Ling Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1899583/publications.pdf

Version: 2024-02-01

318 papers 16,244 citations

71 h-index 21540 114 g-index

322 all docs 322 docs citations

times ranked

322

7683 citing authors

#	Article	IF	CITATIONS
1	An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence, 2007, 20, 89-99.	8.1	917
2	Improved particle swarm optimization combined with chaos. Chaos, Solitons and Fractals, 2005, 25, 1261-1271.	5.1	802
3	An effective co-evolutionary differential evolution for constrained optimization. Applied Mathematics and Computation, 2007, 186, 340-356.	2.2	471
4	An Effective PSO-Based Memetic Algorithm for Flow Shop Scheduling. IEEE Transactions on Systems, Man, and Cybernetics, 2007, 37, 18-27.	5.0	417
5	A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Applied Mathematics and Computation, 2007, 186, 1407-1422.	2.2	413
6	An effective hybrid optimization strategy for job-shop scheduling problems. Computers and Operations Research, 2001, 28, 585-596.	4.0	230
7	A novel hybrid discrete differential evolution algorithm for blocking flow shop scheduling problems. Computers and Operations Research, 2010, 37, 509-520.	4.0	221
8	Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization. Energy Conversion and Management, 2019, 186, 293-305.	9.2	211
9	A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation. Omega, 2014, 45, 42-56.	5.9	201
10	Effective heuristics and metaheuristics to minimize total flowtime for the distributed permutation flowshop problem. Expert Systems With Applications, 2019, 124, 309-324.	7.6	196
11	An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem. International Journal of Production Economics, 2013, 145, 387-396.	8.9	186
12	An Effective Artificial Bee Colony Algorithm for a Real-World Hybrid Flowshop Problem in Steelmaking Process. IEEE Transactions on Automation Science and Engineering, 2013, 10, 307-322.	5.2	183
13	A novel binary fruit fly optimization algorithm for solving the multidimensional knapsack problem. Knowledge-Based Systems, 2013, 48, 17-23.	7.1	180
14	A Hybrid Quantum-Inspired Genetic Algorithm for Multiobjective Flow Shop Scheduling. IEEE Transactions on Systems, Man, and Cybernetics, 2007, 37, 576-591.	5.0	177
15	A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems. Computers and Operations Research, 2009, 36, 2498-2511.	4.0	167
16	A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem. Swarm and Evolutionary Computation, 2017, 32, 121-131.	8.1	165
17	An effective differential evolution with level comparison for constrained engineering design. Structural and Multidisciplinary Optimization, 2010, 41, 947-963.	3.5	158
18	An Estimation of Distribution Algorithm-Based Memetic Algorithm for the Distributed Assembly Permutation Flow-Shop Scheduling Problem. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 46, 139-149.	9.3	158

#	Article	IF	CITATIONS
19	An effective artificial bee colony algorithm for the flexible job-shop scheduling problem. International Journal of Advanced Manufacturing Technology, 2012, 60, 303-315.	3.0	157
20	Parameter estimation for chaotic systems by particle swarm optimization. Chaos, Solitons and Fractals, 2007, 34, 654-661.	5.1	156
21	Behavior of crossover operators in NSGA-III for large-scale optimization problems. Information Sciences, 2020, 509, 470-487.	6.9	151
22	A Self-Adaptive Differential Evolution Algorithm for Scheduling a Single Batch-Processing Machine With Arbitrary Job Sizes and Release Times. IEEE Transactions on Cybernetics, 2021, 51, 1430-1442.	9.5	146
23	An ensemble discrete differential evolution for the distributed blocking flowshop scheduling with minimizing makespan criterion. Expert Systems With Applications, 2020, 160, 113678.	7.6	145
24	An effective shuffled frog-leaping algorithm for resource-constrained project scheduling problem. Computers and Operations Research, 2012, 39, 890-901.	4.0	139
25	An effective teaching–learning-based optimization algorithm for the flexible job-shop scheduling problem with fuzzy processing time. Neurocomputing, 2015, 148, 260-268.	5.9	139
26	A review of energy-efficient scheduling in intelligent production systems. Complex & Intelligent Systems, 2020, 6, 237-249.	6.5	139
27	A Two-Phase Meta-Heuristic for Multiobjective Flexible Job Shop Scheduling Problem With Total Energy Consumption Threshold. IEEE Transactions on Cybernetics, 2019, 49, 1097-1109.	9.5	138
28	A Knowledge-Based Cooperative Algorithm for Energy-Efficient Scheduling of Distributed Flow-Shop. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 1805-1819.	9.3	137
29	An effective hybrid DE-based algorithm for multi-objective flow shop scheduling with limited buffers. Computers and Operations Research, 2009, 36, 209-233.	4.0	129
30	Parameter estimation of photovoltaic models with memetic adaptive differential evolution. Solar Energy, 2019, 190, 465-474.	6.1	128
31	A Two-Stage Cooperative Evolutionary Algorithm With Problem-Specific Knowledge for Energy-Efficient Scheduling of No-Wait Flow-Shop Problem. IEEE Transactions on Cybernetics, 2021, 51, 5291-5303.	9.5	128
32	A novel fruit fly optimization algorithm for the semiconductor final testing scheduling problem. Knowledge-Based Systems, 2014, 57, 95-103.	7.1	126
33	Hybrid Artificial Bee Colony Algorithm for a Parallel Batching Distributed Flow-Shop Problem With Deteriorating Jobs. IEEE Transactions on Cybernetics, 2020, 50, 2425-2439.	9.5	121
34	Minimizing the total flow time in a flow shop with blocking by using hybrid harmony search algorithms. Expert Systems With Applications, 2010, 37, 7929-7936.	7.6	120
35	A hybrid differential evolution method for permutation flow-shop scheduling. International Journal of Advanced Manufacturing Technology, 2008, 38, 757-777.	3.0	118
36	Asymmetric Tunable Photonic Bandgaps in Selfâ€Organized 3D Nanostructure of Polymerâ€Stabilized Blue Phase I Modulated by Voltage Polarity. Advanced Functional Materials, 2017, 27, 1702261.	14.9	117

