Chemiluminescence for Potentiometric Sensors. Journal of the American Chemical Society, 2012, 134, 205-207.	6.6	73
186	Pulsed chronopotentiometric membrane electrodes based on plasticized poly(vinyl chloride) with covalently bound ferrocene functionalities as solid contact transducer. Pure and Applied Chemistry, 2012, 84, 2045-2054.	0.9	9
187	Coulometric Sodium Chloride Removal System with Nafion Membrane for Seawater Sample Treatment. Analytical Chemistry, 2012, 84, 6158-6165.	3.2	38
188	Thin layer coulometric determination of nitrate in fresh waters. Analytica Chimica Acta, 2012, 744, 39-44.	2.6	36
189	In situ surface functionalization of plasticized poly(vinyl chloride) membranes by â€~click chemistry'. Journal of Materials Chemistry, 2012, 22, 12796.	6.7	26
190	Ionophore-based ion optodes without a reference ion: electrogenerated chemiluminescence for potentiometric sensors. Analyst, The, 2012, 137, 4988.	1.7	13
191	Direct Ion Speciation Analysis with Ion-Selective Membranes Operated in a Sequential Potentiometric/Time Resolved Chronopotentiometric Sensing Mode. Analytical Chemistry, 2012, 84, 8813-8821.	3.2	37
192	Towards Ionâ€Selective Membranes with Electrogenerated Chemiluminescence Detection: Visualizing Selective Ru(bpy) ₃ ²⁺ Transport Across a Plasticized Poly(vinyl chloride) Membrane. Electroanalysis, 2012, 24, 61-68.	1.5	3
193	Membrane Response Model for Ion-Selective Electrodes Operated by Controlled-Potential Thin-Layer Coulometry. Analytical Chemistry, 2011, 83, 486-493.	3.2	41
194	Chemical Kinetics of Gold Nanorod Growth in Aqueous CTAB Solutions. Crystal Growth and Design, 2011, 11, 3375-3380.	1.4	77
195	Water uptake in the hydrophilic poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) solid-contact of all-solid-state polymeric ion-selective electrodes. Analyst, The, 2011, 136, 3252.	1.7	32
196	Electrogenerated chemiluminescence triggered by electroseparation of Ru(bpy)32+ across a supported liquid membrane. Chemical Communications, 2011, 47, 11644.	2,2	9
197	Advancing Membrane Electrodes and Optical Ion Sensors. Chimia, 2011, 65, 141.	0.3	16
198	Thin layer coulometry ion sensing protocol with potassium-selective membrane electrodes. Electrochimica Acta, 2011, 56, 10359-10363.	2.6	10

#	Article	IF	Citations
199	Advances in Potentiometry. Electroanalytical Chemistry, A Series of Advances, 2011, , 1-74.	1.7	5
200	Generalized selectivity description for polymeric ion-selective electrodes based on the phase boundary potential model. Journal of Electroanalytical Chemistry, 2010, 639, 1-7.	1.9	28
201	Assessing ion-exchange properties and purity of lipophilic electrolytes by potentiometry and spectrophotometry. Electrochemistry Communications, 2010, 12, 110-113.	2.3	3
202	Potentiometric determination of coextraction constants of potassium salts in ion-selective electrodes utilizing a nitrobenzene liquid membrane phase. Analytica Chimica Acta, 2010, 683, 92-95.	2.6	3
203	Background current elimination in thin layer ion-selective membrane coulometry. Electrochemistry Communications, 2010, 12, 1195-1198.	2.3	30
204	An Acyclic Trialkylamine Virtually Planar at Nitrogen. Some Chemical Consequences of Nitrogen Planarity. Journal of Organic Chemistry, 2010, 75, 4472-4479.	1.7	21
205	Thin Layer Coulometry with Ionophore Based Ion-Selective Membranes. Analytical Chemistry, 2010, 82, 4537-4542.	3.2	70
206	Amplified potentiometric transduction of DNA hybridization using ion-loaded liposomes. Analyst, The, 2010, 135, 1618.	1.7	36
