
## Anna Santure

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1899800/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Parentage and Sibship Inference From Multilocus Genotype Data Under Polygamy. Genetics, 2009, 181,<br>1579-1594.                                                                                                                                             | 2.9  | 400       |
| 2  | Variation in recombination frequency and distribution across eukaryotes: patterns and processes.<br>Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160455.                                                             | 4.0  | 306       |
| 3  | Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Molecular Ecology, 2015, 24, 2241-2252.                                                                                                             | 3.9  | 178       |
| 4  | On the use of large marker panels to estimate inbreeding and relatedness: empirical and simulation<br>studies of a pedigreed zebra finch population typed at 771 SNPs. Molecular Ecology, 2010, 19, 1439-1451.                                               | 3.9  | 130       |
| 5  | Fewer invited talks by women in evolutionary biology symposia. Journal of Evolutionary Biology, 2013, 26, 2063-2069.                                                                                                                                         | 1.7  | 120       |
| 6  | Genomic dissection of variation in clutch size and egg mass in a wild great tit ( <i>Parus major</i> )<br>population. Molecular Ecology, 2013, 22, 3949-3962.                                                                                                | 3.9  | 93        |
| 7  | Genome mapping in intensively studied wild vertebrate populations. Trends in Genetics, 2010, 26, 275-284.                                                                                                                                                    | 6.7  | 85        |
| 8  | Wild GWAS—association mapping in natural populations. Molecular Ecology Resources, 2018, 18, 729-738.                                                                                                                                                        | 4.8  | 79        |
| 9  | Partitioning of genetic variation across the genome using multimarker methods in a wild bird population. Molecular Ecology, 2013, 22, 3963-3980.                                                                                                             | 3.9  | 78        |
| 10 | Genetic variance in fitness indicates rapid contemporary adaptive evolution in wild animals. Science, 2022, 376, 1012-1016.                                                                                                                                  | 12.6 | 69        |
| 11 | Characterisation of the transcriptome of a wild great tit Parus major population by next generation sequencing. BMC Genomics, 2011, 12, 283.                                                                                                                 | 2.8  | 67        |
| 12 | High genetic diversity in the remnant island population of hihi and the genetic consequences of re-introduction. Molecular Ecology, 2011, 20, 29-45.                                                                                                         | 3.9  | 63        |
| 13 | Replicated analysis of the genetic architecture of quantitative traits in two wild great tit populations. Molecular Ecology, 2015, 24, 6148-6162.                                                                                                            | 3.9  | 61        |
| 14 | The design and crossâ€population application of a genomeâ€wide SNP chip for the great tit <i>Parus<br/>major</i> . Molecular Ecology Resources, 2012, 12, 753-770.                                                                                           | 4.8  | 56        |
| 15 | Replicated high-density genetic maps of two great tit populations reveal fine-scale genomic departures<br>from sex-equal recombination rates. Heredity, 2014, 112, 307-316.                                                                                  | 2.6  | 53        |
| 16 | Little Adaptive Potential in a Threatened Passerine Bird. Current Biology, 2019, 29, 889-894.e3.                                                                                                                                                             | 3.9  | 53        |
| 17 | Reference Genomes from Distantly Related Species Can Be Used for Discovery of Single Nucleotide<br>Polymorphisms to Inform Conservation Management. Genes, 2019, 10, 9.                                                                                      | 2.4  | 50        |
| 18 | A comparison of pedigree, genetic and genomic estimates of relatedness for informing pairing<br>decisions in two critically endangered birds: Implications for conservation breeding programmes<br>worldwide. Evolutionary Applications, 2020, 13, 991-1008. | 3.1  | 48        |

