Daniel K Schwartz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/190136/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MECHANISMS ANDKINETICS OFSELF-ASSEMBLEDMONOLAYERFORMATION. Annual Review of Physical Chemistry, 2001, 52, 107-137.	10.8	625
2	Controlled selectivity for palladium catalysts using self-assembled monolayers. Nature Materials, 2010, 9, 853-858.	27.5	358
3	DNA Hybridization-Induced Reorientation of Liquid Crystal Anchoring at the Nematic Liquid Crystal/Aqueous Interface. Journal of the American Chemical Society, 2008, 130, 8188-8194.	13.7	272
4	Langmuir-Blodgett film structure. Surface Science Reports, 1997, 27, 245-334.	7.2	265
5	Controlling the Surface Environment of Heterogeneous Catalysts Using Self-Assembled Monolayers. Accounts of Chemical Research, 2014, 47, 1438-1445.	15.6	262
6	Dynamic scaling of the submonolayer island size distribution during self-assembled monolayer growth. Physical Review B, 1999, 60, 14-17.	3.2	258
7	Control of Metal Catalyst Selectivity through Specific Noncovalent Molecular Interactions. Journal of the American Chemical Society, 2014, 136, 520-526.	13.7	246
8	Growth of a self-assembled monolayer by fractal aggregation. Physical Review Letters, 1992, 69, 3354-3357.	7.8	234
9	Surface Order and Stability of Langmuir-Blodgett Films. Science, 1992, 257, 508-511.	12.6	207
10	Stable Ordering in Langmuir-Blodgett Films. Science, 2001, 293, 1292-1295.	12.6	200
11	Self-Assembled Monolayer Growth of Octadecylphosphonic Acid on Mica. Langmuir, 1996, 12, 3626-3629.	3.5	199
12	Thermal diffuse x-ray-scattering studies of the water-vapor interface. Physical Review A, 1990, 41, 5687-5690.	2.5	183
13	Directing reaction pathways by catalyst active-site selection using self-assembled monolayers. Nature Communications, 2013, 4, 2448.	12.8	180
14	Spontaneous chiral symmetry breaking by achiral molecules in a Langmuir–Blodgett film. Nature, 1994, 368, 440-443.	27.8	170
15	Intermittent Molecular Hopping at the Solid-Liquid Interface. Physical Review Letters, 2013, 110, 256101.	7.8	144
16	Protein Aggregation and Particle Formation in Prefilled Glass Syringes. Journal of Pharmaceutical Sciences, 2014, 103, 1601-1612.	3.3	142
17	Textures and phase transitions in Langmuir monolayers of fatty acids. A comparative Brewster angle microscope and polarized fluorescence microscope study. Journal of Chemical Physics, 1994, 101, 10045-10051.	3.0	130
18	Contact Angles on Surfaces with Mesoscopic Chemical Heterogeneity, Langmuir, 2000, 16, 2957-2961.	3.5	120

#	Article	IF	CITATIONS
19	Microstructure Determination of AOT + Phenol Organogels Utilizing Small-Angle X-ray Scattering and Atomic Force Microscopy. Journal of the American Chemical Society, 2001, 123, 2414-2421.	13.7	110
20	Domain boundaries and buckling superstructures in Langmuir–Blodgett films. Nature, 1992, 357, 54-57.	27.8	106
21	Effects of Thiol Modifiers on the Kinetics of Furfural Hydrogenation over Pd Catalysts. ACS Catalysis, 2014, 4, 3123-3131.	11.2	106
22	Surface Shear Rheology of β-Casein Layers at the Air/Solution Interface: Formation of a Two-Dimensional Physical Gel. Langmuir, 2003, 19, 2673-2682.	3.5	100
23	Single-Molecule Tracking of Polymer Surface Diffusion. Journal of the American Chemical Society, 2014, 136, 1327-1332.	13.7	95
24	Relaxation and the reentrant appearance of phases in a molecular monolayer. Physical Review Letters, 1991, 66, 1599-1602.	7.8	94
25	Production of particles of therapeutic proteins at the air–water interface during compression/dilation cycles. Soft Matter, 2012, 8, 10329.	2.7	93
26	Submonolayer Island Nucleation and Growth Kinetics during Self-Assembled Monolayer Formation. Physical Review Letters, 1998, 81, 4927-4930.	7.8	92
27	Influence of cations, alkane chain length, and substrate on molecular order of Langmuir-Blodgett films. Journal of the American Chemical Society, 1993, 115, 7374-7380.	13.7	88
28	Reâ€entrant appearance of phases in a relaxed Langmuir monolayer of tetracosanoic acid as determined by xâ€ r ay scattering. Journal of Chemical Physics, 1992, 96, 2356-2370.	3.0	86
29	Hindered Nanoparticle Diffusion and Void Accessibility in a Three-Dimensional Porous Medium. ACS Nano, 2015, 9, 2148-2156.	14.6	80
30	Reduced Enzyme Dynamics upon Multipoint Covalent Immobilization Leads to Stability-Activity Trade-off. Journal of the American Chemical Society, 2020, 142, 3463-3471.	13.7	76
31	The Effects of Excipients on Protein Aggregation During Agitation: An Interfacial Shear Rheology Study. Journal of Pharmaceutical Sciences, 2013, 102, 2460-2470.	3.3	74
32	Direct Observation of Langmuir Monolayer Flow through a Channel. Physical Review Letters, 1994, 73, 2841-2844.	7.8	73