207	Synchrotron Radiation/Fourier Transform-Infrared Microspectroscopy Study of Undesirable Water Inclusions in Solid-Contact Polymeric Ion-Selective Electrodes. Analytical Chemistry, 2010, 82, 6203-6207.	3.2	27
208	Ferrocene Bound Poly(vinyl chloride) as Ion to Electron Transducer in Electrochemical Ion Sensors. Analytical Chemistry, 2010, 82, 6887-6894.	3.2	54
209	Synthesis and characterization of high-integrity solid-contact polymeric ion sensors. Journal of Solid State Electrochemistry, 2009, 13, 137-148.	1.2	12
210	Real-time probing of the growth dynamics of nanoparticles using potentiometric ion-selective electrodes. Electrochemistry Communications, 2009, 11, 1964-1967.	2.3	13
211	Flash chronopotentiometric sensing of the polyions protamine and heparin at ion-selective membranes. Analytical Biochemistry, 2009, 386, 276-281.	1.1	22
212	Measurement of total calcium by flash chronopotentiometry at polymer membrane ion-selective electrodes. Analytica Chimica Acta, 2009, 648, 240-245.	2.6	26
213	Ion Channel Mimetic Chronopotentiometric Polymeric Membrane Ion Sensor for Surface-Confined Protein Detection. Langmuir, 2009, 25, 568-573.	1.6	36
214	High-Temperature Potentiometry: Modulated Response of Ion-Selective Electrodes During Heat Pulses. Analytical Chemistry, 2009, 81, 10290-10294.	3.2	18
215	Limitations of Current Polarization for Lowering the Detection Limit of Potentiometric Polymeric Membrane Sensors. Analytical Chemistry, 2009, 81, 3592-3599.	3.2	32
216	Thin layer electrochemical extraction of non-redoxactive cations with an anion-exchanging conducting polymer overlaid with a selective membrane. Chemical Communications, 2009, , 5260.	2.2	44

#	Article	IF	Citations
217	Operational Limits of Controlled Current Coulometry with Ionâ€Selective Polymeric Membranes. Electroanalysis, 2008, 20, 225-232.	1.5	11
218	Ernö Pretsch, 65 Years. Electroanalysis, 2008, 20, 223-224.	1.5	1
219	Reversible detection of proteases and their inhibitors by a pulsed chronopotentiometric polyion-sensitive electrode. Analytical Biochemistry, 2008, 374, 366-370.	1.1	15
220	Phosphate-selective fluorescent sensing microspheres based on uranyl salophene ionophores. Analytica Chimica Acta, 2008, 614, 77-84.	2.6	41
221	Nanoscale potentiometry. TrAC - Trends in Analytical Chemistry, 2008, 27, 612-618.	5.8	77
222	Potentiometric Detection of DNA Hybridization. Journal of the American Chemical Society, 2008, 130, 410-411.	6.6	101
223	Aptamer-Based Potentiometric Measurements of Proteins Using Ion-Selective Microelectrodes. Analytical Chemistry, 2008, 80, 707-712.	3.2	140
224	Beyond potentiometry: Robust electrochemical ion sensor concepts in view of remote chemical sensing. Talanta, 2008, 75, 629-635.	2.9	43
225	Evidence of a water layer in solid-contact polymeric ion sensors. Physical Chemistry Chemical Physics, 2008, 10, 73-76.	1.3	106
226	Electrochemical Sample Matrix Elimination for Trace-Level Potentiometric Detection with Polymeric Membrane Ion-Selective Electrodes. Analytical Chemistry, 2008, 80, 6114-6118.	3.2	40
227	Elimination of Undesirable Water Layers in Solid-Contact Polymeric Ion-Selective Electrodes. Analytical Chemistry, 2008, 80, 6731-6740.	3.2	134
228	New trends in ion-selective electrodes. , 2008, , 71-114.		7
229	Backside Calibration Chronopotentiometry: Using Current to Perform Ion Measurements by Zeroing the Transmembrane Ion Flux. Analytical Chemistry, 2008, 80, 7516-7523.	3.2	13