#	Article	IF	CITATIONS
37	A Collaborative Multiobjective Fruit Fly Optimization Algorithm for the Resource Constrained Unrelated Parallel Machine Green Scheduling Problem. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48, 790-800.	9.3	116
38	Particle swarm optimization for function optimization in noisy environment. Applied Mathematics and Computation, 2006, 181, 908-919.	2.2	113
39	An effective hybrid immune algorithm for solving the distributed permutation flow-shop scheduling problem. Engineering Optimization, 2014, 46, 1269-1283.	2.6	111
40	A Self-Learning Discrete Jaya Algorithm for Multiobjective Energy-Efficient Distributed No-Idle Flow-Shop Scheduling Problem in Heterogeneous Factory System. IEEE Transactions on Cybernetics, 2022, 52, 12675-12686.	9.5	106
41	A bi-population based estimation of distribution algorithm for the flexible job-shop scheduling problem. Computers and Industrial Engineering, 2012, 62, 917-926.	6.3	105
42	A knowledge-guided multi-objective fruit fly optimization algorithm for the multi-skill resource constrained project scheduling problem. Swarm and Evolutionary Computation, 2018, 38, 54-63.	8.1	105
43	Effective heuristics for the blocking flowshop scheduling problem with makespan minimization. Omega, 2012, 40, 218-229.	5.9	103
44	Hyperplane Assisted Evolutionary Algorithm for Many-Objective Optimization Problems. IEEE Transactions on Cybernetics, 2020, 50, 3367-3380.	9.5	103
45	Optimal power flow by means of improved adaptive differential evolution. Energy, 2020, 198, 117314.	8.8	102
46	An effective hybrid particle swarm optimization for no-wait flow shop scheduling. International Journal of Advanced Manufacturing Technology, 2007, 31, 1001-1011.	3.0	101
47	An Effective PSO-Based Hybrid Algorithm for Multiobjective Permutation Flow Shop Scheduling. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2008, 38, 818-831.	2.9	101
48	An improved iterated greedy algorithm for the no-wait flow shop scheduling problem with makespan criterion. International Journal of Advanced Manufacturing Technology, 2008, 38, 778-786.	3.0	99
49	A hybrid genetic algorithm–neural network strategy for simulation optimization. Applied Mathematics and Computation, 2005, 170, 1329-1343.	2.2	96
50	An effective estimation of distribution algorithm for the multi-mode resource-constrained project scheduling problem. Computers and Operations Research, 2012, 39, 449-460.	4.0	95
51	Distributed scheduling problems in intelligent manufacturing systems. Tsinghua Science and Technology, 2021, 26, 625-645.	6.1	94
52	A knowledge-guided fruit fly optimization algorithm for dual resource constrained flexible job-shop scheduling problem. International Journal of Production Research, 2016, 54, 5554-5566.	7. 5	92
53	Hybrid genetic algorithm based on quantum computing for numerical optimization and parameter estimation. Applied Mathematics and Computation, 2005, 171, 1141-1156.	2.2	91
54	A Review of Reinforcement Learning Based Intelligent Optimization for Manufacturing Scheduling. Complex System Modeling and Simulation, 2021, 1, 257-270.	5.3	90

#	Article	IF	Citations
55	An effective hybrid biogeography-based optimization algorithm for parameter estimation of chaotic systems. Expert Systems With Applications, 2011, 38, 15103-15109.	7.6	88
56	An enhanced Pareto-based artificial bee colony algorithm for the multi-objective flexible job-shop scheduling. International Journal of Advanced Manufacturing Technology, 2012, 60, 1111-1123.	3.0	88
57	A hybrid artificial bee colony algorithm for the fuzzy flexible job-shop scheduling problem. International Journal of Production Research, 2013, 51, 3593-3608.	7.5	86
58	A competitive memetic algorithm for the distributed two-stage assembly flow-shop scheduling problem. International Journal of Production Research, 2016, 54, 3561-3577.	7.5	84
59	A hybrid estimation of distribution algorithm for solving the resource-constrained project scheduling problem. Expert Systems With Applications, 2012, 39, 2451-2460.	7.6	83
60	An improved multi-objective evolutionary algorithm based on decomposition for energy-efficient permutation flow shop scheduling problem with sequence-dependent setup time. International Journal of Production Research, 2019, 57, 1756-1771.	7.5	82
61	An effective shuffled frog-leaping algorithm for multi-mode resource-constrained project scheduling problem. Information Sciences, 2011, 181, 4804-4822.	6.9	81
62	A coevolutionary differential evolution with harmony search for reliability–redundancy optimization. Expert Systems With Applications, 2012, 39, 5271-5278.	7.6	81
63	A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop. Knowledge-Based Systems, 2020, 194, 105536.	7.1	80
64	A memetic algorithm with competition for the capacitated green vehicle routing problem. IEEE/CAA Journal of Automatica Sinica, 2019, 6, 516-526.	13.1	79
65	Scheduling multi-objective job shops using a memetic algorithm based on differential evolution. International Journal of Advanced Manufacturing Technology, 2008, 35, 1014-1027.	3.0	78
66	An effective estimation of distribution algorithm for the flexible job-shop scheduling problem with fuzzy processing time. International Journal of Production Research, 2013, 51, 3778-3793.	7.5	78
67	A Multimodel Prediction Method for Dynamic Multiobjective Evolutionary Optimization. IEEE Transactions on Evolutionary Computation, 2020, 24, 290-304.	10.0	76
68	Polymer-stabilized nanoparticle-enriched blue phase liquid crystals. Journal of Materials Chemistry C, 2013, 1, 6526.	5.5	75
69	A collaborative optimization algorithm for energy-efficient multi-objective distributed no-idle flow-shop scheduling. Swarm and Evolutionary Computation, 2019, 50, 100557.	8.1	7 5
70	Finding Multiple Roots of Nonlinear Equation Systems via a Repulsion-Based Adaptive Differential Evolution. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 1499-1513.	9.3	74
71	Differential evolution algorithm-based parameter estimation for chaotic systems. Chaos, Solitons and Fractals, 2009, 39, 2110-2118.	5.1	71
72	An effective shuffled frog-leaping algorithm for lot-streaming flow shop scheduling problem. International Journal of Advanced Manufacturing Technology, 2011, 52, 699-713.	3.0	71

