

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1897310/publications.pdf Version: 2024-02-01

	172457	161849
3,442	29	54
citations	h-index	g-index
135	135	1937
docs citations	times ranked	citing authors
	citations 135	3,44229citationsh-index135135

MINCL

#	Article	IF	CITATIONS
1	Photonic Generation of Multi-Band Phase-Coded Microwave Pulses by Polarization Manipulation of Optical Signals. Journal of Lightwave Technology, 2022, 40, 672-680.	4.6	3
2	Photonic Generation of Multi-Format Radar Waveforms Based on an Integrated Silicon IQ Modulator. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-7.	2.9	3
3	Transmission of dual-chirp microwave signal over fiber with suppression chromatic-dispersion-induced power-fading based on stimulated Brillouin scattering. Optics Communications, 2022, 508, 127787.	2.1	4
4	A Filterless Photonic Approach for DFS and AOA Measurement Using a Push-Pull DPol-MZM. IEEE Photonics Technology Letters, 2022, 34, 19-22.	2.5	10
5	Photonic System for Simultaneous and Unambiguous Measurement of Angle-of-Arrival and Doppler-Frequency-Shift. Journal of Lightwave Technology, 2022, 40, 2321-2328.	4.6	18
6	RF Self-Interference Cancellation and Frequency Downconversion With Immunity to Power Fading Based on Optoelectronic Oscillation. Journal of Lightwave Technology, 2022, 40, 3614-3621.	4.6	6
7	Dissipative microwave photonic solitons in spontaneous frequency-hopping optoelectronic oscillators. Photonics Research, 2022, 10, 1280.	7.0	4
8	Microwave-photonics iterative nonlinear gain model for optoelectronic oscillators. Optics Express, 2022, 30, 12131.	3.4	5
9	Photonic Generation of Rectangular and Triangular Microwave Waveforms With Tunable Duty Cycle. IEEE Photonics Technology Letters, 2022, 34, 371-374.	2.5	4
10	Photonic Generation and Antidispersion Transmission of Background-Free Multiband Arbitrarily Phase-Coded Microwave Signals. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 2290-2298.	4.6	6
11	Narrow linewidth semiconductor laser with a multi-period-delayed feedback photonic circuit. Optics Express, 2022, 30, 15796.	3.4	3
12	Unambiguous measurement of AOA using a DDMZM. Optics Communications, 2022, 514, 128132.	2.1	5
13	Photonics-enabled spiking timing-dependent convolutional neural network for real-time image classification. Optics Express, 2022, 30, 16217.	3.4	8
14	Large Group Delay in Silicon-on-Insulator Chirped Spiral Bragg Grating Waveguide. IEEE Photonics Journal, 2021, 13, 1-5.	2.0	13
15	Microwave photonic injection locking frequency divider based on a tunable optoelectronic oscillator. Optics Express, 2021, 29, 684.	3.4	10
16	Photonic generation of quadruple bandwidth dual-band dual-chirp microwave waveforms with immunity to power fading. Optics Letters, 2021, 46, 868.	3.3	17
17	Photonic Generation and Transmission of Dual-Band Dual-Chirp Microwave Waveforms at C-Band and X-Band With Elimination of Power Fading. IEEE Photonics Journal, 2021, 13, 1-9.	2.0	13
18	Photonic Image Rejection Mixer Based on Polarization Manipulation of a Broadband Optical Source. IEEE Photonics Journal, 2021, 13, 1-10.	2.0	3

