Sung-Soo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1901931/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. Journal of Power Sources, 2006, 161, 1254-1259.	7.8	554
2	Interfacial Origin of Performance Improvement and Fade for 4.6 V LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Battery Cathodes. Journal of Physical Chemistry C, 2014, 118, 10631-10639.	3.1	160
3	Enhanced thermal properties of the solid electrolyte interphase formed on graphite in an electrolyte with fluoroethylene carbonate. Electrochimica Acta, 2009, 54, 4445-4450.	5.2	144
4	Enhanced electrochemical properties of a Si-based anode using an electrochemically active polyamide imide binder. Journal of Power Sources, 2008, 177, 590-594.	7.8	143
5	Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte. Journal of Power Sources, 2007, 172, 404-409.	7.8	109
6	Synthesis and characterization of MnV2O6 as a high capacity anode material for a lithium secondary battery. Solid State Ionics, 2001, 139, 57-65.	2.7	106
7	A mini-review on the development of Si-based thin film anodes for Li-ion batteries. Materials Today Energy, 2018, 9, 49-66.	4.7	92
8	Effect of SEI on Capacity Losses of Spinel Lithium Manganese Oxide/Graphite Batteries Stored at 60°C. Electrochemical and Solid-State Letters, 2010, 13, A168.	2.2	88
9	Electrochemical Performance of Natural Graphite by Surface Modification Using Aluminum. Electrochemical and Solid-State Letters, 2001, 4, A109.	2.2	87
10	Novel Cathode Materials for Naâ€lon Batteries Composed of Spokeâ€Like Nanorods of Na[Ni _{0.61} Co _{0.12} Mn _{0.27}]O ₂ Assembled in Spherical Secondary Particles. Advanced Functional Materials, 2016, 26, 8083-8093.	14.9	78
11	Phase transitions explanatory of the electrochemical degradation mechanism of Si based materials. Electrochemistry Communications, 2007, 9, 959-964.	4.7	72
12	Thermal reactions of lithiated graphite anode in LiPF6-based electrolyte. Thermochimica Acta, 2008, 480, 10-14.	2.7	63
13	Effect of titanium addition as nickel oxide formation inhibitor in nickel-rich cathode material for lithium-ion batteries. Journal of Power Sources, 2015, 299, 425-433.	7.8	54
14	Improvement of rate capability by graphite foam anode for Li secondary batteries. Journal of Power Sources, 2017, 355, 164-170.	7.8	51
15	Interfacial Architectures Derived by Lithium Difluoro(bisoxalato) Phosphate for Lithiumâ€Rich Cathodes with Superior Cycling Stability and Rate Capability. ChemElectroChem, 2017, 4, 56-65.	3.4	45
16	Electrochemical properties of lithium vanadium oxide as an anode material for lithium-ion battery. Materials Chemistry and Physics, 2009, 116, 603-606.	4.0	43
17	Improving the electrochemical properties of graphite/LiCoO2 cells in ionic liquid-containing electrolytes. Journal of Power Sources, 2010, 195, 2368-2371.	7.8	40
18	Degradation of spinel lithium manganese oxides by low oxidation durability of LiPF6-based electrolyte at 60 ŰC. Solid State Ionics, 2012, 219, 41-48.	2.7	39

#	Article	IF	CITATIONS
19	Silicon thin film on graphene coated nickel foam as an anode for Li-ion batteries. Electrochimica Acta, 2017, 258, 800-806.	5.2	36
20	Synthesis and Electrochemical Reaction of Tin Oxalate-Reduced Graphene Oxide Composite Anode for Rechargeable Lithium Batteries. ACS Applied Materials & Interfaces, 2017, 9, 25941-25951.	8.0	35
21	Nâ€Type Doped Silicon Thin Film on a Porous Cu Current Collector as the Negative Electrode for Liâ€lon Batteries. ChemistryOpen, 2018, 7, 92-96.	1.9	35
22	Epicyanohydrin as an Interface Stabilizer Agent for Cathodes of Li-Ion Batteries. Journal of the Electrochemical Society, 2016, 163, A171-A177.	2.9	29
23	Quantitative relationships between microstructures and electrochemical properties in Si core-SiOx shell nanoparticles for Li-ion battery anodes. Journal of Power Sources, 2016, 329, 79-87.	7.8	28
24	Synthesis of MnMoO4as High Capacity Anode Material for Li Secondary Battery. Chemistry Letters, 2001, 30, 760-761.	1.3	27
25	Microstructure and electrochemical properties of rapidly solidified Si–Ni alloys as anode for lithium-ion batteries. Journal of Industrial and Engineering Chemistry, 2019, 71, 351-360.	5.8	27
26	Microalgae-derived hollow carbon-MoS2 composite as anode for lithium-ion batteries. Journal of Industrial and Engineering Chemistry, 2019, 79, 106-114.	5.8	25