#	Article	IF	Citations
73	An Effective Cooperative Co-Evolutionary Algorithm for Distributed Flowshop Group Scheduling Problems. IEEE Transactions on Cybernetics, 2022, 52, 5999-6012.	9.5	71
74	An efficient multi-objective model and algorithm for sizing a stand-alone hybrid renewable energy system. Energy, 2017, 141, 2288-2299.	8.8	70
75	Siting and sizing of fast charging stations in highway network with budget constraint. Applied Energy, 2018, 228, 1255-1271.	10.1	69
76	An effective hybrid PSOSA strategy for optimization and its application to parameter estimation. Applied Mathematics and Computation, 2006, 179, 135-146.	2.2	67
77	A hybrid discrete particle swarm optimization algorithm for the no-wait flow shop scheduling problem with makespan criterion. International Journal of Advanced Manufacturing Technology, 2008, 38, 337-347.	3.0	66
78	A distributed permutation flowshop scheduling problem with the customer order constraint. Knowledge-Based Systems, 2019, 184, 104894.	7.1	66
79	A hybrid adaptive teaching–learning-based optimization and differential evolution for parameter identification of photovoltaic models. Energy Conversion and Management, 2020, 225, 113474.	9.2	66
80	No-idle permutation flow shop scheduling based on a hybrid discrete particle swarm optimization algorithm. International Journal of Advanced Manufacturing Technology, 2008, 39, 796-807.	3.0	65
81	An effective hybrid EDA-based algorithm for solving multidimensional knapsack problem. Expert Systems With Applications, 2012, 39, 5593-5599.	7.6	64
82	Directing orbits of chaotic systems by particle swarm optimization. Chaos, Solitons and Fractals, 2006, 29, 454-461.	5.1	63
83	A High Performing Memetic Algorithm for the Flowshop Scheduling Problem With Blocking. IEEE Transactions on Automation Science and Engineering, 2013, 10, 741-756.	5.2	63
84	An Improved Ant Colony Optimization algorithm to the Periodic Vehicle Routing Problem with Time Window and Service Choice. Swarm and Evolutionary Computation, 2020, 55, 100675.	8.1	63
85	A human learning optimization algorithm and its application to multi-dimensional knapsack problems. Applied Soft Computing Journal, 2015, 34, 736-743.	7.2	62
86	A two-stage adaptive fruit fly optimization algorithm for unrelated parallel machine scheduling problem with additional resource constraints. Expert Systems With Applications, 2016, 65, 28-39.	7.6	62
87	Nonlinear Equations Solving with Intelligent Optimization Algorithms: A Survey. Complex System Modeling and Simulation, 2021, 1, 15-32.	5.3	62
88	Decomposition-based multi-objective optimization for energy-aware distributed hybrid flow shop scheduling with multiprocessor tasks. Tsinghua Science and Technology, 2021, 26, 646-663.	6.1	62
89	A Pareto-based estimation of distribution algorithm for the multi-objective flexible job-shop scheduling problem. International Journal of Production Research, 2013, 51, 3574-3592.	7.5	61
90	Teaching–learning-based optimization algorithm for multi-skill resource constrained project scheduling problem. Soft Computing, 2017, 21, 1537-1548.	3.6	61

#	Article	IF	Citations
91	Multi-clustering via evolutionary multi-objective optimization. Information Sciences, 2018, 450, 128-140.	6.9	60
92	Multi-objective optimal design of hybrid renewable energy system under multiple scenarios. Renewable Energy, 2020, 151, 226-237.	8.9	59
93	Opposition-based learning monarch butterfly optimization with Gaussian perturbation for large-scale 0-1 knapsack problem. Computers and Electrical Engineering, 2018, 67, 454-468.	4.8	58
94	Solving energy-efficient distributed job shop scheduling via multi-objective evolutionary algorithm with decomposition. Swarm and Evolutionary Computation, 2020, 58, 100745.	8.1	58
95	A Cooperative Memetic Algorithm With Learning-Based Agent for Energy-Aware Distributed Hybrid Flow-Shop Scheduling. IEEE Transactions on Evolutionary Computation, 2022, 26, 461-475.	10.0	54
96	Control and synchronization of chaotic systems by differential evolution algorithm. Chaos, Solitons and Fractals, 2007, 34, 412-419.	5.1	53
97	Satellite observation scheduling with a novel adaptive simulated annealing algorithm and a dynamic task clustering strategy. Computers and Industrial Engineering, 2017, 113, 576-588.	6.3	52
98	A Knowledge-Based Two-Population Optimization Algorithm for Distributed Energy-Efficient Parallel Machines Scheduling. IEEE Transactions on Cybernetics, 2022, 52, 5051-5063.	9.5	52
99	Multi-objective optimal power flow with stochastic wind and solar power. Applied Soft Computing Journal, 2022, 114, 108045.	7.2	51
100	A hybrid estimation of distribution algorithm for unrelated parallel machine scheduling with sequence-dependent setup times. IEEE/CAA Journal of Automatica Sinica, 2016, 3, 235-246.	13.1	50
101	A Bi-Population Cooperative Memetic Algorithm for Distributed Hybrid Flow-Shop Scheduling. IEEE Transactions on Emerging Topics in Computational Intelligence, 2021, 5, 947-961.	4.9	50
102	Solving the blocking flow shop scheduling problem by a dynamic multi-swarm particle swarm optimizer. International Journal of Advanced Manufacturing Technology, 2011, 55, 755-762.	3.0	48
103	An estimation of distribution algorithm and new computational results for the stochastic resource-constrained project scheduling problem. Flexible Services and Manufacturing Journal, 2015, 27, 585-605.	3.4	48
104	Comparative study on parameter extraction of photovoltaic models via differential evolution. Energy Conversion and Management, 2019, 201, 112113.	9.2	47
105	Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm. Expert Systems With Applications, 2011, 38, 3238-3245.	7.6	46
106	A matrix-cube-based estimation of distribution algorithm for the distributed assembly permutation flow-shop scheduling problem. Swarm and Evolutionary Computation, 2021, 60, 100785.	8.1	46
107	Optical intensity-driven reversible photonic bandgaps in self-organized helical superstructures with handedness inversion. Journal of Materials Chemistry C, 2017, 5, 3678-3683.	5 . 5	44
108	Solving Nonlinear Equations System With Dynamic Repulsion-Based Evolutionary Algorithms. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 1590-1601.	9.3	44

