Lei Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1898463/publications.pdf

Version: 2024-02-01

146	6,518	45	74
papers	citations	h-index	g-index
160	160	160	6751 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	A Structural Investigation of the Nâ^'B Interaction in ano-(N,N-Dialkylaminomethyl)arylboronate System. Journal of the American Chemical Society, 2006, 128, 1222-1232.	13.7	306
2	Facile Quantification of Enantiomeric ExcessandConcentration with Indicator-Displacement Assays: \hat{A} An Example in the Analyses of \hat{I} ±-Hydroxyacids. Journal of the American Chemical Society, 2004, 126, 3676-3677.	13.7	212
3	Mechanistic view of Ru-catalyzed C–H bond activation and functionalization: computational advances. Chemical Society Reviews, 2018, 47, 7552-7576.	38.1	212
4	Apparent Copper(II)-Accelerated Azideâ^'Alkyne Cycloaddition. Organic Letters, 2009, 11, 4954-4957.	4.6	198
5	Highly Sensitive Fluorescent Probes for Zinc Ion Based on Triazolyl-Containing Tetradentate Coordination Motifs. Organic Letters, 2007, 9, 4999-5002.	4.6	188
6	Guidelines in Implementing Enantioselective Indicator-Displacement Assays for \hat{l}_{\pm} -Hydroxycarboxylates and Diols. Journal of the American Chemical Society, 2005, 127, 4260-4269.	13.7	175
7	Asymmetric Propargylic Radical Cyanation Enabled by Dual Organophotoredox and Copper Catalysis. Journal of the American Chemical Society, 2019, 141, 6167-6172.	13.7	174
8	Experimental Investigation on the Mechanism of Chelation-Assisted, Copper(II) Acetate-Accelerated Azide–Alkyne Cycloaddition. Journal of the American Chemical Society, 2011, 133, 13984-14001.	13.7	160
9	Chelation-Assisted, Copper(II)-Acetate-Accelerated Azideâ^'Alkyne Cycloaddition. Journal of Organic Chemistry, 2010, 75, 6540-6548.	3.2	146
10	Signal Amplification by Allosteric Catalysis. Angewandte Chemie - International Edition, 2006, 45, 1190-1196.	13.8	139
11	A Phosphorescent Molecular "Butterfly―that undergoes a Photoinduced Structural Change allowing Temperature Sensing and White Emission. Angewandte Chemie - International Edition, 2014, 53, 10908-10912.	13.8	129
12	Synthesis of 5-lodo-1,4-disubstituted-1,2,3-triazoles Mediated by in Situ Generated Copper(I) Catalyst and Electrophilic Triiodide Ion. Journal of Organic Chemistry, 2012, 77, 6443-6455.	3.2	116
13	Ruthenium(II)-enabled para-selective C–H difluoromethylation of anilidesÂand their derivatives. Nature Communications, 2018, 9, 1189.	12.8	104
14	Highly Selective and Catalytic Generation of Acyclic Quaternary Carbon Stereocenters via Functionalization of 1,3-Dienes with CO ₂ . Journal of the American Chemical Society, 2019, 141, 18825-18835.	13.7	104
15	Unmasking the Ligand Effect in Manganese-Catalyzed Hydrogenation: Mechanistic Insight and Catalytic Application. Journal of the American Chemical Society, 2019, 141, 17337-17349.	13.7	102
16	Visibleâ€Light Photoredoxâ€Catalyzed Remote Difunctionalizing Carboxylation of Unactivated Alkenes with CO ₂ . Angewandte Chemie - International Edition, 2020, 59, 21121-21128.	13.8	102
17	Ruthenium(II)â€Catalyzed Câ^'H Difluoromethylation of Ketoximes: Tuning the Regioselectivity from the <i>meta</i> to the <i>para</i> Position. Angewandte Chemie - International Edition, 2018, 57, 1277-1281.	13.8	100