#	Article	IF	CITATIONS
19	Broadband frequency-doubled linearly chirped microwave waveform generation based on Fourier domain mode-locked optoelectronic oscillator. , 2021, , .		0
20	Photonic Scheme for the Generation of Background-Free Phase-Coded Microwave Pulses and Dual-Chirp Microwave Waveforms. IEEE Photonics Journal, 2021, 13, 1-8.	2.0	8
21	Recent progress of integrated circuits and optoelectronic chips. Science China Information Sciences, 2021, 64, 1.	4.3	56
22	Precise Identification of Wideband Multiple Microwave Frequency Based on Self-Heterodyne Low-Coherence Interferometry. Journal of Lightwave Technology, 2021, 39, 3169-3176.	4.6	9
23	Photonic Generation of Phase-Coded Microwave Signals Based on Fourier Domain Mode Locking. IEEE Photonics Technology Letters, 2021, 33, 433-436.	2.5	9
24	Accuracy enhanced microwave frequency measurement based on the machine learning technique. Optics Express, 2021, 29, 19515.	3.4	5
25	High-speed serial deep learning through temporal optical neurons. Optics Express, 2021, 29, 19392.	3.4	7
26	An Up/Downstream Shared Optical Beam Forming Network for Remote Phased Array Antenna. IEEE Photonics Journal, 2021, 13, 1-9.	2.0	4
27	Reconfigurable Photonic generation and transmission of multi-format radar signals. Optics Communications, 2021, 488, 126855.	2.1	1
28	Tutorial on optoelectronic oscillators. APL Photonics, 2021, 6, .	5.7	32
29	Ultrahigh spectral resolution single passband microwave photonic filter. Optics Express, 2021, 29, 28725.	3.4	7
30	Ultra-low V _{pp} and high-modulation-depth InP-based electro–optic microring modulator. Journal of Semiconductors, 2021, 42, 082301.	3.7	8
31	Tb/s Fast Random Bit Generation Based on a Broadband Random Optoelectronic Oscillator. IEEE Photonics Technology Letters, 2021, 33, 1223-1226.	2.5	5
32	Bandwidth superposition of linearly chirped microwave waveforms based on a Fourier domain mode-locked optoelectronic oscillator. Optics Express, 2021, 29, 36977.	3.4	4
33	Ultra-fast full-field optical characterization of CW lasers based on optical frequency comb, wavelength-to-time mapping and phase-diversity. Optics Express, 2021, 29, 39874.	3.4	1
34	Photonic-Assisted Radio Frequency Self-InterferenceCancellation and Frequency Down-Conversion Basedon Polarization Multiplexing Modulation. Applied Optics, 2021, 60, 11217-11221.	1.8	1
35	Recent advances in optoelectronic oscillators and quantum microwave photonics. , 2021, , .		1
36	Instantaneous microwave frequency measurement based on non-sliced broadband optical source. Optics Communications, 2020, 458, 124758.	2.1	6

#	Article	IF	CITATIONS
37	Dual-Functional Transmitter for Simultaneous RF/LFM Signal Using a Monolithic Integrated DFB Array. IEEE Photonics Technology Letters, 2020, 32, 239-242.	2.5	2
38	Hybrid Fourier-domain mode-locked laser for ultra-wideband linearly chirped microwave waveform generation. Nature Communications, 2020, 11, 3814.	12.8	42
39	Broadband random optoelectronic oscillator. Nature Communications, 2020, 11, 5724.	12.8	26
40	A Compact Multifrequency Measurement System Based on an Integrated Frequency-Scanning Generator. Applied Sciences (Switzerland), 2020, 10, 8571.	2.5	2
41	Optically controlled multi-carrier phase-shift-keying microwave signal generation by using cross-polarization modulation in highly nonlinear fiber. Optics Communications, 2020, 469, 125805.	2.1	2
42	Optoelectronic parametric oscillator. Light: Science and Applications, 2020, 9, 102.	16.6	18
43	Polarization Manipulated Fourier Domain Mode-Locked Optoelectronic Oscillator. Journal of Lightwave Technology, 2020, 38, 5270-5277.	4.6	18
44	Photonic Generation of Dual-Chirp Microwave Waveforms Based on a Tunable Optoelectronic Oscillator. IEEE Photonics Technology Letters, 2020, 32, 599-602.	2.5	7
45	Recent advances in optoelectronic oscillators. Advanced Photonics, 2020, 2, 1.	11.8	83
46	Inherent resolution limit on nonlocal wavelength-to-time mapping with entangled photon pairs. Optics Express, 2020, 28, 7488.	3.4	12
47	Dual-chirp microwave waveform transmitter with elimination of power fading for one-to-multibase station fiber transmission. Optics Letters, 2020, 45, 1285.	3.3	13
48	Photonic generation of multiband and multi-format microwave signals based on a single modulator. Optics Letters, 2020, 45, 6190.	3.3	19
49	Hybrid frequency-time spectrograph for the spectral measurement of the two-photon state. Optics Letters, 2020, 45, 2993.	3.3	12
50	A versatile single-photon spectrograph for the spectral measurement of the two-photon state. , 2020, , .		0
51	Microwave photonic frequency down-conversion and channel switching for satellite communication. Optics Letters, 2020, 45, 5000.	3.3	7
52	Simultaneous microwave frequency conversion and idler filtering based on polarization manipulating of an amplified spontaneous emission source. Optics and Laser Technology, 2020, 131, 106388.	4.6	0
53	Temporal Cloak Without Synchronization. IEEE Photonics Technology Letters, 2019, 31, 373-376.	2.5	4
54	Optical phase matching of high-order azimuthal WGM in a water droplet resonator. Optics Express, 2019, 27, 33436.	3.4	3