230	Direct Sensing of Total Acidity by Chronopotentiometric Flash Titrations at Polymer Membrane Ion-Selective Electrodes. Analytical Chemistry, 2008, 80, 3743-3750.	3.2	49
231	Modern directions for potentiometric sensors. Journal of the Brazilian Chemical Society, 2008, 19, 621-629.	0.6	46
232	Multicolor Quantum Dot Encoding for Polymeric Particle-Based Optical Ion Sensors. Analytical Chemistry, 2007, 79, 3716-3723.	3.2	52
233	Sensitivity and Working Range of Backside Calibration Potentiometry. Analytical Chemistry, 2007, 79, 8705-8711.	3.2	13
234	Fluorescent microsphere fiber optic microsensor array for direct iodide detection at low picomolar concentrations. Analyst, The, 2007, 132, 268.	1.7	25

#	Article	IF	CITATIONS
235	Multiplexed Flow Cytometric Sensing of Blood Electrolytes in Physiological Samples Using Fluorescent Bulk Optode Microspheres. Analytical Chemistry, 2007, 79, 9505-9512.	3.2	24
236	Backside Calibration Potentiometry:Â Ion Activity Measurements with Selective Supported Liquid Membranes by Calibrating from the Inner Side of the Membrane. Analytical Chemistry, 2007, 79, 632-638.	3.2	28
237	Kinetic Modulation of Pulsed Chronopotentiometric Polymeric Membrane Ion Sensors by Polyelectrolyte Multilayers. Analytical Chemistry, 2007, 79, 7154-7160.	3.2	14
238	Potentiometric Immunoassay with Quantum Dot Labels. Analytical Chemistry, 2007, 79, 5107-5110.	3.2	84
239	Modern Potentiometry. Angewandte Chemie - International Edition, 2007, 46, 5660-5668.	7.2	282
240	Guidelines for Improving the Lower Detection Limit of Ion-Selective Electrodes: A Systematic Approach. Electroanalysis, 2007, 19, 144-154.	1.5	73
241	Selectivity enhancement of anion-responsive electrodes by pulsed chronopotentiometry. Analytica Chimica Acta, 2007, 583, 190-196.	2.6	32
242	Absorbance characterization of microsphere-based ion-selective optodes. Analytica Chimica Acta, 2007, 596, 195-200.	2.6	16
243	Polymerized Nile Blue derivatives for plasticizer-free fluorescent ion optode microsphere sensors. Analytica Chimica Acta, 2007, 599, 124-133.	2.6	33
244	Solid-contact potentiometric polymer membrane microelectrodes for the detection of silver ions at the femtomole level. Sensors and Actuators B: Chemical, 2007, 121, 135-141.	4.0	72
245	Potentiometry at Trace Levels in Confined Samples:  Ion-Selective Electrodes with Subfemtomole Detection Limits. Journal of the American Chemical Society, 2006, 128, 8154-8155.	6.6	93
246	Selective coulometric release of ions from ion selective polymeric membranes for calibration-free titrations. Analyst, The, 2006, 131, 895.	1.7	40
247	Calcium Pulstrodes with 10-Fold Enhanced Sensitivity for Measurements in the Physiological Concentration Range. Analytical Chemistry, 2006, 78, 2744-2751.	3.2	50
248	Potentiometric Biosensing of Proteins with Ultrasensitive Ion-Selective Microelectrodes and Nanoparticle Labels. Journal of the American Chemical Society, 2006, 128, 13676-13677.	6.6	151
249	Solid Contact Potentiometric Sensors for Trace Level Measurements. Analytical Chemistry, 2006, 78, 1318-1322.	3.2	197
250	Recentes avanços e novas perspectivas dos eletrodos Ãon-seletivos. Quimica Nova, 2006, 29, 1094-1100.	0.3	2
251	Novel potentiometric and optical silver ion-selective sensors with subnanomolar detection limits. Analytica Chimica Acta, 2006, 572, 1-10.	2.6	90
252	Electrochemical Sensors. Analytical Chemistry, 2006, 78, 3965-3984.	3.2	389

#	Article	IF	CITATIONS
253	Approaches to Improving the Lower Detection Limit of Polymeric Membrane Ion-Selective Electrodes. Electroanalysis, 2006, 18, 1254-1265.	1.5	99