Anna Santure

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | FINE-SCALE GENETIC STRUCTURE IN A WILD BIRD POPULATION: THE ROLE OF LIMITED DISPERSAL AND ENVIRONMENTALLY BASED SELECTION AS CAUSAL FACTORS. Evolution; International Journal of Organic Evolution, 2013, 67, 3488-3500.           | 2.3 | 44        |
| 20 | The influence of nonrandom extra-pair paternity on heritability estimates derived from wild pedigrees.<br>Evolution; International Journal of Organic Evolution, 2015, 69, 1336-1344.                                              | 2.3 | 42        |
| 21 | Recombination: the good, the bad and the variable. Philosophical Transactions of the Royal Society B:<br>Biological Sciences, 2017, 372, 20170279.                                                                                 | 4.0 | 39        |
| 22 | Highly Variable Recombinational Landscape Modulates Efficacy of Natural Selection in Birds. Genome<br>Biology and Evolution, 2014, 6, 2061-2075.                                                                                   | 2.5 | 36        |
| 23 | A highâ€density <scp>SNP</scp> chip for genotyping great tit ( <i>Parus major</i> ) populations and its application to studying the genetic architecture of exploration behaviour. Molecular Ecology Resources, 2018, 18, 877-891. | 4.8 | 36        |
| 24 | Influence of Mom and Dad: Quantitative Genetic Models for Maternal Effects and Genomic Imprinting.<br>Genetics, 2006, 173, 2297-2316.                                                                                              | 2.9 | 26        |
| 25 | Expanding the conservation genomics toolbox: Incorporating structural variants to enhance genomic studies for species of conservation concern. Molecular Ecology, 2021, 30, 5949-5965.                                             | 3.9 | 26        |
| 26 | Genomic data of different resolutions reveal consistent inbreeding estimates but contrasting<br>homozygosity landscapes for the threatened Aotearoa New Zealand hihi. Molecular Ecology, 2021, 30,<br>6006-6020.                   | 3.9 | 25        |
| 27 | The relevance of pedigrees in the conservation genomics era. Molecular Ecology, 2022, 31, 41-54.                                                                                                                                   | 3.9 | 24        |
| 28 | Polygenic basis for adaptive morphological variation in a threatened Aotearoa   New Zealand bird, the<br>hihi ( <i>Notiomystis cincta</i> ). Proceedings of the Royal Society B: Biological Sciences, 2020, 287,<br>20200948.      | 2.6 | 23        |
| 29 | Population structure in the barn swallow, Hirundo rustica: a comparison between neutral DNA markers and quantitative traits. Biological Journal of the Linnean Society, 0, 99, 306-314.                                            | 1.6 | 19        |
| 30 | Determinants of male floating behaviour and floater reproduction in a threatened population of the hihi ( <i>Notiomystis cincta</i> ). Evolutionary Applications, 2015, 8, 796-806.                                                | 3.1 | 19        |
| 31 | No evidence for <scp>MHC</scp> class lâ€based disassortative mating in a wild population of great tits.<br>Journal of Evolutionary Biology, 2015, 28, 642-654.                                                                     | 1.7 | 19        |
| 32 | The Joint Effects of Selection and Dominance on the <i>Q</i> ST â^' <i>F</i> ST Contrast. Genetics, 2009, 181, 259-276.                                                                                                            | 2.9 | 18        |
| 33 | Can threatened species adapt in a restored habitat? No expected evolutionary response in lay date for the New Zealand hihi. Evolutionary Applications, 2019, 12, 482-497.                                                          | 3.1 | 17        |
| 34 | Building strong relationships between conservation genetics and primary industry leads to mutually beneficial genomic advances. Molecular Ecology, 2016, 25, 5267-5281.                                                            | 3.9 | 16        |
| 35 | Quantitative Genetics of Genomic Imprinting: A Comparison of Simple Variance Derivations, the Effects of Inbreeding, and Response to Selection. G3: Genes, Genomes, Genetics, 2011, 1, 131-142.                                    | 1.8 | 12        |
| 36 | Social and spatial effects on genetic variation between foraging flocks in a wild bird population.<br>Molecular Ecology, 2017, 26, 5807-5819.                                                                                      | 3.9 | 8         |

ANNA SANTURE

| #  | Article                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Evolutionary Biology, Ecology and Epidemiology of Coccidia of Passerine Birds. Advances in<br>Parasitology, 2018, 99, 35-60.                                                    | 3.2 | 8         |
| 38 | Genetic Kinship Analyses Reveal That Gray's Beaked Whales Strand in Unrelated Groups. Journal of<br>Heredity, 2017, 108, 456-461.                                                   | 2.4 | 6         |
| 39 | Hitchhiking consequences for genetic and morphological patterns: the influence of kelp-rafting on a brooding chiton. Biological Journal of the Linnean Society, 2020, 130, 756-770. | 1.6 | 6         |
| 40 | Consequences of space sharing on individual phenotypes in the New Zealand hihi. Evolutionary Ecology, 2020, 34, 821-839.                                                            | 1.2 | 5         |
| 41 | Finding the adaptive needles in a populationâ€structured haystack: A case study in a New Zealand mollusc. Journal of Animal Ecology, 2022, 91, 1209-1221.                           | 2.8 | 3         |
| 42 | Genomic Imprinting Leads to Less Selectively Maintained Polymorphism on X Chromosomes. Genetics, 2012, 192, 1455-1464.                                                              | 2.9 | 2         |
| 43 | The design and application of a 50 K SNP chip for a threatened Aotearoa New Zealand passerine, the hihi. Molecular Ecology Resources, 2021, , .                                     | 4.8 | 1         |
| 44 | An ecological model organism flies into the genomics era. Molecular Ecology Resources, 2016, 16, 379-381.                                                                           | 4.8 | 0         |
| 45 | Who are you? A framework to identify and report genetic sample mixâ€ups. Molecular Ecology<br>Resources, 2021, , .                                                                  | 4.8 | 0         |