#	Article	IF	Citations
109	An effective hybrid quantum-inspired evolutionary algorithm for parameter estimation of chaotic systems. Expert Systems With Applications, 2010, 37, 1279-1285.	7.6	43
110	Modified NSGA-III for sensor placement in water distribution system. Information Sciences, 2020, 509, 488-500.	6.9	43
111	Multi-objective optimization based on decomposition for flexible job shop scheduling under time-of-use electricity prices. Knowledge-Based Systems, 2020, 204, 106177.	7.1	43
112	An enhanced estimation of distribution algorithm for solving hybrid flow-shop scheduling problem with identical parallel machines. International Journal of Advanced Manufacturing Technology, 2013, 68, 2043-2056.	3.0	41
113	Reduction of carbon emissions and project makespan by a Pareto-based estimation of distribution algorithm. International Journal of Production Economics, 2015, 164, 421-432.	8.9	41
114	Utilizing the Relationship Between Unconstrained and Constrained Pareto Fronts for Constrained Multiobjective Optimization. IEEE Transactions on Cybernetics, 2023, 53, 3873-3886.	9.5	41
115	A Data-Driven Parallel Scheduling Approach for Multiple Agile Earth Observation Satellites. IEEE Transactions on Evolutionary Computation, 2020, 24, 679-693.	10.0	40
116	A Generic Markov Decision Process Model and Reinforcement Learning Method for Scheduling Agile Earth Observation Satellites. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 1463-1474.	9.3	40
117	Adaptive constraint differential evolution for optimal power flow. Energy, 2021, 235, 121362.	8.8	40
118	A multi-objective hot-rolling scheduling problem in the compact strip production. Applied Mathematical Modelling, 2019, 73, 327-348.	4.2	39
119	Feature selection based on meta-heuristics for biomedicine. Optimization Methods and Software, 2014, 29, 703-719.	2.4	38
120	Application of an effective modified gravitational search algorithm for the coordinated scheduling problem in a two-stage supply chain. International Journal of Advanced Manufacturing Technology, 2014, 70, 335-348.	3.0	38
121	A bi-population EDA for solving the no-idle permutation flow-shop scheduling problem with the total tardiness criterion. Knowledge-Based Systems, 2015, 74, 167-175.	7.1	38
122	A cooperative memetic algorithm with feedback for the energy-aware distributed flow-shops with flexible assembly scheduling. Computers and Industrial Engineering, 2022, 168, 108126.	6.3	38
123	An effective hybrid genetic algorithm with flexible allowance technique for constrained engineering design optimization. Expert Systems With Applications, 2012, 39, 6041-6051.	7.6	36
124	A modified teaching–learning-based optimisation algorithm for bi-objective re-entrant hybrid flowshop scheduling. International Journal of Production Research, 2016, 54, 3622-3639.	7.5	36
125	Fuzzy neighborhood-based differential evolution with orientation for nonlinear equation systems. Knowledge-Based Systems, 2019, 182, 104796.	7.1	36
126	Hierarchy Ranking Method for Multimodal Multiobjective Optimization With Local Pareto Fronts. IEEE Transactions on Evolutionary Computation, 2023, 27, 98-110.	10.0	36

#	Article	IF	Citations
127	Fast and accurate parameter extraction for different types of fuel cells with decomposition and nature-inspired optimization method. Energy Conversion and Management, 2018, 174, 913-921.	9.2	34
128	An evolutionary fuzzy scheduler for multi-objective resource allocation in fog computing. Future Generation Computer Systems, 2021, 117, 498-509.	7.5	34
129	Fixed-Structure \$H_{infty}\$ Controller Synthesis Based on Differential Evolution With Level Comparison. IEEE Transactions on Evolutionary Computation, 2011, 15, 120-129.	10.0	33
130	A multi-model estimation of distribution algorithm for energy efficient scheduling under cloud computing system. Journal of Parallel and Distributed Computing, 2018, 117, 63-72.	4.1	32
131	An effective multi-objective evolutionary algorithm for solving the AGV scheduling problem with pickup and delivery. Knowledge-Based Systems, 2021, 218, 106881.	7.1	32
132	A Bi-Population Evolutionary Algorithm With Feedback for Energy-Efficient Fuzzy Flexible Job Shop Scheduling. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 5295-5307.	9.3	32
133	A modified evolutionary programming for flow shop scheduling. International Journal of Advanced Manufacturing Technology, 2003, 22, 522-527.	3.0	30
134	An adaptive genetic algorithm with multiple operators for flowshop scheduling. International Journal of Advanced Manufacturing Technology, 2006, 27, 580-587.	3.0	30
135	Effects of polymer network on electrically induced reflection band broadening of cholesteric liquid crystals. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 835-846.	2.1	30
136	An optimal block knowledge driven backtracking search algorithm for distributed assembly No-wait flow shop scheduling problem. Applied Soft Computing Journal, 2021, 112, 107750.	7.2	30
137	A reinforcement learning brain storm optimization algorithm (BSO) with learning mechanism. Knowledge-Based Systems, 2022, 235, 107645.	7.1	30
138	Parameter analysis based on stochastic model for differential evolution algorithm. Applied Mathematics and Computation, 2010, 217, 3263-3273.	2.2	29
139	A unified framework for population-based metaheuristics. Annals of Operations Research, 2011, 186, 231-262.	4.1	29
140	Preference-inspired coevolutionary algorithm with active diversity strategy for multi-objective multi-modal optimization. Information Sciences, 2021, 546, 1148-1165.	6.9	29
141	A simple two-stage evolutionary algorithm for constrained multi-objective optimization. Knowledge-Based Systems, 2021, 228, 107263.	7.1	29
142	Large-scale medical examination scheduling technology based on intelligent optimization. Journal of Combinatorial Optimization, 2019, 37, 385-404.	1.3	28
143	Multiobjective Differential Evolution Algorithm for Solving Robotic Cell Scheduling Problem With Batch-Processing Machines. IEEE Transactions on Automation Science and Engineering, 2021, 18, 757-775.	5.2	28
144	An effective water wave optimization algorithm with problem-specific knowledge for the distributed assembly blocking flow-shop scheduling problem. Knowledge-Based Systems, 2022, 243, 108471.	7.1	28

#	Article	IF	Citations
145	Solving randomized time-varying knapsack problems by a novel global firefly algorithm. Engineering With Computers, 2018, 34, 621-635.	6.1	27
146	Data-Driven Heuristic Assisted Memetic Algorithm for Efficient Inter-Satellite Link Scheduling in the BeiDou Navigation Satellite System. IEEE/CAA Journal of Automatica Sinica, 2021, 8, 1800-1816.	13.1	27
147	Hybrid Evolutionary Scheduling for Energy-Efficient Fog-Enhanced Internet of Things. IEEE Transactions on Cloud Computing, 2021, 9, 641-653.	4.4	26
148	Deep Reinforcement Learning for Combinatorial Optimization: Covering Salesman Problems. IEEE Transactions on Cybernetics, 2022, 52, 13142-13155.	9.5	26
149	A two-stage evolutionary algorithm based on three indicators for constrained multi-objective optimization. Expert Systems With Applications, 2022, 195, 116499.	7.6	26
150	A tri-population based co-evolutionary framework for constrained multi-objective optimization problems. Swarm and Evolutionary Computation, 2022, 70, 101055.	8.1	26
151	Stochastic optimization using simulated annealing with hypothesis test. Applied Mathematics and Computation, 2006, 174, 1329-1342.	2.2	25
152	A Voting-Mechanism-Based Ensemble Framework for Constraint Handling Techniques. IEEE Transactions on Evolutionary Computation, 2022, 26, 646-660.	10.0	25
153	Designing Neural Networks Using Hybrid Particle Swarm Optimization. Lecture Notes in Computer Science, 2005, , 391-397.	1.3	24
154	Decoding methods for the flow shop scheduling with peak power consumption constraints. International Journal of Production Research, 2019, 57, 3200-3218.	7.5	24
155	An XGBoost-enhanced fast constructive algorithm for food delivery route planning problem. Computers and Industrial Engineering, 2021, 152, 107029.	6.3	24
156	A novel group search optimizer for multi-objective optimization. Expert Systems With Applications, 2012, 39, 2939-2946.	7.6	23
157	Deep Reinforcement Learning Based Optimization Algorithm for Permutation Flow-Shop Scheduling. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7, 983-994.	4.9	23
158	A Two-Stage Evolutionary Algorithm With Balanced Convergence and Diversity for Many-Objective Optimization. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 6222-6234.	9.3	23
159	Efficient multiobjective optimization for an AGV energy-efficient scheduling problem with release time. Knowledge-Based Systems, 2022, 242, 108334.	7.1	23
160	Directing orbits of chaotic systems using a hybrid optimization strategy. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 324, 22-25.	2.1	22
161	A Pareto-Archived Estimation-of-Distribution Algorithm for Multiobjective Resource-Constrained Project Scheduling Problem. IEEE Transactions on Engineering Management, 2013, 60, 617-626.	3.5	22
162	An improved adaptive human learning algorithm for engineering optimization. Applied Soft Computing Journal, 2018, 71, 894-904.	7.2	22