254	Potentiometric sensors for trace-level analysis. TrAC - Trends in Analytical Chemistry, 2005, 24, 199-207.	5.8	272
255	Imaging fiber microarray fluorescent ion sensors based on bulk optode microspheres. Analytica Chimica Acta, 2005, 532, 61-69.	2.6	41
256	Microsphere optical ion sensors based on doped silica gel templates. Analytica Chimica Acta, 2005, 537, 135-143.	2.6	19
257	Ion-Selective Supported Liquid Membranes Placed under Steady-State Diffusion Control. Analytical Chemistry, 2005, 77, 7801-7809.	3.2	23
258	Reversible electrochemical monitoring of surface confined reactions at liquid–liquid interfaces by modulation of ion transfer fluxes. Chemical Communications, 2005, , 3074.	2.2	12
259	Fiber-Optic Microsensor Array Based on Fluorescent Bulk Optode Microspheres for the Trace Analysis of Silver Ions. Analytical Chemistry, 2005, 77, 4706-4712.	3.2	111
260	Response Characteristics of a Reversible Electrochemical Sensor for the Polyion Protamine. Analytical Chemistry, 2005, 77, 5221-5228.	3.2	72
261	Shifting the Measuring Range of Chloride Selective Electrodes and Optodes Based on the Anticrown Ionophore [9]Mercuracarborand-3 by the Addition of 1-Decanethiol. Chemia Analityczna, 2005, 50, 71-83.	0.0	0
262	Ion-selective Electrodes for Measurements in Biological Fluids. ChemInform, 2004, 35, no.	0.1	0
263	Optical determination of ionophore diffusion coefficients in plasticized poly(vinyl chloride) sensing films. Analytica Chimica Acta, 2004, 511, 91-95.	2.6	55
264	Solid-contact polymeric membrane electrodes with detection limits in the subnanomolar range. Analytica Chimica Acta, 2004, 523, 53-59.	2.6	198
265	Electrochemical Sensors. Analytical Chemistry, 2004, 76, 3285-3298.	3.2	370
266	Pulstrodes:Â Triple Pulse Control of Potentiometric Sensors. Journal of the American Chemical Society, 2004, 126, 10548-10549.	6.6	82
267	Elimination of Dimer Formation in InIIIPorphyrin-Based Anion-Selective Membranes by Covalent Attachment of the Ionophore. Analytical Chemistry, 2004, 76, 4379-4386.	3.2	36
268	The phase-boundary potential model. Talanta, 2004, 63, 3-20.	2.9	173
269	Distinguishing free and total calcium with a single pulsed galvanostatic ion-selective electrode. Talanta, 2004, 63, 195-200.	2.9	27
270	Optical chloride sensor based on [9]mercuracarborand-3 with massively expanded measuring range. Talanta, 2004, 63, 180-184.	2.9	25

#	Article	IF	CITATIONS
271	Dynamic Diffusion Model for Tracing the Real-Time Potential Response of Polymeric Membrane Ion-Selective Electrodes. Analytical Chemistry, 2004, 76, 6402-6409.	3.2	50
272	Molecular recognition and chemical sensors. Talanta, 2004, 63, 1.	2.9	2
273	Spectral Imaging and Electrochemical Study on the Response Mechanism of Ionophore-Based Polymeric Membrane Amperometric pH Sensors. Electroanalysis, 2003, 15, 1261-1269.	1.5	16
274	Plasticizer-free microspheres for ionophore-based sensing and extraction based on a methyl methacrylate-decyl methacrylate copolymer matrix. Analytica Chimica Acta, 2003, 500, 127-136.	2.6	34
275	Fluorescent Ion-Sensing Microspheres for Multiplexed Chemical Analysis of Clinical and Biological Samples. Sensors Update, 2003, 13, 83-104.	0.5	9
276	Pulsed Galvanostatic Control of Ionophore-Based Polymeric Ion Sensors. Analytical Chemistry, 2003, 75, 4541-4550.	3.2	108
277	Improving the Detection Limit of Anion-Selective Electrodes:Â An Iodide-Selective Membrane with a Nanomolar Detection Limit. Analytical Chemistry, 2003, 75, 3865-3871.	3.2	113