#	Article	IF	CITATIONS
55	Wideband and Continuously Tunable Microwave Photonic Phase Shifter Based on an Active InP/InGaAsP Microring Resonator. , 2019, , .		3
56	Photonic Radio Frequency Self-Interference Cancellation and Harmonic Down-Conversion for In-Band Full-Duplex Radio-Over-Fiber System. IEEE Photonics Journal, 2019, 11, 1-10.	2.0	23
57	A background-free phase-coded microwave pulse generator by optoelectronic oscillation. Optics Communications, 2019, 453, 124318.	2.1	3
58	Fast-Switching Microwave Photonic Filter Using an Integrated Spectrum Shaper. IEEE Photonics Technology Letters, 2019, 31, 269-272.	2.5	5
59	Wideband optical vector network analyzer based on polarization modulation. Optics Communications, 2019, 437, 67-70.	2.1	3
60	Accuracy-Enhanced Wideband Optical Vector Network Analyzer Based on Double-Sideband Modulation. Journal of Lightwave Technology, 2019, 37, 2920-2926.	4.6	10
61	Tunable Single-Notch Microwave Photonic Filter Based on Nonsliced ASE Source. IEEE Photonics Technology Letters, 2019, 31, 731-734.	2.5	3
62	A switchable self-interference cancellation system for dual-band IBFD system using a monolithic integrated DML array. Optics Communications, 2019, 447, 55-60.	2.1	5
63	Ultra-Fast Wavemeter for CW Laser Based on Wavelength-to-Time Mapping. Journal of Lightwave Technology, 2019, 37, 2661-2667. Monolithic integrated 4 <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>4.6</td><td>4</td></mml:math>	4.6	4
64	display="inline" overflow="scroll" id="d1e126" altimg="si5.gif"> <mml:mspace <br="" class="nbsp" width="1em">/><mml:mo>×</mml:mo><mml:mspace class="nbsp" width="1em"></mml:mspace>25 Gb/s transmitter optical subassembly at 1.55 <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll" id="d1e135" altimg="si6.gif"><mml:mi< td=""><td>2.1</td><td>5</td></mml:mi<></mml:math></mml:mspace>	2.1	5
65	mathvariant—"normal">114 / Implimite Schmidter Strathon Optics Communications 2019 441, 160-164. Microwave Downconversion by a Tunable Optoelectronic Oscillator Based on PS-FBC and Polarization-Multiplexed Dual loop. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 2095-2102.	4.6	15
66	Detection of wideband low-power RF signals using a stimulated Brillouin scattering-based optoelectronic oscillator. Optics Communications, 2019, 439, 133-136.	2.1	17
67	Harmonically Fourier Domain Mode-Locked Optoelectronic Oscillator. IEEE Photonics Technology Letters, 2019, 31, 427-430.	2.5	27
68	1Â <mml:math <br="" display="inline" id="mml6" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll" altimg="si6.gif"><mml:mo>A—</mml:mo></mml:math> ÂN hybrid radio frequency photonic splitter based on a dual-polarization dual-parallel Mach Zehnder modulator. Optics Communications, 2019, 431, 10-13.	2.1	4
69	Tunable notch microwave photonic filter based on interferometry of a single low-incoherence source. Applied Optics, 2019, 58, 8039.	1.8	2
70	Large-capacity and low-loss integrated optical buffer. Optics Express, 2019, 27, 11585.	3.4	17
71	Photonic generation of background-free binary phase-coded microwave pulses. Optics Letters, 2019, 44, 94.	3.3	34
72	Chromatic-dispersion-induced power-fading suppression technique for bandwidth-quadrupling dual-chirp microwave signals over fiber transmission. Optics Letters, 2019, 44, 923.	3.3	24