18	Zn(<scp>ii</scp>)-coordination modulated ligand photophysical processes – the development of fluorescent indicators for imaging biological Zn(<scp>ii</scp>) ions. RSC Advances, 2014, 4, 20398-20440.	3.6	99

#	Article	IF	CITATIONS
19	Catalytic enantioselective construction of vicinal quaternary carbon stereocenters. Chemical Science, 2020, 11, 9341-9365.	7.4	96
20	A Heteroditopic Fluoroionophoric Platform for Constructing Fluorescent Probes with Large Dynamic Ranges for Zinc Ions. Chemistry - A European Journal, 2008, 14, 2894-2903.	3.3	85
21	Precise Design of Phosphorescent Molecular Butterflies with Tunable Photoinduced Structural Change and Dual Emission. Angewandte Chemie - International Edition, 2015, 54, 9591-9595.	13.8	85
22	Radical Trifluoromethylative Dearomatization of Indoles and Furans with CO ₂ . ACS Catalysis, 2017, 7, 8324-8330.	11.2	85
23	Geometry-Dependent Phosphodiester Hydrolysis Catalyzed by Binuclear Copper Complexes. Inorganic Chemistry, 2003, 42, 7912-7920.	4.0	81
24	Structurally Diverse Copper(II) Complexes of Polyaza Ligands Containing 1,2,3-Triazoles: Site Selectivity and Magnetic Properties. Inorganic Chemistry, 2012, 51, 3465-3477.	4.0	78
25	A FRET-based indicator for imaging mitochondrial zinc ions. Chemical Communications, 2011, 47, 11730.	4.1	77
26	On the Mechanism of Copper(I)-Catalyzed Azide-Alkyne Cycloaddition. Chemical Record, 2016, 16, 1501-1517.	5.8	74
27	Well-Designed Phosphine–Urea Ligand for Highly Diastereo- and Enantioselective 1,3-Dipolar Cycloaddition of Methacrylonitrile: A Combined Experimental and Theoretical Study. Journal of the American Chemical Society, 2019, 141, 961-971.	13.7	70
28	Visible-Light-Driven Anti-Markovnikov Hydrocarboxylation of Acrylates and Styrenes with CO ₂ . CCS Chemistry, 2021, 3, 1746-1756.	7.8	70
29	Integrated and Passive 1,2,3-Triazolyl Groups in Fluorescent Indicators for Zinc(II) Ions: Thermodynamic and Kinetic Evaluations. Inorganic Chemistry, 2013, 52, 5838-5850.	4.0	67
30	Fluorescent dyes of the esculetin and alizarin families respond to zinc ions ratiometrically. Chemical Communications, 2007, , 1891.	4.1	66
31	2-Anthryltriazolyl-Containing Multidentate Ligands: Zinc-Coordination Mediated Photophysical Processes and Potential in Live-Cell Imaging Applications. Inorganic Chemistry, 2010, 49, 4278-4287.	4.0	66
32	Silver Migration Facilitates Isocyanide-Alkyne [3 + 2] Cycloaddition Reactions: Combined Experimental and Theoretical Study. ACS Catalysis, 2015, 5, 6640-6647.	11.2	66
33	Catalytic Lactonization of Unactivated Aryl C–H Bonds with CO ₂ : Experimental and Computational Investigation. Organic Letters, 2018, 20, 3776-3779.	4.6	64
34	Ruthenium-catalyzed umpolung carboxylation of hydrazones with CO ₂ . Chemical Science, 2018, 9, 4873-4878.	7.4	62
35	Chemoselective Sequential "Click―Ligation Using Unsymmetrical Bisazides. Organic Letters, 2012, 14, 2590-2593.	4.6	61
36	Rhodium/Copper Cocatalyzed Highly trans-Selective 1,2-Diheteroarylation of Alkynes with Azoles via Câ€"H Addition/Oxidative Cross-Coupling: A Combined Experimental and Theoretical Study. Journal of the American Chemical Society, 2017, 139, 15724-15737.	13.7	59