278	Plasticizer-Free Polymer Containing a Covalently Immobilized Ca2+-Selective Ionophore for Potentiometric and Optical Sensors. Analytical Chemistry, 2003, 75, 3038-3045.	3.2	82
279	Reversible Electrochemical Detection of Nonelectroactive Polyions. Journal of the American Chemical Society, 2003, 125, 11192-11193.	6.6	153
280	Ion-Pairing Ability, Chemical Stability, and Selectivity Behavior of Halogenated Dodecacarborane Cation Exchangers in Neutral Carrier-Based Ion-Selective Electrodes. Analytical Chemistry, 2003, 75, 2131-2139.	3.2	37
281	Mechanistic Insights into the Development of Optical Chloride Sensors Based on the [9]Mercuracarborand-3 Ionophore. Analytical Chemistry, 2003, 75, 133-140.	3.2	49
282	Rotating Disk Potentiometry for Inner Solution Optimization of Low-Detection-Limit Ion-Selective Electrodes. Analytical Chemistry, 2003, 75, 6922-6931.	3.2	32
283	A Copolymerized Dodecacarborane Anion as Covalently Attached Cation Exchanger in Ion-Selective Sensors. Analytical Chemistry, 2003, 75, 6002-6010.	3.2	53
284	Palm-Based Data Acquisition Solutions for the Undergraduate Chemistry Laboratory. Journal of Chemical Education, 2003, 80, 1303.	1.1	3
285	How Do Pulsed Amperometric Ion Sensors Work? A Simple PDE Model. SIAM Review, 2003, 45, 327-344.	4.2	13
286	Perbrominated closo-Dode cacarborane Anion, 1-HCB11Br11-, as an Ion Exchanger in Cation-Selective Chemical Sensors. Analytical Chemistry, 2002, 74, 1327-1332.	3.2	35
287	Peer Reviewed: The New Wave of Ion-Selective Electrodes. Analytical Chemistry, 2002, 74, 420 A-426 A.	3.2	119
288	Evaluation of the Separate Equilibrium Processes That Dictate the Upper Detection Limit of Neutral Ionophore-Based Potentiometric Sensors. Analytical Chemistry, 2002, 74, 3134-3141.	3.2	31

#	Article	IF	Citations
289	Flow Cytometric Ion Detection with Plasticized Poly(Vinyl Chloride) Microspheres Containing Selective Ionophores. Analytical Chemistry, 2002, 74, 5420-5425.	3.2	32
290	Electrochemical Sensors. Analytical Chemistry, 2002, 74, 2781-2800.	3.2	467
291	Mass-Produced Ionophore-Based Fluorescent Microspheres for Trace Level Determination of Lead Ions. Analytical Chemistry, 2002, 74, 5251-5256.	3.2	61
292	Rational Design of Potentiometric Trace Level Ion Sensors. A Ag+-Selective Electrode with a 100 ppt Detection Limit. Analytical Chemistry, 2002, 74, 4027-4036.	3.2	217
293	Quantitive binding constants of H+-selective chromoionophores and anion ionophores in solvent polymeric sensing membranes. Talanta, 2002, 58, 909-918.	2.9	67
294	Response and Diffusion Behavior of Mobile and Covalently Immobilized H+-lonophores in Polymeric Membrane Ion-Selective Electrodes. Electroanalysis, 2002, 14, 1329-1338.	1.5	65
295	Plasticizer-Free Polymer Membrane Ion-Selective Electrodes Containing a Methacrylic Copolymer Matrix. Electroanalysis, 2002, 14, 1375-1381.	1.5	88
296	Variable Dimensionality and New Uranium Oxide Topologies in the Alkaline-Earth Metal Uranyl Selenites AE[(UO2)(SeO3)2] (AE=Ca, Ba) and Sr[(UO2)(SeO3)2] \hat{A} · 2H2O. Journal of Solid State Chemistry, 2002, 168, 358-366.	1.4	50
297	Quantification of the Concentration of Ionic Impurities in Polymeric Sensing Membranes with the Segmented Sandwich Technique. Analytical Chemistry, 2001, 73, 4262-4267.	3.2	28
298	Spatial and Spectral Imaging of Single Micrometer-Sized Solvent Cast Fluorescent Plasticized Poly(vinyl chloride) Sensing Particles. Analytical Chemistry, 2001, 73, 315-320.	3.2	54