33	In Situ Observation of Self-Assembled Monolayer Growth. Journal of the American Chemical Society, 1996, 118, 7861-7862.	13.7	73
34	Fatty-Acid Monolayers at the Nematic/Water Interface:Â Phases and Liquid-Crystal Alignment. Journal of Physical Chemistry B, 2007, 111, 1007-1015.	2.6	70
35	Liquid Crystal Reorientation Induced by Aptamer Conformational Changes. Journal of the American Chemical Society, 2013, 135, 5183-5189.	13.7	70
36	Nanoscale Topography Influences Polymer Surface Diffusion. ACS Nano, 2015, 9, 1656-1664.	14.6	70

#	Article	IF	CITATIONS
37	Direct observations of transitions between condensed Langmuir monolayer phases by polarized fluorescence microscopy. The Journal of Physical Chemistry, 1993, 97, 8849-8851.	2.9	68
38	Linactants: Surfactant Analogues in Two Dimensions. Physical Review Letters, 2008, 100, 037802.	7.8	68
39	Reorganization and crystallite formation in Langmuir-Blodgett films. The Journal of Physical Chemistry, 1992, 96, 10444-10447.	2.9	67
40	Single-Molecule Resolution of Interfacial Fibrinogen Behavior: Effects of Oligomer Populations and Surface Chemistry. Journal of the American Chemical Society, 2011, 133, 4975-4983.	13.7	65
41	Surfactant–DNA interactions at the liquid crystal–aqueous interface. Soft Matter, 2012, 8, 4335.	2.7	65
42	Quantitative lattice measurement of thin Langmuir-Blodgett films by atomic-force microscopy. Physical Review E, 1993, 47, 452-460.	2.1	64
43	Electrostatic Interactions Influence Protein Adsorption (but Not Desorption) at the Silica–Aqueous Interface. Journal of Physical Chemistry Letters, 2015, 6, 2583-2587.	4.6	64
44	Dense Poly(ethylene glycol) Brushes Reduce Adsorption and Stabilize the Unfolded Conformation of Fibronectin. Biomacromolecules, 2016, 17, 1017-1025.	5.4	64
45	Single Molecule Observations of Desorption-Mediated Diffusion at the Solid-Liquid Interface. Physical Review Letters, 2011, 107, 156102.	7.8	63
46	Effect of Surface Hydrophobicity of Pd/Al ₂ O ₃ on Vanillin Hydrodeoxygenation in a Water/Oil System. ACS Catalysis, 2018, 8, 11165-11173.	11.2	63
47	Single-Molecule Observations of Surfactant Diffusion at the Solutionâ^'Solid Interface. Langmuir, 2008, 24, 6562-6566.	3.5	61
48	Strained-layer van der Waals epitaxy in a Langmuir-Blodgett film. Science, 1993, 261, 449-452.	12.6	60
49	Kinetics of Self-Assembled Monolayer Growth Explored via Submonolayer Coverage of Incomplete Films. Journal of Physical Chemistry B, 1997, 101, 7535-7541.	2.6	60
50	Magnetic Needle Viscometer for Langmuir Monolayers. Langmuir, 2002, 18, 2800-2806.	3.5	59
51	Three-Dimensional Tracking of Interfacial Hopping Diffusion. Physical Review Letters, 2017, 119, 268001.	7.8	59
52	Anchoring of a Nematic Liquid Crystal on a Wettability Gradient. Langmuir, 2006, 22, 9753-9759.	3.5	58
53	Selective Hydrogenation of Polyunsaturated Fatty Acids Using Alkanethiol Self-Assembled Monolayer-Coated Pd/Al ₂ O ₃ Catalysts. ACS Catalysis, 2013, 3, 2041-2044.	11.2	58
54	Controlling surface crowding on a Pd catalyst with thiolate self-assembled monolayers. Journal of Catalysis, 2013, 303, 92-99.	6.2	58

#	Article	IF	CITATIONS
55	Morphology of Microphase Separation in Arachidic Acid/Cadmium Arachidate Langmuir-Blodgett Multilayers. The Journal of Physical Chemistry, 1996, 100, 11113-11119.	2.9	57
56	Two-Stage Growth of Octadecyltrimethylammonium Bromide Monolayers at Mica from Aqueous Solution below the Krafft Point. Langmuir, 1998, 14, 5913-5917.	3.5	57
57	Self-assembled monolayers for liquid crystal alignment: simple preparation on glass using alkyltrialkoxysilanes. Liquid Crystals, 2004, 31, 481-489.	2.2	56
58	A bottom-up approach to understanding protein layer formation at solid–liquid interfaces. Advances in Colloid and Interface Science, 2014, 207, 240-252.	14.7	56
59	Langmuir and self-assembled monolayers. Current Opinion in Colloid and Interface Science, 1999, 4, 46-51.	7.4	55
60	Dynamics of spheroid self-assembly in liquid-overlay culture of DU 145 human prostate cancer cells. Biotechnology and Bioengineering, 2001, 72, 579-591.	3.3	55
61	Impact of surface interactions on protein conformation. Current Opinion in Colloid and Interface Science, 2018, 38, 45-55.	7.4	55
62	Two-Dimensional Melting of an Anisotropic Crystal Observed at the Molecular Level. Science, 1997, 278, 1604-1607.	12.6	54
63	Surface-Mediated Protein Unfolding as a Search Process for Denaturing Sites. ACS Nano, 2016, 10, 730-738.	14.6	54
64	Domain morphology in a twoâ€dimensional anisotropic mesophase: Cusps and boojum textures in a Langmuir monolayer. Journal of Chemical Physics, 1994, 101, 8258-8261.	3.0	53