#	Article	IF	Citations
37	Nylon/DNA:Â Single-Stranded DNA with a Covalently Stitched Nylon Lining. Journal of the American Chemical Society, 2003, 125, 10178-10179.	13.7	55
38	Revealing HOCl burst from endoplasmic reticulum in cisplatin-treated cells via a ratiometric fluorescent probe. Chinese Chemical Letters, 2021, 32, 1795-1798.	9.0	53
39	Fluorescence of 5-Arylvinyl-5′-Methyl-2,2′-Bipyridyl Ligands and Their Zinc Complexes. Journal of Organic Chemistry, 2009, 74, 8761-8772.	3.2	51
40	Tricolor Emission of a Fluorescent Heteroditopic Ligand over a Concentration Gradient of Zinc(II) lons. Journal of Organic Chemistry, 2012, 77, 8268-8279.	3.2	51
41	FRET induced by an â€~allosteric' cycloaddition reaction regulated with exogenous inhibitor and effectors. Tetrahedron, 2004, 60, 7267-7275.	1.9	50
42	Two Methods for the Determination of Enantiomeric Excess and Concentration of a Chiral Sample with a Single Spectroscopic Measurement. Chemistry - A European Journal, 2007, 13, 99-104.	3.3	50
43	A Fluorescent Indicator for Imaging Lysosomal Zinc(II) with Förster Resonance Energy Transfer (FRET)â€Enhanced Photostability and a Narrow Band of Emission. Chemistry - A European Journal, 2015, 21, 867-874.	3.3	48
44	Tridentate complexes of 2,6-bis(4-substituted-1,2,3-triazol-1-ylmethyl)pyridine and its organic azide precursors: an application of the copper(ii) acetate-accelerated azide–alkyne cycloaddition. Dalton Transactions, 2011, 40, 3655.	3.3	46
45	Ligandâ€Assisted, Copper(II) Acetateâ€Accelerated Azide–Alkyne Cycloaddition. Chemistry - an Asian Journal, 2011, 6, 2825-2834.	3.3	46
46	5-Arylvinylene-2,2′-bipyridyls: Bright "push–pull―dyes as components in fluorescent indicators for zinc ions. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 311, 1-15.	3.9	46
47	The mechanism of copper-catalyzed oxytrifluoromethylation of allylamines with CO ₂ : a computational study. Organic Chemistry Frontiers, 2018, 5, 633-639.	4.5	46
48	Mechanism of Synergistic Cu(II)/Cu(I)-Mediated Alkyne Coupling: Dinuclear 1,2-Reductive Elimination after Minimum Energy Crossing Point. Journal of Organic Chemistry, 2016, 81, 1654-1660.	3.2	42
49	Photochemically Stable Fluorescent Heteroditopic Ligands for Zinc Ion. Journal of Organic Chemistry, 2008, 73, 8321-8330.	3.2	41
50	Metal-coordination-mediated sequential chelation-enhanced fluorescence (CHEF) and fluorescence resonance energy transfer (FRET) in a heteroditopic ligand system. New Journal of Chemistry, 2010, 34, 2176.	2.8	41
51	Mechanism of Copper(I)-Catalyzed 5-lodo-1,2,3-triazole Formation from Azide and Terminal Alkyne. Journal of Organic Chemistry, 2015, 80, 9542-9551.	3.2	41
52	Oxidative Addition Promoted C–C Bond Cleavage in Rh-Mediated Cyclopropenone Activation: A DFT Study. ACS Catalysis, 2019, 9, 10876-10886.	11.2	40
53	Development of a Rhodium(II) atalyzed Chemoselective C(sp ³)H Oxygenation. Chemistry - A European Journal, 2015, 21, 14937-14942.	3.3	38
54	Ir(III)/Ir(V) or Ir(I)/Ir(III) Catalytic Cycle? Steric-Effect-Controlled Mechanism for the <i>para</i> -C–H Borylation of Arenes. Organometallics, 2017, 36, 2107-2115.	2.3	38

#	Article	IF	Citations
55	A ratiometric fluorescent probe for monitoring pH fluctuations during autophagy in living cells. Chemical Communications, 2021, 57, 1510-1513.	4.1	37