299	Monodisperse Plasticized Poly(vinyl chloride) Fluorescent Microspheres for Selective lonophore-Based Sensing and Extraction. Analytical Chemistry, 2001, 73, 6083-6087.	3.2	58
300	Effect of Lipophilic Ion-Exchanger Leaching on the Detection Limit of Carrier-Based Ion-Selective Electrodes. Analytical Chemistry, 2001, 73, 5582-5589.	3.2	133
301	Improved Detection Limits and Sensitivities of Potentiometric Titrations. Analytical Chemistry, 2001, 73, 3768-3775.	3.2	40
302	Potentiometric Polymeric Membrane Electrodes for Measurement of Environmental Samples at Trace Levels: Â New Requirements for Selectivities and Measuring Protocols, and Comparison with ICPMS. Analytical Chemistry, 2001, 73, 343-351.	3.2	179
303	Selectivity Behavior and Multianalyte Detection Capability of Voltammetric Ionophore-Based Plasticized Polymeric Membrane Sensors. Analytical Chemistry, 2001, 73, 80-90.	3.2	57
304	Potentiometry at trace levels. TrAC - Trends in Analytical Chemistry, 2001, 20, 11-19.	5.8	103
305	Phosphate-Binding Characteristics and Selectivity Studies of Bifunctional Organotin Carriers. Helvetica Chimica Acta, 2001, 84, 1952-1961.	1.0	30
306	Potentiometric Cd2+-selective electrode with a detection limit in the low ppt range. Analytica Chimica Acta, 2001, 440, 71-79.	2.6	91

#	Article	IF	CITATIONS
307	Cross-linked dodecyl acrylate microspheres: novel matrices for plasticizer-free optical ion sensing. Analytica Chimica Acta, 2001, 442, 25-33.	2.6	51
308	Phosphate-Binding Characteristics and Selectivity Studies of Bifunctional Organotin Carriers., 2001, 84, 1952.		3
309	Normal Pulse Voltammetry as Improved Quantitative Detection Mode for Amperometric Solvent Polymeric Membrane Ion Sensors. Electroanalysis, 2000, 12, 1251-1257.	1.5	33
310	Determination of complex formation constants of 18 neutral alkali and alkaline earth metal ionophores in poly(vinyl chloride) sensing membranes plasticized with bis(2-ethylhexyl)sebacate and o-nitrophenyloctylether. Analytica Chimica Acta, 2000, 421, 207-220.	2.6	116
311	Ionophore-based membrane electrodes: new analytical concepts and non-classical response mechanisms. Analytica Chimica Acta, 2000, 416, 121-137.	2.6	96
312	Selectivity of Potentiometric Ion Sensors. Analytical Chemistry, 2000, 72, 1127-1133.	3.2	777
313	Direct Potentiometric Information on Total Ionic Concentrations. Analytical Chemistry, 2000, 72, 2050-2054.	3.2	33
314	Normal Pulse Voltammetry as Improved Quantitative Detection Mode for Amperometric Solvent Polymeric Membrane Ion Sensors., 2000, 12, 1251.		1
315	Improving measurement stability and reproducibility of potentiometric sensors for polyions such as heparin. Journal of Pharmaceutical and Biomedical Analysis, 1999, 19, 163-173.	1.4	17
316	Ion sensors: current limits and new trends. Analytica Chimica Acta, 1999, 393, 11-18.	2.6	114
317	Detection limit of polymeric membrane potentiometric ion sensors: how can we go down to trace levels?. Analytica Chimica Acta, 1999, 397, 103-111.	2.6	53
318	Hydrophobic Membranes as Liquid Junction-Free Reference Electrodes. Electroanalysis, 1999, 11, 788-792.	1.5	47
319	Polymer Membrane Ion-Selective Electrodes-What are the Limits?. Electroanalysis, 1999, 11, 915-933.	1.5	298
320	Lowering the Detection Limit of Solvent Polymeric Ion-Selective Membrane Electrodes. 2. Influence of Composition of Sample and Internal Electrolyte Solution. Analytical Chemistry, 1999, 71, 1210-1214.	3.2	247