65	Liquid to hexatic to crystalline order in Langmuir-Blodgett films. Science, 1995, 269, 51-54.	12.6	53
66	Channel flow in a Langmuir monolayer: Unusual velocity profiles in a liquid-crystalline mesophase. Physical Review E, 1997, 56, 3378-3384.	2.1	53
67	Mechanisms of Surface-Mediated DNA Hybridization. ACS Nano, 2014, 8, 4488-4499.	14.6	53
68	Atomic force microscopy imaging of substrate and pH effects on Langmuir-Blodgett monolayers. Langmuir, 1992, 8, 1603-1607.	3.5	52
69	Observation of a Change from Splay to Bend Orientation at a Phase Transition in a Langmuir Monolayer. The Journal of Physical Chemistry, 1994, 98, 7430-7435.	2.9	51
70	Spatial Compartmentalization of Nanoparticles into Strands of a Self-Assembled Organogel. Nano Letters, 2002, 2, 1037-1042.	9.1	50
71	Excipient Effects on Humanized Monoclonal Antibody Interactions with Silicone oil Emulsions. Journal of Pharmaceutical Sciences, 2012, 101, 4419-4432.	3.3	50
72	Shear-induced molecular precession in a hexatic Langmuir monolayer. Nature, 2001, 410, 348-351.	27.8	49

#	Article	IF	CITATIONS
73	High throughput single molecule tracking for analysis of rare populations and events. Analyst, The, 2012, 137, 2987.	3.5	49
74	Challenges in Predicting Protein-Protein Interactions from Measurements of Molecular Diffusivity. Biophysical Journal, 2016, 111, 1831-1842.	0.5	49
75	Octadecanoic Acid Self-Assembled Monolayer Growth at Sapphire Surfaces. Langmuir, 2003, 19, 2665-2672.	3.5	48
76	Mixed Alkylsilane Functionalized Surfaces for Simultaneous Wetting and Homeotropic Anchoring of Liquid Crystals. ACS Applied Materials & Interfaces, 2011, 3, 4374-4380.	8.0	48
77	Identifying Mechanisms of Interfacial Dynamics Using Single-Molecule Tracking. Langmuir, 2012, 28, 12443-12456.	3.5	48
78	Commensurate defect superstructures in a Langmuir-Blodgett film. Physical Review Letters, 1993, 70, 1267-1270.	7.8	46
79	A Temperature-Dependent Two-Dimensional Condensation Transition during Langmuirâ^'Blodgett Deposition. Langmuir, 1997, 13, 4704-4709.	3.5	45
80	Concentration Dependence of Self-Assembled Monolayer Island Nucleation and Growth. Journal of the American Chemical Society, 2001, 123, 6867-6872.	13.7	45
81	Pattern Formation in a Substrate-Induced Phase Transition during Langmuirâ^'Blodgett Transfer. The Journal of Physical Chemistry, 1996, 100, 9093-9097.	2.9	44
82	Calcium-Induced Changes to the Molecular Conformation and Aggregate Structure of β-Casein at the Airâ^'Water Interface. Biomacromolecules, 2005, 6, 3334-3344.	5.4	43
83	Direct Evidence for an Ion-by-Ion Deposition Mechanism in Solution Growth of CdS Thin Films. Chemistry of Materials, 1998, 10, 710-717.	6.7	42
84	Removing drift from scanning probe microscope images of periodic samples. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 51.	1.6	42
85	Probing Hydrophobic Interactions Using Trajectories of Amphiphilic Molecules at a Hydrophobic/Water Interface. Journal of the American Chemical Society, 2009, 131, 5973-5979.	13.7	42
86	Single-Molecule Insights into Retention at a Reversed-Phase Chromatographic Interface. Analytical Chemistry, 2014, 86, 9451-9458.	6.5	42
87	Surfactant Effects on Particle Generation in Antibody Formulations in Pre-filled Syringes. Journal of Pharmaceutical Sciences, 2015, 104, 4056-4064.	3.3	41
88	Aggregation kinetics of well and poorly differentiated human prostate cancer cells. Biotechnology and Bioengineering, 2002, 80, 580-588.	3.3	40
89	Apparent Activation Energies Associated with Protein Dynamics on Hydrophobic and Hydrophilic Surfaces. Biophysical Journal, 2012, 102, 2625-2633.	0.5	40
90	Effects of Molecular Size and Surface Hydrophobicity on Oligonucleotide Interfacial Dynamics. Biomacromolecules, 2012, 13, 4002-4011.	5.4	39

#	Article	IF	CITATIONS
91	Single-molecule resolution of protein structure and interfacial dynamics on biomaterial surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19396-19401.	7.1	39
92	Polar and Azimuthal Alignment of a Nematic Liquid Crystal by Alkylsilane Self-Assembled Monolayers: Effects of Chain-Length and Mechanical Rubbing. Langmuir, 2008, 24, 9790-9794.	3.5	38
93	Grafting Density Impacts Local Nanoscale Hydrophobicity in Poly(ethylene glycol) Brushes. ACS Macro Letters, 2018, 7, 498-503.	4.8	38
94	Correlating Structural and Functional Heterogeneity of Immobilized Enzymes. ACS Nano, 2018, 12, 8091-8103.	14.6	38
95	Tracking Nanoparticle Diffusion in Porous Filtration Media. Industrial & Engineering Chemistry Research, 2015, 54, 4414-4419.	3.7	37
96	Dynamics of protein aggregation at the oil–water interface characterized by single molecule TIRF microscopy. Soft Matter, 2011, 7, 7616.	2.7	36