#	Article	lF	CITATIONS
73	Dual-chirp Fourier domain mode-locked optoelectronic oscillator. Optics Letters, 2019, 44, 1912.	3.3	46
74	Multiple-frequency measurement based on a Fourier domain mode-locked optoelectronic oscillator operating around oscillation threshold. Optics Letters, 2019, 44, 3062.	3.3	27
75	Optically controlled phase array antenna [Invited]. Chinese Optics Letters, 2019, 17, 052301.	2.9	4
76	Photonic-based microwave hybrid combiner with arbitrarily tunable phase shift and power combining ratio. Optics Letters, 2019, 44, 2012.	3.3	5
77	FCC-compliant millimeter-wave ultra-wideband pulse generator based on optoelectronic oscillation. Optics Letters, 2019, 44, 3530.	3.3	3
78	Arbitrary Waveform Generation Based on Dispersion-Free Wavelength-to-Time Mapping Technique. IEEE Photonics Journal, 2018, 10, 1-9.	2.0	1
79	Real-Time Optical Spectrum Fourier Transform With Time–Bandwidth Product Compression. IEEE Photonics Journal, 2018, 10, 1-14.	2.0	1
80	Switchable Microwave Photonic Filter Between Dual-Notch and Dual-Passband Responses. IEEE Photonics Technology Letters, 2018, 30, 1894-1897.	2.5	5
81	Photonic Generation of Ultra-Wideband Signal by Truncating a Continuous Wave into a Pulse. IEEE Photonics Technology Letters, 2018, 30, 1862-1865.	2.5	4
82	Ultrahigh-Q and tunable single-passband microwave photonic filter based on stimulated Brillouin scattering and a fiber ring resonator. Optics Letters, 2018, 43, 4659.	3.3	24
83	Tunable Fourier Domain Mode-Locked Optoelectronic Oscillator Using Stimulated Brillouin Scattering. IEEE Photonics Technology Letters, 2018, 30, 1842-1845.	2.5	34
84	Toward Monolithic Integration of OEOs: From Systems to Chips. Journal of Lightwave Technology, 2018, 36, 4565-4582.	4.6	64
85	A simple photonic method to generate square and triangular microwave waveforms. Optics Communications, 2018, 426, 654-657.	2.1	14
86	Integrated optoelectronic oscillator. Optics Express, 2018, 26, 12257.	3.4	87
87	Simultaneous frequency upconversion and phase coding of a radio-frequency signal for photonic radars. Optics Letters, 2018, 43, 583.	3.3	19
88	Reconfigurable microwave signal processor with a phase shift of π. Optics Express, 2018, 26, 10358.	3.4	1
89	RF signal detection by a tunable optoelectronic oscillator based on a PS-FBG. Optics Letters, 2018, 43, 1199.	3.3	28
90	Transmission of dual-chirp microwave waveform over fiber with compensation of dispersion-induced power fading. Optics Letters, 2018, 43, 2466.	3.3	45