321	Determination of Complex Formation Constants of Lipophilic Neutral Ionophores in Solvent Polymeric Membranes with Segmented Sandwich Membranes. Analytical Chemistry, 1999, 71, 5279-5287.	3.2	182
322	Voltammetric and Amperometric Transduction for Solvent Polymeric Membrane Ion Sensors. Analytical Chemistry, 1999, 71, 3657-3664.	3.2	48
323	General Description of the Simultaneous Response of Potentiometric Ionophore-Based Sensors to Ions of Different Charge. Analytical Chemistry, 1999, 71, 1041-1048.	3.2	78
324	Renewable pH Cross-Sensitive Potentiometric Heparin Sensors with Incorporated Electrically Charged H+ Ionophores. Analytical Chemistry, 1999, 71, 4614-4621.	3.2	52

#	Article	IF	Citations
325	Lowering the Detection Limit of Solvent Polymeric Ion-Selective Electrodes. 1. Modeling the Influence of Steady-State Ion Fluxes. Analytical Chemistry, 1999, 71, 1204-1209.	3.2	213
326	Hydrophobic Membranes as Liquid Junction-Free Reference Electrodes., 1999, 11, 788.		2
327	Selectivity of Liquid Membrane Cadmium Microelectrodes Based on the lonophoreN,N,N′,N′-Tetrabutyl-3,6-dioxaoctanedithioamide. Electroanalysis, 1998, 10, 937-941.	1.5	26
328	Spectroscopic in Situ Imaging of Acid Coextraction Processes in Solvent Polymeric Ion-Selective Electrode and Optode Membranes. Analytical Chemistry, 1998, 70, 1176-1181.	3.2	56
329	Polymeric Membrane pH Electrodes Based on Electrically Charged Ionophores. Analytical Chemistry, 1998, 70, 5252-5258.	3.2	13
330	Ion-Selective Electrodes Based on Two Competitive Ionophores for Determining Effective Stability Constants of Ionâ^Carrier Complexes in Solvent Polymeric Membranes. Analytical Chemistry, 1998, 70, 295-302.	3.2	61
331	Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors. Chemical Reviews, 1998, 98, 1593-1688.	23.0	1,812
332	Effect of Transmembrane Electrolyte Diffusion on the Detection Limit of Carrier-Based Potentiometric Ion Sensors. Analytical Chemistry, 1998, 70, 303-309.	3.2	186
333	Influence of Lipophilic Inert Electrolytes on the Selectivity of Polymer Membrane Electrodes. Analytical Chemistry, 1998, 70, 1686-1691.	3.2	42
334	Lipophilic Ionic Sites for Solvent Polymeric Membrane pH Electrodes Based on 4′,5′â€Dibromofluorescein Octadecylester as Electrically Charged Carrier. Journal of the Electrochemical Society, 1997, 144, L27-L28.	1.3	11
335	Potentiometric Determination of Effective Complex Formation Constants of Lipophilic Ion Carriers within Ionâ€6elective Electrode Membranes. Journal of the Electrochemical Society, 1997, 144, L125-L127.	1.3	17
336	Determination of Unbiased Selectivity Coefficients of Neutral Carrier-Based Cation-Selective Electrodes. Analytical Chemistry, 1997, 69, 1061-1069.	3.2	350
337	Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics. Chemical Reviews, 1997, 97, 3083-3132.	23.0	2,191
338	Selectivity of carrier-based ion-selective electrodes: is the problem solved?. TrAC - Trends in Analytical Chemistry, 1997, 16, 252-260.	5.8	26
339	Selectivity of liquid membrane ion-selective electrodes. Electroanalysis, 1997, 9, 7-12.	1.5	213
340	Selectivity comparison of neutral carrier-based ion-selective optical and potentiometric sensing schemes. Analytica Chimica Acta, 1997, 350, 329-340.	2.6	20
341	Peer Reviewed: Polyion-Sensitive Membrane Electrodes for Biomedical Analysis. Analytical Chemistry, 1996, 68, 168A-175A.	3.2	108
342	Influence of Nonionic Surfactants on the Potentiometric Response of Hydrogen Ion-Selective Polymeric Membrane Electrodes. Analytical Chemistry, 1996, 68, 1623-1631.	3.2	43

