Daniel Gagnon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/189765/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sex differences in thermoeffector responses during exercise at fixed requirements for heat loss. Journal of Applied Physiology, 2012, 113, 746-757.	2.5	168
2	The evaporative requirement for heat balance determines wholeâ€body sweat rate during exercise under conditions permitting full evaporation. Journal of Physiology, 2013, 591, 2925-2935.	2.9	156
3	Does sex have an independent effect on thermoeffector responses during exercise in the heat?. Journal of Physiology, 2012, 590, 5963-5973.	2.9	153
4	Sex modulates wholeâ€body sudomotor thermosensitivity during exercise. Journal of Physiology, 2011, 589, 6205-6217.	2.9	104
5	Sex differences in postsynaptic sweating and cutaneous vasodilation. Journal of Applied Physiology, 2013, 114, 394-401.	2.5	102
6	Direct calorimetry: a brief historical review of its use in the study of human metabolism and thermoregulation. European Journal of Applied Physiology, 2017, 117, 1765-1785.	2.5	87
7	Sex-related differences in evaporative heat loss: the importance of metabolic heat production. European Journal of Applied Physiology, 2008, 104, 821-829.	2.5	69
8	Human temperature regulation under heat stress in health, disease, and injury. Physiological Reviews, 2022, 102, 1907-1989.	28.8	69
9	Acute limb heating improves macro- and microvascular dilator function in the leg of aged humans. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H89-H97.	3.2	62
10	Cold-Water Immersion and the Treatment of Hyperthermia: Using 38.6°C as a Safe Rectal Temperature Cooling Limit. Journal of Athletic Training, 2010, 45, 439-444.	1.8	61
11	Whole-Body Heat Exchange during Heat Acclimation and Its Decay. Medicine and Science in Sports and Exercise, 2015, 47, 390-400.	0.4	56
12	Cognitive and perceptual responses during passive heat stress in younger and older adults. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R847-R854.	1.8	51
13	Aural Canal, Esophageal, and Rectal Temperatures During Exertional Heat Stress and the Subsequent Recovery Period. Journal of Athletic Training, 2010, 45, 157-163.	1.8	49
14	Core temperature differences between males and females during intermittent exercise: physical considerations. European Journal of Applied Physiology, 2009, 105, 453-461.	2.5	48
15	Modified iodine-paper technique for the standardized determination of sweat gland activation. Journal of Applied Physiology, 2012, 112, 1419-1425.	2.5	43
16	Sympathetic activity during passive heat stress in healthy aged humans. Journal of Physiology, 2015, 593, 2225-2235.	2.9	43
17	Differences between Sexes in Rectal Cooling Rates after Exercise-Induced Hyperthermia. Medicine and Science in Sports and Exercise, 2009, 41, 1633-1639.	0.4	39
18	Skin blood flow measurements during heat stress: technical and analytical considerations. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R57-R69.	1.8	36

#	Article	IF	CITATIONS
19	Heat Balance and Cumulative Heat Storage during Intermittent Bouts of Exercise. Medicine and Science in Sports and Exercise, 2009, 41, 588-596.	0.4	35
20	Divergent roles of plasma osmolality and the baroreflex on sweating and skin blood flow. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R634-R642.	1.8	31
21	Nongrafted Skin Area Best Predicts Exercise Core Temperature Responses in Burned Humans. Medicine and Science in Sports and Exercise, 2015, 47, 2224-2232.	0.4	30
22	Age Modulates Physiological Responses during Fan Use under Extreme Heat and Humidity. Medicine and Science in Sports and Exercise, 2017, 49, 2333-2342.	0.4	30
23	Does attenuated skin blood flow lower sweat rate and the critical environmental limit for heat balance during severe heat exposure?. Experimental Physiology, 2017, 102, 202-213.	2.0	28