#	Article	IF	CITATIONS
91	Megahertz-resolution programmable microwave shaper. Optics Letters, 2018, 43, 1878.	3.3	15
92	Observation of parity-time symmetry in microwave photonics. Light: Science and Applications, 2018, 7, 38.	16.6	82
93	Reconfigurable microwave photonic mixer based on dual-polarization dual-parallel Mach–Zehnder modulator. Optics Communications, 2018, 428, 131-135.	2.1	25
94	Breaking the limitation of mode building time in an optoelectronic oscillator. Nature Communications, 2018, 9, 1839.	12.8	140
95	Switchable microwave photonic filter based on a dual-parallel Mach–Zehnder modulator. Applied Optics, 2018, 57, 4537.	1.8	3
96	Time-stretch probing of ultra-fast soliton dynamics related to Q-switched instabilities in mode-locked fiber laser. Optics Express, 2018, 26, 20888.	3.4	30
97	Microwave photonics frequency-to-time mapping based on a Fourier domain mode locked optoelectronic oscillator. Optics Express, 2018, 26, 33582.	3.4	44
98	Fourier domain mode locked optoelectronic oscillator based on the deamplification of stimulated Brillouin scattering. OSA Continuum, 2018, 1, 408.	1.8	15
99	Reconfigurable single-shot incoherent optical signal processing system for chirped microwave signal compression. Science Bulletin, 2017, 62, 242-248.	9.0	16
100	Microwave Photonics for Optical Sensors. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 327-339.	2.9	98
101	An integrated parity-time symmetric wavelength-tunable single-mode microring laser. Nature Communications, 2017, 8, 15389.	12.8	102
102	An integrated optoelectronic oscillator. , 2017, , .		3
103	Optical vector network analyzer based on double-sideband modulation. Optics Letters, 2017, 42, 4426.	3.3	26
104	Experimental demonstration of a multi-target detection technique using an X-band optically steered phased array radar. Optics Express, 2016, 24, 14438.	3.4	15
105	Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip. Nature Communications, 2016, 7, 13004.	12.8	91
106	Reconfigurable Optical Signal Processing Based on a Distributed Feedback Semiconductor Optical Amplifier. Scientific Reports, 2016, 6, 19985.	3.3	19
107	Fully characterization of an active optical filter based on an equivalent-phase-shifted DFB-SOA. Optics Communications, 2016, 376, 1-5.	2.1	0
108	A fully reconfigurable photonic integrated signal processor. Nature Photonics, 2016, 10, 190-195.	31.4	329