#	Article	IF	CITATIONS
343	Miniature Sodium-Selective Ion-Exchange Optode with Fluorescent pH Chromoionophores and Tunable Dynamic Range. Analytical Chemistry, 1996, 68, 2656-2662.	3.2	129
344	Determination of Improved Selectivity Coefficients of Polymer Membrane Ionâ€Selective Electrodes by Conditioning with a Discriminated Ion. Journal of the Electrochemical Society, 1996, 143, L83-L85.	1.3	177
345	Origin of anion response of solvent polymeric membrane based silver ion-selective electrodes. Sensors and Actuators B: Chemical, 1996, 35, 20-25.	4.0	21
346	Lipophilicity of tetraphenylborate derivatives as anionic sites in neutral carrier-based solvent polymeric membranes and lifetime of corresponding ion-selective electrochemical and optical sensors. Analytica Chimica Acta, 1995, 309, 7-17.	2.6	88
347	Applicability of the phase boundary potential model to the mechanistic understanding of solvent polymeric membrane-based ion-selective electrodes. Electroanalysis, 1995, 7, 817-822.	1.5	64
348	Polymer membrane-based polyion sensors: Development, response mechanism, and bioanalytical applications. Electroanalysis, 1995, 7, 823-829.	1.5	29
349	Extraction Thermodynamics of Polyanions into Plasticized Polymer Membranes Doped with Lipophilic Ion Exchangers: A Potentiometric Study. Macromolecules, 1995, 28, 5834-5840.	2.2	55
350	Carrier mechanism of acidic ionophores in solvent polymeric membrane ion-selective electrodes. Analytical Chemistry, 1995, 67, 3123-3132.	3.2	109
351	Optimum composition of neutral carrier based pH electrodes. Analytica Chimica Acta, 1994, 295, 253-262.	2.6	120
352	Selectivity of Polymer Membrane-Based Ion-Selective Electrodes: Self-Consistent Model Describing the Potentiometric Response in Mixed Ion Solutions of Different Charge. Analytical Chemistry, 1994, 66, 3021-3030.	3.2	156
353	Ionic additives for ion-selective electrodes based on electrically charged carriers. Analytical Chemistry, 1994, 66, 391-398.	3.2	457
354	Response Mechanism of Polymer Membrane-Based Potentiometric Polyion Sensors. Analytical Chemistry, 1994, 66, 2250-2259.	3.2	174
355	Anion-selective membrane electrodes based on metalloporphyrins: The influence of lipophilic anionic and cationic sites on potentiometric selectivity. Talanta, 1994, 41, 881-890.	2.9	260
356	Nitrite-selective microelectrodes. Talanta, 1994, 41, 1001-1005.	2.9	46
357	Determination of complex formation constants of neutral cation-selective ionophores in solvent polymeric membranes. Analytical Chemistry, 1994, 66, 516-521.	3.2	90
358	Detection limit of ion-selective bulk optodes and corresponding electrodes. Analytica Chimica Acta, 1993, 282, 265-271.	2.6	68
359	Synthesis and characterization of neutral hydrogen ion-selective chromoionophores for use in bulk optodes. Analytica Chimica Acta, 1993, 278, 211-225.	2.6	155
360	Lipophilic and immobilized anionic additives in solvent polymeric membranes of cation-selective chemical sensors. Analytica Chimica Acta, 1993, 280, 197-208.	2.6	418

#	ARTICLE	IF	CITATIONS
361	Optical sensors based on neutral carriers. Sensors and Actuators B: Chemical, 1993, 11, 1-8.	4.0	27
362	<title>Chemically selective optode membranes and optical detection modes</title> ., 1993, 1796, 371.		3
363	Lead-selective bulk optodes based on neutral ionophores with subnanomolar detection limits. Analytical Chemistry, 1992, 64, 1534-1540.	3.2	212
364	Selectivity of ion-sensitive bulk optodes. Analytical Chemistry, 1992, 64, 1805-1812.	3.2	221