24	Sweating as a heat loss thermoeffector. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 156, 211-232.	1.8	28
25	Hyperthermia Modifies the Nonthermal Contribution to Postexercise Heat Loss Responses. Medicine and Science in Sports and Exercise, 2008, 40, 513-522.	0.4	27
26	Plasma hyperosmolality attenuates skin sympathetic nerve activity during passive heat stress in humans. Journal of Physiology, 2016, 594, 497-506.	2.9	27
27	Cardiac and Thermal Strain of Elderly Adults Exposed to Extreme Heat and Humidity With and Without Electric Fan Use. JAMA - Journal of the American Medical Association, 2016, 316, 989.	7.4	27
28	Extreme Heat and Cardiovascular Health: What a Cardiovascular Health Professional Should Know. Canadian Journal of Cardiology, 2021, 37, 1828-1836.	1.7	27
29	Influence of adiposity on cooling efficiency in hyperthermic individuals. European Journal of Applied Physiology, 2008, 104, 67-74.	2.5	26
30	A retrospective analysis to determine if exercise trainingâ€induced thermoregulatory adaptations are mediated by increased fitness or heat acclimation. Experimental Physiology, 2021, 106, 282-289.	2.0	26
31	Improved neural control of body temperature following heat acclimation in humans. Journal of Physiology, 2020, 598, 1223-1234.	2.9	25
32	Impact of passive heat acclimation on markers of kidney function during heat stress. Experimental Physiology, 2021, 106, 269-281.	2.0	25
33	Heat balance and cumulative heat storage during exercise performed in the heat in physically active younger and middle-aged men. European Journal of Applied Physiology, 2010, 109, 81-92.	2.5	24
34	Healthy aging does not compromise the augmentation of cardiac function during heat stress. Journal of Applied Physiology, 2016, 121, 885-892.	2.5	24
35	Exercise-rest cycles do not alter local and whole body heat loss responses. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R958-R968.	1.8	22
36	Heat acclimation improves heat exercise tolerance and heat dissipation in individuals with extensive skin grafts. Journal of Applied Physiology, 2015, 119, 69-76.	2.5	22

#	Article	IF	CITATIONS
37	Acute heat stress reduces biomarkers of endothelial activation but not macro- or microvascular dysfunction in cervical spinal cord injury. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H722-H733.	3.2	22
38	Effect of Human Skin Grafts on Whole-Body Heat Loss During Exercise Heat Stress. Journal of Burn Care and Research, 2013, 34, e263-e270.	0.4	21
39	Local versus whole-body sweating adaptations following 14 days of traditional heat acclimation. Applied Physiology, Nutrition and Metabolism, 2016, 41, 816-824.	1.9	21
40	Human heat balance during postexercise recovery: separating metabolic and nonthermal effects. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R1586-R1592.	1.8	19
41	Hyperthermia modifies muscle metaboreceptor and baroreceptor modulation of heat loss in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R417-R423.	1.8	19
42	Short-term exercise training does not improve whole-body heat loss when rate of metabolic heat production is considered. European Journal of Applied Physiology, 2010, 109, 437-446.	2.5	17
43	Folic acid ingestion improves skeletal muscle blood flow during graded handgrip and plantar flexion exercise in aged humans. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H658-H666.	3.2	17
44	Post Junctional Sudomotor and Cutaneous Vascular Responses in Noninjured Skin Following Heat Acclimation in Burn Survivors. Journal of Burn Care and Research, 2017, 38, e284-e292.	0.4	16
45	Hemostatic responses to exercise, dehydration, and simulated bleeding in heat-stressed humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R145-R156.	1.8	16
46	The Effect of Passive Heat Stress and Exercise-Induced Dehydration on the Compensatory Reserve During Simulated Hemorrhage. Shock, 2016, 46, 74-82.	2.1	15