56	Palladium-Catalyzed Modular and Enantioselective <i>cis</i> -Difunctionalization of 1,3-Enynes with Imines and Boronic Reagents. Journal of the American Chemical Society, 2021, 143, 17989-17994.	13.7	37
57	Stabilization of Two Radicals with One Metal: A Stepwise Coupling Model for Copper-Catalyzed Radical–Radical Cross-Coupling. Scientific Reports, 2017, 7, 43579.	3.3	35
58	Enantiodivergence by minimal modification of an acyclic chiral secondary aminocatalyst. Nature Communications, 2019, 10, 5182.	12.8	35
59	Theoretical Study of the Addition of Cu–Carbenes to Acetylenes to Form Chiral Allenes. Journal of the American Chemical Society, 2019, 141, 5772-5780.	13.7	35
60	Tuning the Reactivity of Radical through a Triplet Diradical Cu(II) Intermediate in Radical Oxidative Cross-Coupling. Scientific Reports, 2015, 5, 15934.	3.3	34
61	Annulation cascade of arylnitriles with alkynes to stable delocalized PAH carbocations <i>via</i> intramolecular rhodium migration. Chemical Science, 2018, 9, 5488-5493.	7.4	34
62	Experimental and Theoretical Studies on Ru(II)-Catalyzed Oxidative C–H/C–H Coupling of Phenols with Aromatic Amides Using Air as Oxidant: Scope, Synthetic Applications, and Mechanistic Insights. ACS Catalysis, 2018, 8, 8324-8335.	11.2	34
63	Synthesis of 5-lodo-1,2,3-triazoles from Organic Azides and Terminal AlkynesÂ: Ligand Acceleration Effect, Substrate Scope, and Mechanistic Insights. Synthesis, 2013, 45, 2372-2386.	2.3	33
64	Rhodium-Catalyzed Hetero- $(5 + 2)$ Cycloaddition of Vinylaziridines and Alkynes: A Theoretical View of the Mechanism and Chirality Transfer. Organometallics, 2016, 35, 771-777.	2.3	33
65	Highly enantioselective nitro-Mannich reaction of ketimines under phase-transfer catalysis. Organic Chemistry Frontiers, 2017, 4, 1266-1271.	4.5	33
66	Cu(II)-Catalyzed Oxidative Formation of 5,5′-Bistriazoles. Journal of Organic Chemistry, 2016, 81, 12091-12105.	3.2	32
67	Nucleophilicity versus Brønsted Basicity Controlled Chemoselectivity: Mechanistic Insight into Silver- or Scandium-Catalyzed Diazo Functionalization. ACS Catalysis, 2020, 10, 1256-1263.	11.2	31
68	Regio- and Enantioselective Hydroalkylations of Unactivated Olefins Enabled by Nickel Catalysis: Reaction Development and Mechanistic Insights. ACS Catalysis, 2022, 12, 5795-5805.	11,2	31
69	Excitation-Dependent Multiple Fluorescence of a Substituted 2-(2′-Hydroxyphenyl)benzoxazole. Journal of Physical Chemistry A, 2018, 122, 9209-9223.	2.5	30
70	Catechol boronate formation and its electrochemical oxidation. Chemical Communications, 2009, , 2151.	4.1	29
71	A novel benzothiazine-fused coumarin derivative for sensing hypochlorite with high performance. Dyes and Pigments, 2020, 182, 108675.	3.7	28
72	Mini review: Fluorescent heteroditopic ligands of metal ions. Supramolecular Chemistry, 2009, 21, 268-283.	1.2	26

#	Article	IF	Citations
73	Absorption and Emission Sensitivity of 2â€(2‹46Hydroxyphenyl)benzoxazole to Solvents and Impurities. Photochemistry and Photobiology, 2015, 91, 586-598.	2.5	26
74	Ruthenium(II)â€Catalyzed Câ^H Difluoromethylation of Ketoximes: Tuning the Regioselectivity from the ⟨i⟩meta⟨ i⟩ to the ⟨i⟩para⟨ i⟩ Position. Angewandte Chemie, 2018, 130, 1291-1295.	2.0	26