97	Dramatic Increase in Catalytic Performance of Immobilized Lipases by Their Stabilization on Polymer Brush Supports. ACS Catalysis, 2019, 9, 4992-5001.	11.2	36
98	Coexisting lattice structures in a Langmuir-Blodgett film identified by atomic force microscopy. Langmuir, 1993, 9, 1384-1391.	3.5	35
99	Single Molecule Observations of Multiple Protein Populations at the Oilâ^'Water Interface. Langmuir, 2010, 26, 13364-13367.	3.5	35
100	DNA Hairpin Stabilization on a Hydrophobic Surface. Small, 2013, 9, 933-941.	10.0	34
101	Scaling of Polymer Dynamics at an Oil–Water Interface in Regimes Dominated by Viscous Drag and Desorption-Mediated Flights. Journal of the American Chemical Society, 2015, 137, 12312-12320.	13.7	34
102	Phosphonic acid promotion of supported Pd catalysts for low temperature vanillin hydrodeoxygenation in ethanol. Applied Catalysis A: General, 2018, 561, 1-6.	4.3	34
103	Growth Mechanisms of Octadecylphosphonic Acid Self-Assembled Monolayers on Sapphire (Corundum):Â Evidence for a Quasi-equilibrium Triple Point. Langmuir, 2001, 17, 462-467.	3.5	33
104	Toeholdâ€Mediated Displacement of an Adenosineâ€Binding Aptamer from a DNA Duplex by its Ligand. Angewandte Chemie - International Edition, 2016, 55, 13710-13713.	13.8	33
105	Cadherin clusters stabilized by a combination of specific and nonspecific cis-interactions. ELife, 2020, 9, .	6.0	33
106	DNA Hybridizationâ€Mediated Liposome Fusion at the Aqueous Liquid Crystal Interface. Advanced Functional Materials, 2014, 24, 3206-3212.	14.9	32
107	Phospholipid Diffusion at the Oilâ^'Water Interface. Journal of Physical Chemistry B, 2010, 114, 11484-11488.	2.6	30
108	Super-resolution surface mapping using the trajectories of molecular probes. Nature Communications, 2011, 2, 515.	12.8	30

#	Article	IF	CITATIONS
109	Controlling the Surface Reactivity of Titania via Electronic Tuning of Self-Assembled Monolayers. ACS Catalysis, 2017, 7, 8351-8357.	11.2	30
110	Stabilization of Immobilized Enzymes via the Chaperone-Like Activity of Mixed Lipid Bilayers. ACS Applied Materials & Interfaces, 2018, 10, 19504-19513.	8.0	30
111	Single Molecule Observations of Fatty Acid Adsorption at the Silica/Water Interface: Activation Energy of Attachment. Journal of Physical Chemistry C, 2009, 113, 2078-2081.	3.1	29
112	Temporally Anticorrelated Motion of Nanoparticles at a Liquid Interface. Journal of Physical Chemistry Letters, 2015, 6, 54-59.	4.6	29
113	Diffusive Escape of a Nanoparticle from a Porous Cavity. Physical Review Letters, 2019, 123, 118002.	7.8	29
114	Adsorption of Oxygenates on Alkanethiol-Functionalized Pd(111) Surfaces: Mechanistic Insights into the Role of Self-Assembled Monolayers on Catalysis. Langmuir, 2011, 27, 6731-6737.	3.5	28
115	Single-molecule diffusion in a periodic potential at a solid–liquid interface. Soft Matter, 2014, 10, 753-759.	2.7	28
116	Single-Molecule Resolution of Protein Dynamics on Polymeric Membrane Surfaces: The Roles of Spatial and Population Heterogeneity. ACS Applied Materials & Interfaces, 2015, 7, 3607-3617.	8.0	28
117	Controlling Catalyst-Phase Selectivity in Complex Mixtures with Amphiphilic Janus Particles. ACS Applied Materials & Interfaces, 2020, 12, 2338-2345.	8.0	28
118	Applications of atomic force microscopy to structural characterization of organic thin films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 93, 305-333.	4.7	27
119	Tilt stripe textures in Langmuir monolayers of fatty acids. Physica A: Statistical Mechanics and Its Applications, 1994, 204, 606-615.	2.6	27
120	Nanoparticle Tracking to Probe Transport in Porous Media. Accounts of Chemical Research, 2020, 53, 2130-2139.	15.6	27
121	Mechanisms of Self-Assembled Monolayer Desorption Determined Using in Situ Atomic Force Microscopy. Langmuir, 2000, 16, 9381-9384.	3.5	26
122	Macroscopic Liquid Crystal Response to Isolated DNA Helices. Langmuir, 2011, 27, 11767-11772.	3.5	26
123	Line tension between coexisting phases in monolayers and bilayers of amphiphilic molecules. Surface Science Reports, 2012, 67, 143-159.	7.2	26
124	Non-Brownian Interfacial Diffusion: Flying, Hopping, and Crawling. Journal of Physical Chemistry C, 2020, 124, 19880-19891.	3.1	26
125	Singleâ€Molecule Tracking of Fibrinogen Dynamics on Nanostructured Poly(ethylene) Films. Advanced Functional Materials, 2012, 22, 2617-2623.	14.9	25
126	Specific Ion (Hofmeister) Effects on Adsorption, Desorption, and Diffusion at the Solid–Aqueous Interface. Journal of Physical Chemistry Letters, 2013, 4, 4064-4068.	4.6	25

#	Article	IF	CITATIONS
127	Molecular Orientation in Langmuir Monolayers under Shear. Langmuir, 2001, 17, 3017-3029.	3.5	24