47	The biophysical and physiological basis for mitigated elevations in heart rate with electric fan use in extreme heat and humidity. International Journal of Biometeorology, 2017, 61, 313-323.	3.0	14
48	Acute Vascular Benefits of Finnish Sauna Bathing in Patients With Stable Coronary Artery Disease. Canadian Journal of Cardiology, 2021, 37, 493-499.	1.7	14
49	Mean arterial pressure following prolonged exercise in the heat: <scp>I</scp> nfluence of training status and fluid replacement. Scandinavian Journal of Medicine and Science in Sports, 2012, 22, e99-e107.	2.9	13
50	Is there evidence for nonthermal modulation of whole body heat loss during intermittent exercise?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R119-R128.	1.8	11
51	Heat stress attenuates the increase in arterial blood pressure during isometric handgrip exercise. European Journal of Applied Physiology, 2013, 113, 183-190.	2.5	11
52	Do metaboreceptors alter heat loss responses following dynamic exercise?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R82-R89.	1.8	11
53	Active and passive heat stress similarly compromise tolerance to a simulated hemorrhagic challenge. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R822-R827.	1.8	11
54	Fluid restriction during exercise in the heat reduces tolerance to progressive central hypovolaemia. Experimental Physiology, 2015, 100, 926-934.	2.0	11

#	Article	IF	CITATIONS
55	Baroreceptor unloading does not limit forearm sweat rate during severe passive heat stress. Journal of Applied Physiology, 2015, 118, 449-454.	2.5	11
56	Volume loading augments cutaneous vasodilatation and cardiac output of heat stressed older adults. Journal of Physiology, 2017, 595, 6489-6498.	2.9	11
57	Acute effect of Finnish sauna bathing on brachial artery flowâ€mediated dilation and reactive hyperemia in healthy middleâ€aged and older adults. Physiological Reports, 2019, 7, e14166.	1.7	11
58	Cardiovascular control during heat stress in older adults: time for an update. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H411-H416.	3.2	11
59	Increased Circulating Levels of Neutrophil Extracellular Traps During Cardiopulmonary Bypass. CJC Open, 2020, 2, 39-48.	1.5	10
60	Integrative crosstalk between hypoxia and the cold: Old data and new opportunities. Experimental Physiology, 2021, 106, 350-358.	2.0	10
61	Influence of nonthermal baroreceptor modulation of heat loss responses during uncompensable heat stress. European Journal of Applied Physiology, 2010, 108, 541-548.	2.5	9
62	Adenosine receptor inhibition attenuates the decrease in cutaneous vascular conductance during wholeâ€body cooling from hyperthermia. Experimental Physiology, 2014, 99, 196-204.	2.0	9
63	Electric fan use during heat waves: Turn off for the elderly?. Temperature, 2017, 4, 104-106.	3.0	9
64	Cardiac function during heat stress: impact of short-term passive heat acclimation. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H753-H764.	3.2	9
65	Folic acid supplementation does not attenuate thermoregulatory or cardiovascular strain of older adults exposed to extreme heat and humidity. Experimental Physiology, 2018, 103, 1123-1131.	2.0	8
66	Can supine recovery mitigate the exercise intensity dependent attenuation of post-exercise heat loss responses?. Applied Physiology, Nutrition and Metabolism, 2008, 33, 682-689.	1.9	7
67	Forehead versus forearm skin vascular responses at presyncope in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R908-R913.	1.8	7
68	Revisiting the evaluation of central versus peripheral thermoregulatory control in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R91-R99.	1.8	7
69	Sustained increases in skin blood flow are not a prerequisite to initiate sweating during passive heat exposure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R140-R148.	1.8	6