27	Electrochemical Characterization of Phosphorous-doped Soft Carbon using Single Particle for Lithium Battery Anode. Electrochimica Acta, 2014, 130, 60-65.	5.2	23
28	Observation of Electrochemically Driven Elemental Segregation in a Si Alloy Thinâ€Film Anode and its Effects on Cyclic Stability for Liâ€ion Batteries. Advanced Energy Materials, 2015, 5, 1501136.	19.5	21
29	Synergistic effect of 3D current collector structure and Ni inactive matrix on the electrochemical performances of Sn-based anodes for lithium-ion batteries. Materials Today Energy, 2020, 16, 100397.	4.7	20
30	The effect of Co–Co3O4 coating on the electrochemical properties of Si as an anode material for Li ion battery. Electrochimica Acta, 2006, 52, 450-454.	5.2	19
31	Analysis of intrinsic properties of Li4Ti5O12 using single-particle technique. Journal of Electroanalytical Chemistry, 2019, 855, 113514.	3.8	19
32	Local atomic characterization of LiCo1/3Ni1/3Mn1/3O2 cathode material. Electrochimica Acta, 2006, 52, 1467-1471.	5.2	17
33	Self-organized Artificial SEI for Improving the Cycling Ability of Silicon-based Battery Anode Materials. Bulletin of the Korean Chemical Society, 2013, 34, 1296-1299.	1.9	17
34	3D electrochemical model for a Single Secondary Particle and its application for operando analysis. Nano Energy, 2019, 62, 810-817.	16.0	16
35	The Electrochemical Performances of n-Type Extended Lattice Spaced Si Negative Electrodes for Lithium-Ion Batteries. Frontiers in Chemistry, 2019, 7, 389.	3.6	15
36	Massâ€Production of Electrospun Carbon Nanofiber Containing SiO _x for Lithiumâ€lon Batteries with Enhanced Capacity. Macromolecular Materials and Engineering, 2019, 304, 1800564.	3.6	15

#	Article	IF	CITATIONS
37	Understanding the effect of p-, n-type dopants and vinyl carbonate electrolyte additive on electrochemical performance of Si thin film anodes for lithium-ion battery. Electrochimica Acta, 2020, 330, 135179.	5.2	15
38	Structural Analysis and First-Principles Calculation of Lithium Vanadium Oxide for Advanced Li-Ion Batteries. Advances in Quantum Chemistry, 2008, , 23-33.	0.8	13
39	One-dimensional nanofiber architecture of an anatase TiO ₂ –carbon composite with improved sodium storage performance. RSC Advances, 2015, 5, 106252-106257.	3.6	13
40	Strong stress-composition coupling in lithium alloy nanoparticles. Nature Communications, 2019, 10, 3428.	12.8	13
41	Effects of Phosphorous-doping on Electrochemical Performance and Surface Chemistry of Soft Carbon Electrodes. Bulletin of the Korean Chemical Society, 2013, 34, 2029-2035.	1.9	13
42	Novel silane-treated polyacrylonitrile as a promising negative electrode binder for LIBs. Journal of Alloys and Compounds, 2020, 815, 152481.	5.5	12
43	Structural and Electrochemical Properties of Li ₂ Mn _{0.5} Fe _{0.5} SiO ₄ /C Cathode Nanocomposite. Bulletin of the Korean Chemical Society, 2011, 32, 4205-4209.	1.9	11
44	Thermal Reactions of Lithiated and Delithiated Sulfur Electrodes in Lithium-Sulfur Batteries. ECS Electrochemistry Letters, 2014, 3, A26-A29.	1.9	10
45	Pragmatic Approach to Design Silicon Alloy Anode by the Equilibrium Method. ACS Applied Materials & Interfaces, 2020, 12, 17406-17414.	8.0	10
46	Li-incorporated porous carbon monoliths derived from carboxymethyl cellulose as anode material for high power lithium-ion batteries. Journal of Power Sources, 2021, 506, 230050.	7.8	10
47	Enhanced Dilation Properties of Silicon-Silicide, Si-TiFeSi2, Nanocomposite as a Lithium Battery Anode. ECS Electrochemistry Letters, 2012, 2, A10-A13.	1.9	9
48	Effects of phosphorous incorporation on the microstructure of Si nanoparticles as an anode material for lithium-ion battery. Thin Solid Films, 2015, 587, 142-149.	1.8	9
49	Thermal and Structural Stabilities of LixCoO2 cathode for Li Secondary Battery Studied by a Temperature Programmed Reduction. Eurasian Chemico-Technological Journal, 2019, , 3.	0.6	9
50	Fundamental Approach to Capacity Prediction of Si-Alloys as Anode Material for Li-ion Batteries. Journal of Electrochemical Science and Technology, 2018, 9, 51-59.	2.2	9
51	Enhancement of Electrochemical Reaction Rate by Deposition of Alumina on Natural Graphite Surface. Electrochemistry, 2001, 69, 830-833.	1.4	7