128	Kinetics of Octadecyltrimethylammonium Bromide Self-Assembled Monolayer Growth at Mica from an Aqueous Solution. Langmuir, 2004, 20, 2341-2348.	3.5	24
129	Directed Nanoparticle Motion on an Interfacial Free Energy Gradient. Langmuir, 2010, 26, 1501-1503.	3.5	24
130	Cadherin cis and trans interactions are mutually cooperative. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	24
131	Alignment of Hexatic Langmuir Monolayers under Shear. Physical Review Letters, 2000, 85, 1476-1479.	7.8	23
132	Connecting Rare DNA Conformations and Surface Dynamics Using Single-Molecule Resonance Energy Transfer. ACS Nano, 2011, 5, 9861-9869.	14.6	23
133	Contact Line Pinning Is Not Required for Nanobubble Stability on Copolymer Brushes. Journal of Physical Chemistry Letters, 2018, 9, 4239-4244.	4.6	23
134	Cadherin Extracellular Domain Clustering in the Absence of <i>Trans</i> -Interactions. Journal of Physical Chemistry Letters, 2019, 10, 4528-4534.	4.6	23
135	Complex Salt Dependence of Polymer Diffusion in Polyelectrolyte Multilayers. Journal of Physical Chemistry Letters, 2019, 10, 987-992.	4.6	23
136	Head–tail competition and modulated structures in planar surfactant (Langmuir–Blodgett) films. Journal of Chemical Physics, 1994, 101, 7161-7168.	3.0	22
137	Structure and Phase Behavior of Mixed Monolayers of Saturated and Unsaturated Fatty Acids. Langmuir, 2002, 18, 9810-9815.	3.5	22
138	Correlating Linactant Efficiency and Self-Assembly: Structural Basis of Line Activity in Molecular Monolayers. Langmuir, 2009, 25, 8056-8061.	3.5	22
139	Stability of self-assembled monolayer coated Pt/Al2O3 catalysts for liquid phase hydrogenation. Journal of Molecular Catalysis A, 2015, 396, 188-195.	4.8	22
140	Enhancing Cooperativity in Bifunctional Acid–Pd Catalysts with Carboxylic Acid-Functionalized Organic Monolayers. Journal of Physical Chemistry C, 2018, 122, 6637-6647.	3.1	22
141	Three Regimes of Polymer Surface Dynamics under Crowded Conditions. Macromolecules, 2018, 51, 1207-1214.	4.8	22
142	Faster Surface Ligation Reactions Improve Immobilized Enzyme Structure and Activity. Journal of the American Chemical Society, 2021, 143, 7154-7163.	13.7	22
143	Understanding Design Rules for Optimizing the Interface between Immobilized Enzymes and Random Copolymer Brushes. ACS Applied Materials & Interfaces, 2021, 13, 26694-26703.	8.0	22
144	Langmuir-blodgett films. Endeavour, 1983, 7, 65-69.	0.4	21

9

#	Article	IF	CITATIONS
145	Atomic force microscope imaging of molecular aggregation during self-assembled monolayer growth. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 174, 233-243.	4.7	21
146	Structure of β-Casein Layers at the Air/Solution Interface: Atomic Force Microscopy Studies of Transferred Layers. Langmuir, 2004, 20, 11692-11697.	3.5	21
147	Polymer Surface Transport Is a Combination of in-Plane Diffusion and Desorption-Mediated Flights. ACS Macro Letters, 2016, 5, 509-514.	4.8	21
148	Interfacial Molecular Searching Using Forager Dynamics. Physical Review Letters, 2016, 116, 098303.	7.8	21
149	Temperature and Flow Rate Dependence of the Velocity Profile during Channel Flow of a Langmuir Monolayer. Langmuir, 1999, 15, 4622-4624.	3.5	20
150	Protein–protein interactions controlling interfacial aggregation of rhILâ€1ra are not described by simple colloid models. Protein Science, 2018, 27, 1191-1204.	7.6	20
151	X-ray reflectivity studies of a microemulsion surface. Physical Review A, 1988, 38, 5817-5824.	2.5	19
152	Liquid- and vapor-phase hydrogenation of 1-epoxy-3-butene using self-assembled monolayer coated palladium and platinum catalysts. Applied Catalysis A: General, 2012, 445-446, 102-106.	4.3	19
153	Interfacial Protein–Protein Associations. Biomacromolecules, 2014, 15, 66-74.	5.4	19
154	Film Balance and Fluorescence Microscopic Investigation of the Effects of Ca2+ on Mixed DMPC/DMPG Monolayers. Langmuir, 1999, 15, 202-206.	3.5	18
155	Molecular Trajectories Provide Signatures of Protein Clustering and Crowding at the Oil/Water Interface. Langmuir, 2015, 31, 5882-5890.	3.5	18
156	Influence of Protein Surface Coverage on Anomalously Strong Adsorption Sites. ACS Applied Materials & Interfaces, 2016, 8, 511-520.	8.0	18
157	Surface-Mediated DNA Hybridization: Effects of DNA Conformation, Surface Chemistry, and Electrostatics. Langmuir, 2017, 33, 12651-12659.	3.5	18
158	X-ray reflectivity of a polymer monolayer at the water/vapor interface. The Journal of Physical Chemistry, 1991, 95, 6628-6632.	2.9	17
159	Self-Assembled Monolayers Derived from a Double-Chained Monothiol Having Chemically Dissimilar Chains. Langmuir, 2008, 24, 10204-10208.	3.5	17