70	Hemodynamic Stability to Surface Warming and Cooling During Sustained and Continuous Simulated Hemorrhage in Humans. Shock, 2016, 46, 42-49.	2.1	5
71	Impact of Finnish sauna bathing on circulating markers of inflammation in healthy middle-aged and older adults: A crossover study. Complementary Therapies in Medicine, 2020, 52, 102486.	2.7	5
72	Greater fluid loss does not fully explain the divergent hemodynamic balance mediating postexercise hypotension in endurance-trained men. Journal of Applied Physiology, 2018, 124, 1264-1273.	2.5	4

#	Article	IF	CITATIONS
73	Acute effect of passive heat exposure on markers of cardiometabolic function in adults with type 2 diabetes mellitus. Journal of Applied Physiology, 2022, 132, 1154-1166.	2.5	4
74	Elevated skin and core temperatures both contribute to reductions in tolerance to a simulated haemorrhagic challenge. Experimental Physiology, 2017, 102, 255-264.	2.0	3
75	Plasma hyperosmolality improves tolerance to combined heat stress and central hypovolemia in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R273-R280.	1.8	3
76	Seven days of hot water heat acclimation does not modulate the change in heart rate variability during passive heat exposure. Applied Physiology, Nutrition and Metabolism, 2021, 46, 257-264.	1.9	3
77	Passive heat acclimation does not modulate processing speed and executive functions during cognitive tasks performed at fixed levels of thermal strain. Applied Physiology, Nutrition and Metabolism, 2022, 47, 261-268.	1.9	3
78	Experimental evidence is available for safe cooling limits from exertional heat stroke. European Journal of Applied Physiology, 2012, 112, 2783-2784.	2.5	2
79	The influence of thermal factors on postâ€exercise haemodynamics in endurance exerciseâ€ŧrained men. Journal of Physiology, 2009, 587, 3419-3420.	2.9	1
80	The Frank–Starling mechanism and thermal stress: fundamentals applied!. Journal of Physiology, 2009, 587, 4147-4148.	2.9	1
81	High-intensity interval training vs. hydrochlorothiazide on blood pressure, cardiovascular health and cognition: Protocol of a non-inferiority trial. Contemporary Clinical Trials, 2021, 102, 106286.	1.8	1
82	Heart Rate Variability during Heat Exposure is not Affected by Shortâ€ŧerm Passive Heat Acclimation in Young Healthy Participants. FASEB Journal, 2020, 34, 1-1.	0.5	1
83	When filling the glass only leaves it half empty!– Insight into the cardiovascular physiology of haemorrhage under heat stress. Journal of Physiology, 2012, 590, 1011-1012.	2.9	0
84	Sex-related differences in local and whole-body heat loss responses: Physical or physiological?. Applied Physiology, Nutrition and Metabolism, 2014, 39, 843-843.	1.9	0
85	We know that horses sweat and men perspire. But do ladies merely glow?. Experimental Physiology, 2017, 102, 522-522.	2.0	0
86	Finnish Sauna Bathing and Vascular Function in Adults with Coronary Artery Disease: Preliminary Analysis of a Randomized Controlled Trial. FASEB Journal, 2021, 35, .	0.5	0
87	Does Attenuated Skin Blood Flow Lower Sweat Rate and Thereby the Critical Environmental Limit for Heat Balance?. FASEB Journal, 2016, 30, lb670.	0.5	0
88	The Effect of Aging and Rapid Saline Infusion on Compensatory Reserve during Wholeâ€Body Passive Heat Stress. FASEB Journal, 2017, 31, 1085.4.	0.5	0
89	Defining Acceptable Coldâ€Water Immersion Times for the Treatment of Exertional Hyperthermia When Rectal Temperature Measurements are not Available. FASEB Journal, 2018, 32, 859.4.	0.5	0
90	Vascular Function after Sauna Bathing in Healthy Older Adults. FASEB Journal, 2018, 32, 722.32.	0.5	0

#	Article	IF	CITATIONS
91	Acute Improvement of Vascular Function with Finnish Sauna Bathing in Older Adults with Stable Coronary Artery Disease. FASEB Journal, 2019, 33, 838.7.	0.5	0
92	Cognitive function during passive heat exposure is not affected by shortâ€ŧerm heat acclimation. FASEB Journal, 2020, 34, 1-1.	0.5	0