#	Article	IF	CITATIONS
163	Clonal selection based intelligent parameter inversion algorithm for prestack seismic data. Information Sciences, 2020, 517, 86-99.	6.9	21
164	Multi-objective based scheduling algorithm for sudden drinking water contamination incident. Swarm and Evolutionary Computation, 2020, 55, 100674.	8.1	21
165	Multi-objective no-wait flow-shop scheduling with a memetic algorithm based on differential evolution. Soft Computing, 2009, 13, 847-869.	3.6	20
166	A hybrid dynamic harmony search algorithm for identical parallel machines scheduling. Engineering Optimization, 2012, 44, 209-224.	2.6	20
167	Refinery Production Scheduling Involving Operational Transitions of Mode Switching under Predictive Control System. Industrial & Engineering Chemistry Research, 2014, 53, 8155-8170.	3.7	20
168	An order-based estimation of distribution algorithm for stochastic hybrid flow-shop scheduling problem. International Journal of Computer Integrated Manufacturing, 2015, 28, 307-320.	4.6	20
169	A diverse human learning optimization algorithm. Journal of Global Optimization, 2017, 67, 283-323.	1.8	20
170	Discrete harmony search algorithm for scheduling and rescheduling the reprocessing problems in remanufacturing: a case study. Engineering Optimization, 2018, 50, 965-981.	2.6	20
171	A collaborative LSHADE algorithm with comprehensive learning mechanism. Applied Soft Computing Journal, 2020, 96, 106609.	7.2	20
172	A matrix cube-based estimation of distribution algorithm for the energy-efficient distributed assembly permutation flow-shop scheduling problem. Expert Systems With Applications, 2022, 194, 116484.	7.6	20
173	A reinforcement learning-driven brain storm optimisation algorithm for multi-objective energy-efficient distributed assembly no-wait flow shop scheduling problem. International Journal of Production Research, 2023, 61, 2854-2872.	7. 5	20
174	Comprehensive learning pigeon-inspired optimization with tabu list. Science China Information Sciences, 2019, 62, 1.	4.3	19
175	A decomposition-based differential evolution with reinitialization for nonlinear equations systems. Knowledge-Based Systems, 2020, 191, 105312.	7.1	19
176	A clustering-based differential evolution with different crowding factors for nonlinear equations system. Applied Soft Computing Journal, 2021, 98, 106733.	7.2	19
177	An effective teaching–learning-based optimisation algorithm for RCPSP with ordinal interval numbers. International Journal of Production Research, 2015, 53, 1777-1790.	7. 5	18
178	A hybrid estimation of distribution algorithm for the semiconductor final testing scheduling problem. Journal of Intelligent Manufacturing, 2015, 26, 861-871.	7.3	18
179	An improved Q-learning based rescheduling method for flexible job-shops with machine failures. , 2019, , .		18
180	A Two-Phase Coordinated Planning Approach for Heterogeneous Earth-Observation Resources to Monitor Area Targets. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 6388-6403.	9.3	18

#	Article	IF	Citations
181	Distributed Co-Evolutionary Memetic Algorithm for Distributed Hybrid Differentiation Flowshop Scheduling Problem. IEEE Transactions on Evolutionary Computation, 2022, 26, 1043-1057.	10.0	18
182	Chaotic annealing with hypothesis test for function optimization in noisy environments. Chaos, Solitons and Fractals, 2008, 35, 888-894.	5.1	17
183	A Competitive Memetic Algorithm for Carbon-Efficient Scheduling of Distributed Flow-Shop. Lecture Notes in Computer Science, 2016, , 476-488.	1.3	17
184	Dynamic Power Dispatch Considering Electric Vehicles and Wind Power Using Decomposition Based Multi-Objective Evolutionary Algorithm. Energies, 2017, 10, 1991.	3.1	17
185	A Multi Ant System based hybrid heuristic algorithm for Vehicle Routing Problem with Service Time Customization. Swarm and Evolutionary Computation, 2019, 50, 100563.	8.1	17
186	Effective algorithms for single-machine learning-effect scheduling to minimize completion-time-based criteria with release dates. Expert Systems With Applications, 2020, 156, 113445.	7.6	17
187	Hybrid Multi-Objective Optimization Approach With Pareto Local Search for Collaborative Truck-Drone Routing Problems Considering Flexible Time Windows. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 13011-13025.	8.0	17
188	Center Based Genetic Algorithm and its application to the stiffness equivalence of the aircraft wing. Expert Systems With Applications, 2011, 38, 6254-6261.	7.6	16
189	Memetic niching-based evolutionary algorithms for solving nonlinear equation system. Expert Systems With Applications, 2020, 149, 113261.	7.6	16
190	Elite Archive-Assisted Adaptive Memetic Algorithm for a Realistic Hybrid Differentiation Flowshop Scheduling Problem. IEEE Transactions on Evolutionary Computation, 2022, 26, 100-114.	10.0	16
191	An Effective Iterated Greedy Algorithm for a Robust Distributed Permutation Flowshop Problem With Carryover Sequence-Dependent Setup Time. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 5783-5794.	9.3	16
192	A multipopulation cooperative coevolutionary whale optimization algorithm with a two-stage orthogonal learning mechanism. Knowledge-Based Systems, 2022, 246, 108664.	7.1	16
193	Multi-node load forecasting based on multi-task learning with modal feature extraction. Engineering Applications of Artificial Intelligence, 2022, 112, 104856.	8.1	16
194	An effective shuffled frog-leaping algorithm for hybrid flow-shop scheduling with multiprocessor tasks. International Journal of Advanced Manufacturing Technology, 2013, 68, 1529-1537.	3.0	15
195	Solving system-level synthesis problem by a multi-objective estimation of distribution algorithm. Expert Systems With Applications, 2014, 41, 2496-2513.	7.6	15
196	A Deadline-Aware Estimation of Distribution Algorithm for Resource Scheduling in Fog Computing Systems. , 2019, , .		15
197	An effective matching algorithm with adaptive tie-breaking strategy for online food delivery problem. Complex & Intelligent Systems, 2022, 8, 107-128.	6.5	15
198	A memetic discrete differential evolution algorithm for the distributed permutation flow shop scheduling problem. Complex & Intelligent Systems, 2022, 8, 141-161.	6.5	15