160	Solvent Dependence of the Activation Energy of Attachment Determined by Single Molecule Observations of Surfactant Adsorption. Langmuir, 2009, 25, 7389-7392.	3.5	17
161	Stokes–Einstein and desorption-mediated diffusion of protein molecules at the oil–water interface. Soft Matter, 2012, 8, 6000.	2.7	17
162	Thermal Melting in Langmuir Films of Discotic Liquid-Crystalline Compounds. Langmuir, 1998, 14, 2910-2915.	3.5	16

#	Article	IF	CITATIONS
163	A Conformational Phase Transition in a Langmuir Film of an Amphiphilic Azacrown. Journal of Physical Chemistry B, 1998, 102, 6688-6691.	2.6	16
164	Semi-fluorinated phosphonic acids form stable nanoscale clusters in Langmuir–Blodgett and self-assembled monolayers. Soft Matter, 2009, 5, 750.	2.7	16
165	Hydrogenation of Cinnamaldehyde over Pd/Al2O3 Catalysts Modified with Thiol Monolayers. Topics in Catalysis, 2014, 57, 1505-1511.	2.8	16
166	Cadherin Diffusion in Supported Lipid Bilayers Exhibits Calcium-Dependent Dynamic Heterogeneity. Biophysical Journal, 2016, 111, 2658-2665.	0.5	16
167	Enhanced information content for three-dimensional localization and tracking using the double-helix point spread function with variable-angle illumination epifluorescence microscopy. Applied Physics Letters, 2017, 110, .	3.3	16
168	Polyelectrolyte Multilayers Enhance the Dry Storage and pH Stability of Physically Entrapped Enzymes. ACS Applied Materials & Interfaces, 2020, 12, 22640-22649.	8.0	16
169	Dewetting Modes of Surfactant Solution as a Function of the Spreading Coefficient. Langmuir, 1997, 13, 6873-6876.	3.5	15
170	Transient Behavior of the Velocity Profile in Channel Flow of a Langmuir Monolayer. Langmuir, 2000, 16, 9433-9438.	3.5	15
171	Selective acetylene detection through surface modification of metal–insulator–semiconductor sensors with alkanethiolate monolayers. Sensors and Actuators B: Chemical, 2009, 136, 315-319.	7.8	15
172	Hydrophobic Interaction Microscopy: Mapping the Solid/ Liquid Interface Using Amphiphilic Probe Molecules. Langmuir, 2009, 25, 4339-4342.	3.5	15
173	Liquid crystal anchoring transformations induced by phase transitions of a photoisomerizable surfactant at the nematic/aqueous interface. Soft Matter, 2009, 5, 2252.	2.7	15
174	Mapping the Functional Tortuosity and Spatiotemporal Heterogeneity of Porous Polymer Membranes with Super-Resolution Nanoparticle Tracking. ACS Applied Materials & Interfaces, 2017, 9, 43258-43266.	8.0	15
175	Effects of metal oxide surface doping with phosphonic acid monolayers on alcohol dehydration activity and selectivity. Applied Catalysis A: General, 2019, 571, 102-106.	4.3	15
176	Mechanisms of transport enhancement for self-propelled nanoswimmers in a porous matrix. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
177	Instant patterns in thin films. Nature, 1993, 362, 593-594.	27.8	14
178	Microrheology of a Sheared Langmuir Monolayer:Â Elastic Recovery and Interdomain Slippage. Langmuir, 2001, 17, 3406-3411.	3.5	14
179	Surface Chemistry Influences Interfacial Fibrinogen Self-Association. Biomacromolecules, 2015, 16, 3201-3208.	5.4	14
180	Connecting Protein Conformation and Dynamics with Ligand–Receptor Binding Using Three-Color Förster Resonance Energy Transfer Tracking. Journal of the American Chemical Society, 2017, 139, 9937-9948.	13.7	14

#	Article	IF	CITATIONS
181	Stabilization of Fibronectin by Random Copolymer Brushes Inhibits Macrophage Activation. ACS Applied Bio Materials, 2019, 2, 4698-4702.	4.6	14
182	Steric Repulsion Forces Contributed by PEGylation of Interleukin-1 Receptor Antagonist Reduce Gelation and Aggregation at the Silicone Oil-Water Interface. Journal of Pharmaceutical Sciences, 2019, 108, 162-172.	3.3	14
183	Single Molecule Dynamics on Hydrophobic Self-Assembled Monolayers. Langmuir, 2012, 28, 12108-12113.	3.5	13
184	Identifying Multiple Populations from Singleâ€Molecule Lifetime Distributions. ChemPhysChem, 2013, 14, 374-380.	2.1	13
185	Dynamic Molecular Behavior on Thermoresponsive Polymer Brushes. Macromolecules, 2015, 48, 4562-4571.	4.8	13
186	Application of thiolate self-assembled monolayers in selective alcohol oxidation for suppression of Pd catalyst deactivation. Journal of Catalysis, 2016, 344, 722-728.	6.2	13
187	Single-nanoparticle tracking reveals mechanisms of membrane fouling. Journal of Membrane Science, 2018, 563, 888-895.	8.2	13
188	Single-Molecule Resolution of Antimicrobial Peptide Interactions with Supported Lipid A Bilayers. Biophysical Journal, 2018, 114, 2606-2616.	0.5	13
189	Connecting Hindered Transport in Porous Media across Length Scales: From Single-Pore to Macroscopic. Journal of Physical Chemistry Letters, 2020, 11, 8825-8831.	4.6	13