75	Theoretical insight into phosphoric acid-catalyzed asymmetric conjugate addition of indolizines to \hat{l}_{\pm}, \hat{l}^2 -unsaturated ketones. Chinese Chemical Letters, 2018, 29, 1237-1241.	9.0	26
76	SNAP/CLIP-Tags and Strain-Promoted Azide–Alkyne Cycloaddition (SPAAC)/Inverse Electron Demand Diels–Alder (IEDDA) for Intracellular Orthogonal/Bioorthogonal Labeling. Bioconjugate Chemistry, 2020, 31, 1370-1381.	3.6	26
77	Balance between Fluorescence Enhancement and Association Affinity in Fluorescent Heteroditopic Indicators for Imaging Zinc Ion in Living Cells. Inorganic Chemistry, 2011, 50, 10493-10504.	4.0	25
78	Bioinspired Total Synthesis of Homodimericinâ€A. Angewandte Chemie - International Edition, 2017, 56, 7890-7894.	13.8	25
79	Bioinspired Asymmetric Synthesis of Hispidaninâ€A. Angewandte Chemie - International Edition, 2017, 56, 5844-5848.	13.8	24
80	Structural Determinants of Alkyne Reactivity in Copper-Catalyzed Azide-Alkyne Cycloadditions. Molecules, 2016, 21, 1697.	3.8	23
81	Layered Chirality Relay Model in Rh(I)-Mediated Enantioselective C–Si Bond Activation: A Theoretical Study. Organic Letters, 2020, 22, 2124-2128.	4.6	23
82	Unimolecular binary half-adders with orthogonal chemical inputs. Chemical Communications, 2008, , 1880.	4.1	22
83	A fluorescent heteroditopic ligand responding to free zinc ion over six orders of magnitude concentration range. Chemical Communications, 2009, , 7408.	4.1	22
84	Formal Asymmetric Cycloaddition of Activated $\hat{l}\pm,\hat{l}^2$ -Unsaturated Ketones with $\hat{l}\pm$ -Diazomethylphosphonate Mediated by a Chiral Silver SPINOL Phosphate Catalyst. Organic Letters, 2019, 21, 593-597.	4.6	22
85	Fluorescence of Hydroxyphenyl-Substituted "Click―Triazoles. Journal of Physical Chemistry A, 2018, 122, 2956-2973.	2.5	21
86	Insights into disilylation and distannation: sequence influence and ligand/steric effects on Pd-catalyzed difunctionalization of carbenes. Dalton Transactions, 2018, 47, 1819-1826.	3.3	21
87	Visibleâ€Light Photoredoxâ€Catalyzed Remote Difunctionalizing Carboxylation of Unactivated Alkenes with CO ₂ . Angewandte Chemie, 2020, 132, 21307-21314.	2.0	21
88	Enantioselective alkynylation of N-sulfonyl α-ketiminoesters via a Friedel–Crafts alkylation strategy. Chemical Communications, 2017, 53, 5890-5893.	4.1	20
89	Synthesis of 1-Cyanoalkynes and Their Ruthenium(II)-Catalyzed Cycloaddition with Organic Azides to Afford 4-Cyano-1,2,3-triazoles. Journal of Organic Chemistry, 2018, 83, 5092-5103.	3.2	20
90	Mechanistic Insight into Palladiumâ€Catalyzed Carbocyclizationâ€Functionalization of Bisallene: A Computational Study. ChemCatChem, 2019, 11, 1228-1237.	3.7	20

#	Article	IF	CITATIONS
91	An unusual [4 + 2] fusion strategy to forge meso-N/O-heteroarene-fused (quinoidal) porphyrins with intense near-infrared Q-bands. Chemical Science, 2019, 10, 7274-7280.	7.4	20
92	Nickel-catalyzed migratory alkyl–alkyl cross-coupling reaction. Chemical Science, 2020, 11, 10461-10464.	7.4	20
93	Combining palladium and ammonium halide catalysts for Morita–Baylis–Hillman carbonates of methyl vinyl ketone: from 1,4-carbodipoles to ion pairs. Chemical Science, 2021, 12, 11399-11405.	7.4	20