#	Article	IF	CITATIONS
109	Microwave photonic bandstop filter with wide tunability and adjustable bandwidth. Optics Express, 2015, 23, 33579.	3.4	12
110	Real-time Fourier transformation of lightwave spectra and application in optical reflectometry. Optics Express, 2015, 23, 32516.	3.4	6
111	Tunable fractional-order photonic differentiator using a distributed feedback semiconductor optical amplifier. Optical Engineering, 2015, 55, 031105.	1.0	7
112	Multichannel optical filters with an ultranarrow bandwidth based on sampled Brillouin dynamic gratings. Optics Express, 2014, 22, 4290.	3.4	16
113	Terahertz-bandwidth photonic fractional Hilbert transformer based on a phase-shifted waveguide Bragg grating on silicon. Optics Letters, 2014, 39, 6241.	3.3	28
114	Optical Pulse Generation Based on an Optoelectronic Oscillator With Cascaded Nonlinear Semiconductor Optical Amplifiers. IEEE Photonics Journal, 2014, 6, 1-8.	2.0	13
115	Photonic MMW-UWB Signal Generation via DPMZM-Based Frequency Up-Conversion. IEEE Photonics Technology Letters, 2013, 25, 1875-1878.	2.5	21
116	Single Phase Modulator for Binary Phase-Coded Microwave Signals Generation. IEEE Photonics Technology Letters, 2013, 25, 1867-1870.	2.5	26
117	Spectral Sculpting of Chaotic-UWB Signals Using a Dual-Loop Optoelectronic Oscillator. IEEE Photonics Technology Letters, 2013, 25, 2397-2400.	2.5	54
118	Photonic Generation of Binary Phase-Coded Microwave Signals With Large Frequency Tunability Using a Dual-Parallel Mach–Zehnder Modulator. IEEE Photonics Journal, 2013, 5, 5501507-5501507.	2.0	27
119	Photonic generation of widely tunable and background-free binary phase-coded radio-frequency pulses. Optics Letters, 2013, 38, 3441.	3.3	37
120	Superluminal space-to-time mapping in grating-assisted co-directional couplers. Optics Express, 2013, 21, 6249.	3.4	19
121	Integrated waveguide Bragg gratings for microwave photonics signal processing. Optics Express, 2013, 21, 25120.	3.4	183
122	Widely tunable single-bandpass microwave photonic filter based on polarization processing of a nonsliced broadband optical source. Optics Letters, 2013, 38, 4857.	3.3	27
123	Photonic Generation of Ultrawideband Signals With Large Carrier Frequency Tunability Based on an Optical Carrier Phase-Shifting Method. IEEE Photonics Journal, 2013, 5, 5502007-5502007.	2.0	12
124	Single-shot photonic time-intensity integration based on a time-spectrum convolution system. Optics Letters, 2012, 37, 1355.	3.3	39
125	Tunable Optoelectronic Oscillator Incorporating a High-Q Spectrum-Sliced Photonic Microwave Transversal Filter. IEEE Photonics Technology Letters, 2012, 24, 1251-1253.	2.5	89
126	Femtometer-resolution wavelength interrogation using an optoelectronic oscillator. , 2012, , .		5

#	Article	IF	CITATIONS
127	A Narrow-Passband and Frequency-Tunable Microwave Photonic Filter Based on Phase-Modulation to Intensity-Modulation Conversion Using a Phase-Shifted Fiber Bragg Grating. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 1287-1296.	4.6	167
128	Experimental Demonstration of Symmetrical Waveform Generation Based on Amplitude-Only Modulation in a Fiber-Based Temporal Pulse Shaping System. IEEE Photonics Technology Letters, 2011, 23, 715-717.	2.5	18
129	Continuously Tunable Photonic Fractional Temporal Differentiator Based on a Tilted Fiber Bragg Grating. IEEE Photonics Technology Letters, 2011, 23, 251-253.	2.5	67
130	Tilted Fiber Bragg Grating for Chirped Microwave Waveform Generation. IEEE Photonics Technology Letters, 2011, 23, 314-316.	2.5	27
131	Real-Time Interrogation of a Linearly Chirped Fiber Bragg Grating Sensor Based on Chirped Pulse Compression With Improved Resolution and Signal-to-Noise Ratio. Journal of Lightwave Technology, 2011, 29, 1239-1247.	4.6	40
132	Instantaneous Microwave Frequency Measurement Using a Special Fiber Bragg Grating. IEEE Microwave and Wireless Components Letters, 2011, 21, 52-54.	3.2	59
133	Photonic Generation of Continuously Tunable Chirped Microwave Waveforms Based on a Temporal Interferometer Incorporating an Optically Pumped Linearly Chirped Fiber Bragg Grating. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 3531-3537.	4.6	71
134	Experimental Demonstration of a Wideband Photonic Temporal Hilbert Transformer Based on a Single Fiber Bragg Grating. IEEE Photonics Technology Letters, 2010, 22, 1559-1561.	2.5	61
135	All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating. Optics Letters, 2010, 35, 223.	3.3	73