190	Chemically Triggered Changes in Mechanical Properties of Responsive Liquid Crystal Polymer Networks with Immobilized Urease. Journal of the American Chemical Society, 2021, 143, 16740-16749.	13.7	13
191	X-ray studies of the surface and bulk structure of the isotropic and nematic phase of a lyotropic liquid crystal. Physical Review A, 1991, 43, 6815-6825.	2.5	12
192	Self-Assembly of Linactants: Micelles and Lyotropic Liquid Crystals in Two Dimensions. Journal of Physical Chemistry B, 2010, 114, 8616-8620.	2.6	12
193	Tuning the Flight Length of Molecules Diffusing on a Hydrophobic Surface. Journal of Physical Chemistry Letters, 2015, 6, 2065-2069.	4.6	12
194	Influence of Oligonucleotide Grafting Density on Surface-Mediated DNA Transport and Hybridization. ACS Nano, 2019, 13, 7850-7859.	14.6	12
195	Electrostatic Barriers to Nanoparticle Accessibility of a Porous Matrix. Journal of the American Chemical Society, 2020, 142, 4696-4704.	13.7	12
196	Interplay of electrostatic repulsion and surface grafting density on surface-mediated DNA hybridization. Journal of Colloid and Interface Science, 2020, 566, 369-374.	9.4	12
197	Fouling of microfiltration membranes by bidisperse particle solutions. Journal of Membrane Science, 2022, 641, 119878.	8.2	12
198	On the use of focused horizontal arrays as mode separation and source location devices in ocean acoustics. Part II: Theoretical and numerical modeling results. Journal of the Acoustical Society of America, 1985, 78, 575-586.	1.1	11

#	Article	IF	CITATIONS
199	Nano scale defects in langmuir-blodgett film observed by atomic force microscopy. Synthetic Metals, 1993, 57, 3795-3800.	3.9	11
200	Skeletonization as a Probe of Interlayer Correlations in Langmuirâ^'Blodgett Films. Langmuir, 1996, 12, 4971-4975.	3.5	11
201	Distinguishing Positional Uncertainty from True Mobility in Single-Molecule Trajectories That Exhibit Multiple Diffusive Modes. Microscopy and Microanalysis, 2012, 18, 793-797.	0.4	11
202	Temporally Anticorrelated Subdiffusion in Water Nanofilms on Silica Suggests Near-Surface Viscoelasticity. ACS Nano, 2020, 14, 3041-3047.	14.6	11
203	Biocatalytic 3D Actuation in Liquid Crystal Elastomers via Enzyme Patterning. ACS Applied Materials & Interfaces, 2022, 14, 26480-26488.	8.0	11
204	Langmuir Monolayers of a Photoisomerizable Macrocycle Surfactant. Langmuir, 2007, 23, 7923-7927.	3.5	10
205	Engineering the Composition of Heterogeneous Lipid Bilayers to Stabilize Tethered Enzymes. Advanced Materials Interfaces, 2020, 7, 2000533.	3.7	10
206	Polyelectrolyte Surface Diffusion in a Nanoslit Geometry. Macromolecules, 2020, 53, 4110-4120.	4.8	10
207	Enhanced Diffusive Transport in Fluctuating Porous Media. ACS Nano, 2021, 15, 7392-7398.	14.6	10
208	Contact Angles of Submillimeter Particles:Â Connecting Wettability to Nanoscale Surface Topography. Langmuir, 2007, 23, 5255-5258.	3.5	9
209	Fibrillar Self-Organization of a Line-Active Partially Fluorinated Thiol within Binary Self-Assembled Monolayers. Langmuir, 2012, 28, 16834-16844.	3.5	9
210	Capturing Conformation-Dependent Molecule–Surface Interactions When Surface Chemistry Is Heterogeneous. ACS Nano, 2015, 9, 7237-7247.	14.6	9
211	Trimethylsilyl functionalization of alumina (γ-Al ₂ O ₃) increases activity for 1,2-propanediol dehydration. Catalysis Science and Technology, 2016, 6, 5721-5728.	4.1	9
212	Self-assembled monolayers in the context of epitaxial film growth. Applied Surface Science, 2001, 175-176, 17-26.	6.1	8
213	Supercritical Self-Assembled Monolayer Growth. Journal of the American Chemical Society, 2004, 126, 9369-9373.	13.7	8
214	Self-Organization of a Wedge-Shaped Surfactant in Monolayers and Multilayers. Langmuir, 2007, 23, 482-487.	3.5	8
215	Swelling of a cluster phase in Langmuir monolayers containing semi-fluorinated phosphonic acids. Soft Matter, 2007, 3, 1518.	2.7	8
216	Photoinduced Pinocytosis for Artificial Cell and Protocell Systems. Chemistry of Materials, 2018, 30, 8757-8763.	6.7	8

#	Article	IF	CITATIONS
217	Surface-Templated Nanobubbles Protect Proteins from Surface-Mediated Denaturation. Journal of Physical Chemistry Letters, 2019, 10, 2641-2647.	4.6	8
218	Standalone interferometry-based calibration of convex lens-induced confinement microscopy with nanoscale accuracy. Analyst, The, 2019, 144, 2628-2634.	3.5	8
219	Nanoconfinement and Sansetsukon-like Nanocrawling Govern Fibrinogen Dynamics and Self-Assembly on Nanostructured Polymeric Surfaces. Langmuir, 2018, 34, 14309-14316.	3.5	7
220	Mixed Phospholipid Vesicles Catalytically Inhibit and Reverse Amyloid Fibril Formation. Journal of Physical Chemistry Letters, 2020, 11, 7417-7422.	4.6	7