94	Reactivity and regioselectivity in Diels–Alder reactions of anion encapsulated fullerenes. Physical Chemistry Chemical Physics, 2017, 19, 30393-30401.	2.8	19
95	$\ddot{l}f$ -Bond Migration Assisted Decarboxylative Activation of Vinylene Carbonate in Rh-Catalyzed 4 + 2 Annulation: A Theoretical Study. Organometallics, 2020, 39, 2813-2819.	2.3	19
96	Tunable Dual Fluorescence of 3â€(2,2â€2â€Bipyridyl)â€Substituted Iminocoumarin. ChemPhysChem, 2012, 13, 3827-3835.	2.1	18
97	Dual Role of Acetate in Copper(II) Acetate Catalyzed Dehydrogenation of Chelating Aromatic Secondary Amines: A Kinetic Case Study of Copperâ€Catalyzed Oxidation Reactions. European Journal of Inorganic Chemistry, 2016, 2016, 3728-3743.	2.0	18
98	Enhancing the Photostability of Arylvinylenebipyridyl Compounds as Fluorescent Indicators for Intracellular Zinc(II) Ions. Journal of Organic Chemistry, 2015, 80, 5600-5610.	3.2	17
99	Structures, Metal Ion Affinities, and Fluorescence Properties of Soluble Derivatives of Tris((6-phenyl-2-pyridyl)methyl)amine. Inorganic Chemistry, 2009, 48, 11196-11208.	4.0	16
100	Electronic structural dependence of the photophysical properties of fluorescent heteroditopic ligands – implications in designing molecular fluorescent indicators. Organic and Biomolecular Chemistry, 2010, 8, 5431.	2.8	16
101	Site-Selective α-Alkoxyl Alkynation of Alkyl Esters Mediated by Boryl Radicals. Organic Letters, 2019, 21, 2927-2931.	4.6	16
102	Kinetically Controlled Radical Addition/Elimination Cascade: From Alkynyl Aziridine to Fluorinated Allenes. Organic Letters, 2020, 22, 2419-2424.	4.6	16
103	Zn ^{II} and Pb ^{II} coordination chemistry of 2,6-bis(1,2,3-triazol-4-yl)pyridine (clickate) and the metal ion-dependent emission of †clickate†appended anthracene. Supramolecular Chemistry, 2012, 24, 696-706.	1.2	14
104	Bis[<i>N</i> -alkyl- <i>NN</i> -di(2-pyridylmethyl)amine]zinc(II) perchlorates display <i>cis-facial</i> stereochemistry in solid state and solution. Supramolecular Chemistry, 2014, 26, 214-222.	1.2	14
105	Thiolate–palladium(<scp>iv</scp>) or sulfonium–palladate(0)? A theoretical study on the mechanism of palladium-catalyzed C–S bond formation reactions. Organic Chemistry Frontiers, 2017, 4, 943-950.	4.5	13
106	Theoretical prediction on the reactivity of the Co-mediated intramolecular Pauson-Khand reaction for constructing bicyclo-skeletons in natural products. Chinese Chemical Letters, 2019, 30, 889-894.	9.0	13
107	Protecting-Group-Free Total Syntheses of $(\hat{A}\pm)$ -Norascyronones A and B. Organic Letters, 2020, 22, 2517-2521.	4.6	13
108	Mechanistic Insights into Manganese (I) atalyzed Chemoselective Hydroarylations of Alkynes: A Theoretical Study. ChemCatChem, 2018, 10, 5280-5286.	3.7	12

#	Article	IF	Citations
109	Recyclable Heterogeneous Chitosan Supported Copper Catalyst for Silyl Conjugate Addition to $\hat{l}\pm,\hat{l}^2$ -Unsaturated Acceptors in Water. Polymers, 2018, 10, 385.	4.5	12
110	Theoretical study of FMO adjusted C-H cleavage and oxidative addition in nickel catalysed C-H arylation. Communications Chemistry, 2019, 2, .	4.5	12