#	Article	IF	CITATIONS
199	A discrete learning fruit fly algorithm based on knowledge for the distributed no-wait flow shop scheduling with due windows. Expert Systems With Applications, 2022, 198, 116921.	7.6	15
200	An Effective Iterated Greedy Algorithm for Online Route Planning Problem. , 2020, , .		14
201	A Lightweight Appearance Quality Assessment System Based on Parallel Deep Learning for Painted Car Body. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 5298-5307.	4.7	14
202	Genetic ordinal optimisation for stochastic flow shop scheduling. International Journal of Advanced Manufacturing Technology, 2005, 27, 166-173.	3.0	13
203	A cubic spline method combing improved particle swarm optimization for robot path planning in dynamic uncertain environment. International Journal of Advanced Robotic Systems, 2020, 17, 172988141989166.	2.1	13
204	A path relinking enhanced estimation of distribution algorithm for direct acyclic graph task scheduling problem. Knowledge-Based Systems, 2021, 228, 107255.	7.1	13
205	A decomposition-based matheuristic for supply chain network design with assembly line balancing. Computers and Industrial Engineering, 2019, 131, 408-417.	6.3	12
206	Bound-guided hybrid estimation of distribution algorithm for energy-efficient robotic assembly line balancing. Computers and Industrial Engineering, 2020, 146, 106604.	6.3	12
207	A Biobjective Perspective for Mixed-Integer Programming. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 2374-2385.	9.3	12
208	LSFQPSO: quantum particle swarm optimization with optimal guided Lévy flight and straight flight for solving optimization problems. Engineering With Computers, 2022, 38, 4651-4682.	6.1	12
209	A hierarchical guidance strategy assisted fruit fly optimization algorithm with cooperative learning mechanism. Expert Systems With Applications, 2021, 183, 115342.	7.6	12
210	A novel decoding method for the hybrid flow-shop scheduling problem with multiprocessor tasks. International Journal of Advanced Manufacturing Technology, 2012, 59, 1113-1125.	3.0	11
211	Two-Stage Data-Driven Evolutionary Optimization for High-Dimensional Expensive Problems. IEEE Transactions on Cybernetics, 2023, 53, 2368-2379.	9.5	11
212	Determining optimal combination of genetic operators for flow shop scheduling. International Journal of Advanced Manufacturing Technology, 2006, 30, 302-308.	3.0	10
213	A competitive memetic algorithm for the distributed flow shop scheduling problem. , 2014, , .		10
214	Pareto-based multi-objective node placement of industrial wireless sensor networks using binary differential evolution harmony search. Advances in Manufacturing, 2016, 4, 66-78.	6.1	10
215	Elastic parameter inversion problem based on brain storm optimization algorithm. Memetic Computing, 2019, 11, 143-153.	4.0	10
216	Paradoxes in Numerical Comparison of Optimization Algorithms. IEEE Transactions on Evolutionary Computation, 2020, 24, 777-791.	10.0	10

#	Article	IF	CITATIONS
217	A Hybrid Differential Evolution Algorithm for the Online Meal Delivery Problem. , 2020, , .		10
218	A Two-stage Algorithm for Fuzzy Online Order Dispatching Problem. , 2020, , .		10
219	Solving two-stage stochastic route-planning problem in milliseconds via end-to-end deep learning. Complex & Intelligent Systems, 2021, 7, 1207-1222.	6.5	10
220	An effective memetic algorithm for UAV routing and orientation under uncertain navigation environments. Memetic Computing, 2021, 13, 169-183.	4.0	10
221	Fair-efficient energy trading for microgrid cluster in an active distribution network. Sustainable Energy, Grids and Networks, 2021, 26, 100453.	3.9	10
222	A Hybrid Quantum-Inspired Genetic Algorithm for Multi-objective Scheduling. Lecture Notes in Computer Science, 2006, , 511-522.	1.3	10
223	Offline dataâ€driven evolutionary optimization based on model selection. Swarm and Evolutionary Computation, 2022, 71, 101080.	8.1	10
224	Plantwide Scheduling Model for the Typical Polyvinyl chloride Production by Calcium Carbide Method. Industrial & Engineering Chemistry Research, 2016, 55, 6161-6174.	3.7	9
225	Fabrication of micro-convex domes using long pulse laser. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	9
226	A hierarchical knowledge guided backtracking search algorithm with self-learning strategy. Engineering Applications of Artificial Intelligence, 2021, 102, 104268.	8.1	9
227	A Quantum-Inspired Genetic Algorithm for Scheduling Problems. Lecture Notes in Computer Science, 2005, , 417-423.	1.3	9
228	Deep reinforcement learning based valve scheduling for pollution isolation in water distribution network. Mathematical Biosciences and Engineering, 2020, 17, 105-121.	1.9	9
229	Decomposition based multiobjective evolutionary algorithm with adaptive resource allocation for energy-aware welding shop scheduling problem. Computers and Industrial Engineering, 2021, 162, 107778.	6.3	9
230	Integrating Variable Reduction Strategy With Evolutionary Algorithms for Solving Nonlinear Equations Systems. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 75-89.	13.1	9
231	Evolutionary Optimization of COVID-19 Vaccine Distribution With Evolutionary Demands. IEEE Transactions on Evolutionary Computation, 2023, 27, 141-154.	10.0	9
232	A Novel PSO-Inspired Probability-based Binary Optimization Algorithm. , 2008, , .		8
233	A hybrid binary harmony search algorithm inspired by ant system. , 2011, , .		8
234	Intelligent manufacturing: New advances and challenges. Journal of Intelligent Manufacturing, 2015, 26, 841-843.	7.3	8