221	Single-Molecule Observations Provide Mechanistic Insights into Bimolecular Knoevenagel Amino Catalysis. Journal of Physical Chemistry Letters, 2020, 11, 9714-9724.	4.6	7
222	Particle remobilization in filtration membranes during flow interruption. Journal of Membrane Science, 2020, 610, 118405.	8.2	7
223	Probing surface-adsorbate interactions through active particle dynamics. Journal of Colloid and Interface Science, 2022, 614, 425-435.	9.4	7
224	Using the dynamics of fluorescent cations to probe and map charged surfaces. Soft Matter, 2012, 8, 12017.	2.7	6
225	Line Tension and Line Activity in Mixed Monolayers Composed of Aliphatic and Terphenyl-Containing Surfactants. Langmuir, 2012, 28, 16294-16299.	3.5	6
226	Structure-Specific Liquid Crystal Anchoring Induced by the Molecular Combing of Short Oligonucleotides. ACS Applied Materials & Interfaces, 2015, 7, 26874-26879.	8.0	6
227	Diffusion of Short Semiflexible DNA Polymer Chains in Strong and Moderate Confinement. ACS Macro Letters, 2021, 10, 1191-1195.	4.8	6
228	Comment on â€~â€~Alternative method of imaging surface topologies of nonconducting bulk specimens by scanning tunneling microscopy''. Physical Review Letters, 1992, 68, 2563-2563.	7.8	5
229	The blooming transition in Langmuir monolayers and its microscopic origin. Thin Solid Films, 1996, 284-285, 110-114.	1.8	5
230	A technique for direct observation of particle motion under shear in a Langmuir monolayer. Journal of Rheology, 1997, 41, 1173-1181.	2.6	5
231	Evolution of a Steady State Island Size Distribution during Self-Assembled Monolayer Dissolution. Journal of Physical Chemistry B, 2000, 104, 9044-9047.	2.6	5
232	Periodic Arrays of Interfacial Cylindrical Reverse Micelles. Langmuir, 2005, 21, 9799-9802.	3.5	5
233	Sodium amytal as a means of obtaining contact in stuporous and uncommunicative cases. Psychiatric Quarterly, 1934, 8, 748-753.	2.1	4
234	Examining Langmuir-Blodgett Films with Atomic Force Microscopy. Science, 1994, 263, 1158-1158.	12.6	4

#	Article	IF	CITATIONS
235	Receptor-Mediated Liposome Fusion Kinetics at Aqueous/Liquid Crystal Interfaces. ACS Applied Materials & Interfaces, 2015, 7, 20400-20409.	8.0	4
236	Single molecule characterization of anomalous transport in a thin, anisotropic film. Analytica Chimica Acta, 2021, 1154, 338331.	5.4	4
237	Atomic Force Microscopy of Instabilities and Reorganization of Langmuir-Blodgett Films. Acta Physica Polonica A, 1998, 93, 373-382.	0.5	4
238	Antimicrobial peptide activity is anticorrelated with lipid a leaflet affinity. PLoS ONE, 2020, 15, e0242907.	2.5	4
239	Scanning probe microscope studies of thermodynamic and kinetic processes in ultrathin organic films. Current Opinion in Colloid and Interface Science, 1998, 3, 131-136.	7.4	3
240	Colloidal Transfer Printing. ACS Applied Materials & amp; Interfaces, 2013, 5, 12854-12859.	8.0	3
241	Unbiased Clustering of Molecular Dynamics for Spatially Resolved Analysis of Chemically Heterogeneous Surfaces. Langmuir, 2015, 31, 6099-6106.	3.5	3
242	Anisotropic molecular hopping at the solid–nematic interface. Soft Matter, 2015, 11, 7712-7716.	2.7	3
243	Changes in microbubble dynamics upon adhesion to a solid surface. Applied Physics Letters, 2020, 116, 123703.	3.3	3
244	Investigating deposition sequence during synthesis of Pd/Al ₂ O ₃ catalysts modified with organic monolayers. Catalysis Science and Technology, 2022, 12, 2306-2314.	4.1	3
245	Toeholdâ€Mediated Displacement of an Adenosineâ€Binding Aptamer from a DNA Duplex by its Ligand. Angewandte Chemie, 2016, 128, 13914-13917.	2.0	2
246	Enhanced Facilitated Diffusion of Membrane-Associating Proteins under Symmetric Confinement. Journal of Physical Chemistry Letters, 2022, 13, 2901-2907.	4.6	2
247	Commensurate Defect Superstructures in a Langmuir-Blodgett Film. Physical Review Letters, 1993, 70, 2356-2356.	7.8	1
248	Dynamics of spheroid selfâ€assembly in liquidâ€overlay culture of DU 145 human prostate cancer cells. Biotechnology and Bioengineering, 2001, 72, 579-591.	3.3	1
249	Visualizing Langmuir-Blodgett Films with the Atomic Force Microscope. Materials Research Society Symposia Proceedings, 1994, 332, 429.	0.1	0
250	In Situ Observation of scaling Behavior During Solution-Phase Growth of Surfactant Monolayers. Materials Research Society Symposia Proceedings, 1999, 570, 163.	0.1	0
251	Preface to the Early Career Authors in Fundamental Colloid and Interface Science Special Issue. Langmuir, 2018, 34, 727-728.	3.5	0
252	Effects of Surface Hydrophobicity on Catalytic Transfer Hydrogenation of Styrene with Formic Acid in a Biphasic Mixture. ACS Applied Materials & Interfaces, 2022, 14, 33457-33462.	8.0	0