111	Preparation and characterization of lignin grafted layered double hydroxides for sustainable service of bitumen under ultraviolet light. Journal of Cleaner Production, 2022, 350, 131536.	9.3	12
112	Efficient Synthesis of Dimeric Oxazoles, Piperidines and Tetrahydroisoquinolines from <i>N</i> à€6ubstituted 2â€0xazolones. Chemistry - A European Journal, 2016, 22, 7696-7701.	3.3	11
113	From Mechanistic Study to Chiral Catalyst Optimization: Theoretical Insight into Binaphthophosphepine-catalyzed Asymmetric Intramolecular [3 + 2] Cycloaddition. Scientific Reports, 2017, 7, 7619.	3.3	11
114	Synergistic Dinuclear Rhodium Induced Rhodium-Walking Enabling Alkene Terminal Arylation: A Theoretical Study. ACS Catalysis, 2021, 11, 3975-3987.	11.2	11
115	Fused Polycyclic Compounds via Cycloaddition of 4- $(1\hat{a}\in^2$ -Cyclohexenyl)-5-iodo-1,2,3-triazoles with 4-Phenyl-1,2,4-triazoline-3,5-dione: The Importance of a Sacrificial Iodide Leaving Group. Journal of Organic Chemistry, 2013, 78, 5038-5044.	3.2	10
116	How Solvents Control the Chemoselectivity in Rh-Catalyzed Defluorinated [4 + 1] Annulation. Organic Letters, 2021, 23, 1489-1494.	4.6	10
117	REACTION OF N3-BENZOYL-3′,5′-O-(DI-TERT-BUTYLSILANEDIYL)URIDINE WITH HINDERED ELECTROPHILES: INTERMOLECULAR N3To 2′-OPROTECTING GROUP TRANSFER. Nucleosides, Nucleotides and Nucleic Acids, 2002, 21, 723-735.	1.1	9
118	Beyond O ⁶ -Benzylguanine: O ⁶ -(5-Pyridylmethyl)guanine as a Substrate for the Self-Labeling Enzyme SNAP-Tag. Bioconjugate Chemistry, 2018, 29, 4104-4109.	3.6	9
119	Borylation of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Acceptors by Chitosan Composite Film Supported Copper Nanoparticles. Nanomaterials, 2018, 8, 326.	4.1	9
120	Acyl radical to rhodacycle addition and cyclization relay to access butterfly flavylium fluorophores. Nature Communications, 2019, 10, 5664.	12.8	9
121	Theoretical Advances on the Mechanism of Transition Metal-Catalyzed C—F Functionalization. Chinese Journal of Organic Chemistry, 2019, 39, 38.	1.3	9
122	Mechanistic insights into the rhodium–copper cascade catalyzed dual C–H annulation of indoles. Organic Chemistry Frontiers, 2021, 8, 1739-1746.	4.5	8
123	Distinguishing FÃ \P rster resonance energy transfer and solvent-mediated charge-transfer relaxation dynamics in a zinc(ii) indicator: a femtosecond time-resolved transient absorption spectroscopic study. Physical Chemistry Chemical Physics, 2014, 16, 5088-5092.	2.8	7
124	Hydroxyaromatic Fluorophores. ACS Omega, 2021, 6, 3447-3462.	3.5	7
125	Cellulosic Cul Nanoparticles as a Heterogeneous, Recyclable Catalyst for the Borylation of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Acceptors in Aqueous Media. Catalysis Letters, 2021, 151, 3220-3229.	2.6	7
126	Triple Emission of 5′-(<i>para</i> -R-Phenylene)vinylene-2-(2′-hydroxyphenyl)benzoxazole (PVHBO). Part I: Dual Emission from the Neutral Species. Journal of Physical Chemistry A, 2022, 126, 1033-1061.	2.5	7

#	Article	IF	CITATIONS
127	Highly Enantioselective Synthesis of [1,2,4]Triazino[5,4- <i>a</i>)]isoquinoline Derivatives via (3 + 3) Cycloaddition Reactions of Diazo Compounds and Isoquinolinium Methylides. Organic Letters, 2022, 24, 3766-3771.	4.6	7
128	Unveiling how intramolecular stacking modes of covalently linked dimers dictate photoswitching properties. Nature Communications, 2019, 10, 5480.	12.8	6