#	Article	IF	CITATIONS
235	An Iterated Greedy Algorithm for Distributed Hybrid Flowshop Scheduling Problem with Total Tardiness Minimization. , $2019, \ldots$		8
236	An Automated Cell Tracking Approach With Multi-Bernoulli Filtering and Ant Colony Labor Division. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 1850-1863.	3.0	8
237	A cooperative coevolution algorithm for complex hybrid seru-system scheduling optimization. Complex & Intelligent Systems, 2021, 7, 2559-2576.	6.5	8
238	Designing Neural Networks Using PSO-Based Memetic Algorithm. Lecture Notes in Computer Science, 2007, , 219-224.	1.3	8
239	A Constrained Many-Objective Optimization Evolutionary Algorithm With Enhanced Mating and Environmental Selections. IEEE Transactions on Cybernetics, 2023, 53, 4934-4946.	9.5	8
240	Tourism route optimization based on improved knowledge ant colony algorithm. Complex & Intelligent Systems, 2022, 8, 3973-3988.	6.5	8
241	A surrogate-assisted Jaya algorithm based on optimal directional guidance and historical learning mechanism. Engineering Applications of Artificial Intelligence, 2022, 111, 104775.	8.1	8
242	Optimal reduction of models using a hybrid searching strategy. Applied Mathematics and Computation, 2005, 168, 1357-1369.	2.2	7
243	An effective immune algorithm based on novel dispatching rules for the flexible flow-shop scheduling problem with multiprocessor tasks. International Journal of Advanced Manufacturing Technology, 2013, 67, 121-135.	3.0	7
244	A co-evolutionary teaching-learning-based optimization algorithm for stochastic RCPSP., 2014,,.		7
245	A New Test Point Selection Method for Analog Continuous Parameter Fault. Journal of Electronic Testing: Theory and Applications (JETTA), 2017, 33, 339-352.	1.2	7
246	An estimation of distribution algorithm with branch-and-bound based knowledge for robotic assembly line balancing. Complex & Intelligent Systems, 2021, 7, 1125-1138.	6.5	7
247	Optimal node placement of industrial wireless sensor networks based on adaptive mutation probability binary particle swarm optimization algorithm. Computer Science and Information Systems, 2012, 9, 1553-1576.	1.0	7
248	Multimodal optimization via dynamically hybrid niching differential evolution. Knowledge-Based Systems, 2022, 238, 107972.	7.1	7
249	Efficient Two-Level Hybrid Algorithm for the Refinery Production Scheduling Problem Involving Operational Transitions. Industrial & Engineering Chemistry Research, 2016, 55, 7768-7781.	3.7	6
250	A Multi-Model Estimation of Distribution Algorithm for Agent Routing Problem in Multi-Point Dynamic Task. , 2018, , .		6
251	Navigation Algorithm Based on the Boundary Line of Tillage Soil Combined with Guided Filtering and Improved Anti-Noise Morphology. Sensors, 2019, 19, 3918.	3.8	6
252	Hybrid Niching-Based Differential Evolution With Two Archives for Nonlinear Equation System. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 7469-7481.	9.3	6

#	Article	IF	Citations
253	A matrix-cube-based estimation of distribution algorithm for blocking flow-shop scheduling problem with sequence-dependent setup times. Expert Systems With Applications, 2022, 205, 117602.	7.6	6
254	An effective shuffled frog-leaping algorithm for the flexible job-shop scheduling problem. , 2013, , .		5
255	Decomposition Algorithm for the Scheduling of Typical Polyvinyl Chloride Production by Calcium Carbide Method. Industrial & Decomposition Carbide Production by Calcium Carbide Production By Carbide Prod	3.7	5
256	Modified multiobjective evolutionary algorithm based on decomposition for low-carbon scheduling of distributed permutation flow-shop. , 2017, , .		5
257	PCA-assisted reproduction for continuous multi-objective optimization with complicated Pareto optimal set. Swarm and Evolutionary Computation, 2021, 60, 100795.	8.1	5
258	A Monocular Vision Obstacle Avoidance Method Applied to Indoor Tracking Robot. Drones, 2021, 5, 105.	4.9	5
259	Knowledge-based memetic algorithm for joint task planning of multi-platform earth observation system. Computers and Industrial Engineering, 2021, 160, 107559.	6.3	5
260	S-CoEA: Subproblems Co-Solving Evolutionary Algorithm for Uncertain Optimization. IEEE Transactions on Cybernetics, 2022, 52, 10123-10136.	9.5	5
261	A hybrid swarm intelligence with improved ring topology for nonlinear equations. Scientia Sinica Informationis, 2020, 50, 396-407.	0.4	5
262	A hybrid cooperative differential evolution assisted by CMA-ES with local search mechanism. Neural Computing and Applications, 2022, 34, 7173-7197.	5.6	5
263	Constrained multi-objective evolutionary algorithm with an improved two-archive strategy. Knowledge-Based Systems, 2022, 246, 108732.	7.1	5
264	A two-stage cooperative scatter search algorithm with multi-population hierarchical learning mechanism. Expert Systems With Applications, 2022, 203, 117444.	7.6	5
265	Efficient Lagrangian Decomposition Approach for Solving Refinery Production Scheduling Problems Involving Operational Transitions of Mode Switching. Industrial & December 1987 (Septimental Chemistry Research, 2015, 54, 6508-6526.	3.7	4
266	ICB-MOEA/D: An Interactive Classification-Based Multi-Objective Optimization Algorithm. , 2018, , .		4
267	Continuous Human Learning Optimizer based PID Controller Design of an Automatic Voltage Regulator System. , 2018, , .		4
268	Integrated agile observation satellite scheduling problem considering different memory environments: a case study. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	1.6	4
269	A multi-objective optimization method for intelligent swarm robotic control model with changeable parameters. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2020, 50, 526-537.	0.5	4
270	A data-driven parallel adaptive large neighborhood search algorithm for a large-scale inter-satellite link scheduling problem. Swarm and Evolutionary Computation, 2022, 74, 101124.	8.1	4