52	RGO/sAC composites as electrode materials for supercapacitors to enhance electrochemical performance. Journal of Physics and Chemistry of Solids, 2019, 131, 69-78.	4.0	7
53	Understanding the relationship of electrochemical properties and structure of microstructure-controlled core shell gradient type Ni-rich cathode material by single particle measurement. Electrochimica Acta, 2021, 390, 138813.	5.2	7
54	Three-dimensional Ni3Sn4 Negative Electrodes for Lithium-Ion Batteries. International Journal of Electrochemical Science, 2018, 13, 7111-7120.	1.3	6

#	Article	IF	CITATIONS
55	Facile fabrication of polyacrylonitrileâ€derived porous carbon beads via electron beam irradiation as anode materials for Liâ€ion batteries. International Journal of Energy Research, 2021, 45, 9530-9540.	4.5	6
56	The Effect of Oxygen Content in Binderless Cokes for High-Density Carbon Blocks from Coal Tar Pitch. Materials, 2021, 14, 1832.	2.9	6
57	Effect of Conductive Additives on the Structural and Electrochemical Properties of Li ₄ Ti ₅ O ₁₂ Spinel. Bulletin of the Korean Chemical Society, 2012, 33, 4059-4062.	1.9	6
58	Grain size effect of nanocrystalline-Si embedded in buffering alloy-matrix as anode for Li-ion batteries. Journal of Alloys and Compounds, 2021, 882, 160558.	5.5	5
59	Microstructural Analysis of Si-Ti-Fe Alloy Anode Materials for Li-ion Secondary Batteries. Journal of Korean Institute of Metals and Materials, 2013, 51, 429-436.	1.0	5
60	Influence of Precursor on the Electrochemical Properties of Li(Ni _{0.5} Co _{0.2} Mn _{0.3})O ₂ Cathode for the Lithium Secondary Battery. Journal of the Korean Electrochemical Society, 2013, 16, 191-197.	0.1	5
61	Interfacial Architectures Derived by Lithium Difluoro(bisoxalato) Phosphate for Lithium-Rich Cathodes with Superior Cycling Stability and Rate Capability. ChemElectroChem, 2017, 4, 3-3.	3.4	4
62	Electrochemical Study of Graphene Coated Nickel Foam as an Anode for Lithium-Ion Battery. Eurasian Chemico-Technological Journal, 2018, 20, 91.	0.6	4
63	N-type doped amorphous Si thin film on a surface of rough current collector as anode for Li-ion batteries. Materials Today: Proceedings, 2018, 5, 22759-22763.	1.8	3
64	Synthesis of TiO ₂ nanoparticles induced by electron beam irradiation and their electrochemical performance as anode materials for Li-ion batteries. Journal of Electrochemical Science and Technology, 2015, 6, 75-80.	2.2	3
65	Relationship between Mechanical and Electrochemical Property in Silicon Alloy Designed by Grain Size as Anode for Lithium-Ion Batteries. Journal of the Electrochemical Society, 0, , .	2.9	3
66	Thermally Crosslinked Polyimide Binders for Si-alloy Anodes in Li-ion Batteries. Journal of Electrochemical Science and Technology, 0, , .	2.2	3
67	Physical mixtures of Si nanoparticles and carbon nanofibers as anode materials for lithium-ion batteries. Japanese Journal of Applied Physics, 2015, 54, 085001.	1.5	2
68	Microstructures and Electrochemical Properties of Si-M (M : Cr, Ni) as Alloy Anode for Li Secondary Batteries. Journal of the Korean Electrochemical Society, 2015, 18, 68-74.	0.1	2
69	Onion-Structured Si Anode Constructed with Coating by Li4Ti5O12 and Cyclized-Polyacrylonitrile for Lithium-Ion Batteries. Nanomaterials, 2020, 10, 1995.	4.1	1
70	Design of Non-Flammable Electrolytes for Highly Safe Lithium-Ion Battery. Journal of the Korean Electrochemical Society, 2009, 12, 203-218.	0.1	1
71	Thermal stability and reduction mechanism of LiNi0.8Co0.1Mn0.1O2 and LiNi0.5Co0.2Mn0.3O2 cathode materials studied by a Temperature Programmed Reduction. Thermochimica Acta, 2021, 706, 179069.	2.7	1
72	Electrochemical Characteristics of an Electric Double Layer Supercapacitor Electrode using Cooked-Rice based Activated Carbon. Journal of the Korean Electrochemical Society, 2013, 16, 129-137.	0.1	1

#	Article	IF	CITATIONS
73	Effect of Lithium Bis(Oxalato)Borate Additive on Thermal Stability of Si Nanoparticle-based Anode. Journal of the Korean Electrochemical Society, 2014, 17, 79-85.	0.1	1
74	Power Enhancement of Lithium-Ion Batteries by a Graphene Interfacial Layer. Journal of Nanoscience and Nanotechnology, 2015, 15, 9034-9038.	0.9	0
75	Nitrided LATP Solid Electrolyte for Enhanced Chemical Stability in Alkaline Media. Journal of the Korean Electrochemical Society, 2015, 18, 45-50.	0.1	0