129	The Collective Power of Genetically Encoded Protein/Peptide Tags and Bioorthogonal Chemistry in Biological Fluorescence Imaging. ChemPhotoChem, 2021, 5, 187-216.	3.0	6
130	Palladium-Catalyzed Intramolecular Diarylation of 1,3-Diketone in Total Synthesis of (±)-Spiroaxillarone A. Organic Letters, 2022, 24, 1491-1495.	4.6	6
131	Progressive structural modification to a zinc-actuated photoinduced electron transfer (PeT) switch in the context of intracellular zinc imaging. Organic and Biomolecular Chemistry, 2017, 15, 9139-9148.	2.8	5
132	Bioinspired Total Synthesis of Homodimericinâ€A. Angewandte Chemie, 2017, 129, 7998-8002.	2.0	4
133	Pyrrole \hat{l}^2 -amides: Synthesis and characterization of a dipyrrinone carboxylic acid and an N-Confused fluorescent dipyrrinone. Tetrahedron, 2018, 74, 1698-1704.	1.9	4
134	Retro-metal-ene <i>versus</i> retro-Aldol: mechanistic insight into Rh-catalysed formal [3+2] cycloaddition. Chemical Communications, 2018, 54, 13551-13554.	4.1	4
135	Cu ^{II} â€Catalyzed Oxidative Formation of 5â€Alkynyltriazoles. Chemistry - an Asian Journal, 2020, 15, 380-390.	3.3	4
136	Zinc(II) Complexes of N , N â€Di(2â€picolyl)hydrazones. European Journal of Inorganic Chemistry, 2016, 2016, 5477-5484.	2.0	3
137	Bioinspired Asymmetric Synthesis of Hispidaninâ€A. Angewandte Chemie, 2017, 129, 5938-5942.	2.0	3
138	The influence of amino substituents on the signalâ€output, selectivity, and sensitivity of a hydroxyaromatic 1,2,3â€triazolyl chemosensor for anionsâ€"A structureâ€"property relationship investigation. Journal of Physical Organic Chemistry, 2020, 33, e4078.	1.9	3
139	Controllable Preparation of Chiral Oxazoline-Cu(II) Catalyst as Nanoreactor for Highly Asymmetric Henry Reaction in Water. Catalysis Letters, 2022, 152, 106-115.	2.6	3
140	Expanding the substrate selectivity of SNAP/CLIP-tagging of intracellular targets. Methods in Enzymology, 2020, 638, 233-257.	1.0	3
141	Ligand effect on nickle-catalyzed reductive alkyne-aldehyde coupling reactions: a computational study. Scientia Sinica Chimica, 2017, 47, 341-349.	0.4	2
142	Triple Emission of $5\hat{a}\in^2$ -(para-R-Phenylene)vinylene-2-($2\hat{a}\in^2$ -hydroxyphenyl)benzoxazole (PVHBO). Part II: Emission from Anions. Journal of Physical Chemistry A, 2022, , .	2.5	2
143	Inside Back Cover: Fabrication of Highly Stable Glycoâ€Gold Nanoparticles and Development of a Glycoâ€Gold Nanoparticleâ€Based Oriented Immobilized Antibody Microarray for Lectin (GOAL) Assay (Chem. Eur. J. 10/2015). Chemistry - A European Journal, 2015, 21, 4163-4163.	3.3	1
144	Copper(II)-Catalyzed 1,6-Hydroboration Reactions of pâ€'Quinone Methides Under Ligand-Free Conditions: A Sequential Methodology to gem-Disubstituted Methanols. Catalysis Letters, 0, , .	2.6	1

#	Article	IF	CITATIONS
145	Titelbild: Precise Design of Phosphorescent Molecular Butterflies with Tunable Photoinduced Structural Change and Dual Emission (Angew. Chem. 33/2015). Angewandte Chemie, 2015, 127, 9553-9553.	2.0	O
146	Frontispiece: Efficient Synthesis of Dimeric Oxazoles, Piperidines and Tetrahydroisoquinolines from ⟨i>N⟨ i>â€Substituted 2â€Oxazolones. Chemistry - A European Journal, 2016, 22, .	3.3	0