#	Article	IF	Citations
271	An Improved NSGA-II based Algorithm for Economical Hot Rolling Batch Scheduling under Time-sensitive Electricity Prices. , 2018, , .		3
272	Thematic issue on "advanced intelligent scheduling algorithms for smart manufacturing systems― Memetic Computing, 2019, 11, 333-334.	4.0	3
273	Green Job Shop Scheduling Problem with Machine at Different Speeds using a multi-objective grey wolf optimization algorithm. , 2019, , .		3
274	Reversible/Irreversible Photobleaching of Fluorescent Surface Defects of SiC Quantum Dots: Mechanism and Sensing of Solar UV Irradiation. Advanced Materials Interfaces, 2019, 6, 1900272.	3.7	3
275	Modeling stochastic service time for complex on-demand food delivery. Complex & Intelligent Systems, 2022, 8, 4939-4953.	6.5	3
276	Determination of the PID controller parameters by Modified Binary Particle Swarm Optimization algorithm. , 2010, , .		2
277	A discrete teaching-learning-based optimisation algorithm for hybrid flowshop scheduling problem with peak power consumption constraints. , 2017, , .		2
278	Hybrid Evolutionary Algorithm for Integrated Supply Chain Network Design With Assembly Line Balancing. , $2019, , .$		2
279	Controller for the Pulverizing System Based on Intelligent Virtual Reference Feedback Tuning. Recent Advances in Electrical and Electronic Engineering, 2021, 14, 210-221.	0.3	2
280	Guest Editorial: Special issue on memetic algorithms with learning strategy. Memetic Computing, 2021, 13, 147-148.	4.0	2
281	A Novel Evolutionary Algorithm with Adaptation Mechanism for Fuzzy Permutation Flow-Shop Scheduling. , 2021, , .		2
282	Short-Term Load Forecasting Based on RBM and NARX Neural Network. Lecture Notes in Computer Science, 2018, , 193-203.	1.3	2
283	Learning Whale Optimization Algorithm for Open Vehicle Routing Problem with Loading Constraints. Discrete Dynamics in Nature and Society, 2021, 2021, 1-14.	0.9	2
284	Chaotic particle swarm optimization for synchronization of finite dimensional H& $\#$ x00E9;non dynamical system. , 2010, , .		1
285	Control of Hénon chaotic systems by chaotic particle swarm optimization., 2010,,.		1
286	A compact estimation of distribution algorithm for solving hybrid flow-shop scheduling problem. , 2012, , .		1
287	An estimation of distribution algorithm for the multi-objective flexible job-shop scheduling problem. , 2013, , .		1
288	A continuous-time formulation for refinery production scheduling problems involving operational transitions in mode switching. Chinese Journal of Chemical Engineering, 2016, 24, 1020-1031.	3.5	1

#	Article	IF	Citations
289	A t-level driven search for estimation of distribution algorithm in solving task graph allocation to multiprocessors. , $2017, \ldots$		1
290	A Modified MOEA/D for Energy-efficient Flexible Job Shop Scheduling Problem. , 2018, , .		1
291	Hybrid Cross-entropy Algorithm for Mixed Model U-shaped Assembly Line Balancing Problem. Lecture Notes in Computer Science, 2019, , 676-685.	1.3	1
292	A comparative study on evolutionary algorithms for the agent routing problem in multi-point dynamic task. International Journal of Automation and Control, 2020, 14, 571.	0.5	1
293	Solving Online Food Delivery Problem via an Effective Hybrid Algorithm with Intelligent Batching Strategy. Lecture Notes in Computer Science, 2021, , 340-354.	1.3	1
294	Guest Editorial on "Knowledge fusion intelligent optimization for complex systems― Complex & Intelligent Systems, 2021, 7, 1123.	6.5	1
295	An effective iterated greedy algorithm for PCBs grouping problem to minimize setup times. Applied Soft Computing Journal, 2021, 112, 107830.	7.2	1
296	Carbon-Efficient Scheduling of Blocking Flow Shop by Hybrid Quantum-Inspired Evolution Algorithm. Lecture Notes in Computer Science, 2018, , 606-617.	1.3	1
297	Human Learning Optimization with Self-tuning Random Learning Strategy. , 2021, , .		1
298	A Human Learning Optimization Algorithm with Link Prediction Strategy., 2021,,.		1
299	Water Level Control of Steam Generator in Nuclear Power Plant Based on Intelligent MFAC-PID. , 2021, , .		1
300	Two Possible Paradoxes in Numerical Comparisons of Optimization Algorithms. Lecture Notes in Computer Science, 2018, , 681-692.	1.3	1
301	Differential Human Learning Optimization Algorithm. Computational Intelligence and Neuroscience, 2022, 2022, 1-19.	1.7	1
302	An adaptive human learning optimization with enhanced exploration–exploitation balance. Annals of Mathematics and Artificial Intelligence, 0, , .	1.3	1
303	An estimation of distribution algorithm with multiple intensification strategies for two-stage hybrid flow-shop scheduling problem with sequence-dependent setup time. Applied Intelligence, 0, , .	5. 3	1
304	A brain storm optimization algorithm with feature information knowledge and learning mechanism. Applied Intelligence, 0, , .	5.3	1
305	A Modified Mutation-Dissipation Binary Particle Swarm Optimization Algorithm and Its Application to WFGD Control. , 2008, , .		0
306	A hybrid algorithm based on simplex search and differential evolution for hybrid flow-shop scheduling. , $2012, , .$		0

#	Article	IF	CITATIONS
307	Whale Optimization Algorithm with Local Search for Open Shop Scheduling Problem to Minimize Makespan. Lecture Notes in Computer Science, 2019, , 678-687.	1.3	0
308	Iterated Local Search for Steelmaking-refining-Continuous Casting Scheduling Problem. , 2019, , .		0
309	Sensing: Reversible/Irreversible Photobleaching of Fluorescent Surface Defects of SiC Quantum Dots: Mechanism and Sensing of Solar UV Irradiation (Adv. Mater. Interfaces 11/2019). Advanced Materials Interfaces, 2019, 6, 1970070.	3.7	0
310	Hybrid Grey Wolf Optimizer for Vehicle Routing Problem with Multiple Time Windows. Lecture Notes in Computer Science, 2021, , 684-693.	1.3	0
311	Multidimensional Estimation of Distribution Algorithm for Distributed No-Wait Flow-Shop Scheduling Problem with Sequence-Independent Setup Times and Release Dates. Lecture Notes in Computer Science, 2021, , 663-672.	1.3	0
312	An Improved Lagrangian Relaxation Algorithm for Solving the Lower Bound of Production Logistics. Lecture Notes in Computer Science, 2021, , 652-662.	1.3	0
313	è€f虑è¿è¾"æ—¶é—´çš"å^†å¸få¼ç»¿è‰²æŸ"性作业车间è°f度ååŒç¾æ™ºèf½ä¼°åŒ—. Zhonggu	o Kes ue Jis	shwKexue/Sc
314	Extremized PICEA-g for Nadir Point Estimation in Many-Objective Optimization. Lecture Notes in Computer Science, 2018, , 807-814.	1.3	0
315	Improved Sub-gradient Algorithm for Solving the Lower Bound of No-Wait Flow-Shop Scheduling with Sequence-Dependent Setup Times and Release Dates. Lecture Notes in Computer Science, 2018, , 93-101.	1.3	0
316	Tractor steering teleoperation control with fuzzy PID algorithm based on delay time measurement with timestamp. , 2020, , .		0
317	Multipartite-Graph Representation for Transportation Planning in Express Delivery Network. , 2021, , .		0
318	Malware detection based on multiâ€objective convolution restricted Boltzmann machine model and constraintâ€dividing crossover strategy algorithm. Concurrency Computation Practice and Experience, 0, , .	2.2	0