Dasaraden Mauree

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1894609/publications.pdf

Version: 2024-02-01

623734 477307 41 850 14 29 citations g-index h-index papers 49 49 49 736 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Urban Microclimate and Building Energy Simulation Coupling Techniques. , 2021, , 317-337.		2
2	Spatio-Temporal Relationship between Land Cover and Land Surface Temperature in Urban Areas: A Case Study in Geneva and Paris. ISPRS International Journal of Geo-Information, 2020, 9, 593.	2.9	13
3	How building energy models take the local climate into account in an urban context – A review. Renewable and Sustainable Energy Reviews, 2019, 116, 109390.	16.4	64
4	The role of distributed energy systems in European energy transition. Energy Procedia, 2019, 159, 286-291.	1.8	6
5	A new clustering and visualization method to evaluate urban heat energy planning scenarios. Cities, 2019, 88, 19-36.	5.6	34
6	A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities. Renewable and Sustainable Energy Reviews, 2019, 112, 733-746.	16.4	128
7	Linearity versus non-linearity in high frequency multilevel wind time series measured in urban areas. Chaos, Solitons and Fractals, 2019, 120, 234-244.	5.1	O
8	Eco-Sim: A Parametric Tool to Evaluate the Environmental and Economic Feasibility of Decentralized Energy Systems. Energies, 2019, 12, 776.	3.1	18
9	Fisher–Shannon Complexity Analysis of High-Frequency Urban Wind Speed Time Series. Entropy, 2019, 21, 47.	2.2	8
10	Wavelet variance scale-dependence as a dynamics discriminating tool in high-frequency urban wind speed time series. Physica A: Statistical Mechanics and Its Applications, 2019, 525, 771-777.	2.6	2
11	Impact of evapotranspiration on the local microclimate. Journal of Physics: Conference Series, 2019, 1343, 012009.	0.4	1
12	Modeling of mesoscale phenomena using WRF-BEP-BEM-CIM in a complex region. Journal of Physics: Conference Series, 2019, 1343, 012012.	0.4	1
13	Local climate impact on the energy demand: an analysis at the European scale. Journal of Physics: Conference Series, 2019, 1343, 012013.	0.4	O
14	Mobile Urban Micrometeorological Monitoring (MUMiM). Journal of Physics: Conference Series, 2019, 1343, 012014.	0.4	6
15	Bioclimatic building design considering urban microclimate. Journal of Physics: Conference Series, 2019, 1343, 012021.	0.4	1
16	Urban greening archetypes at the European scale. Journal of Physics: Conference Series, 2019, 1343, 012024.	0.4	1
17	Wind profile prediction in an urban canyon: a machine learning approach. Journal of Physics: Conference Series, 2019, 1343, 012047.	0.4	1
18	The impact of urban texture on energy system design process. Journal of Physics: Conference Series, 2019, 1343, 012075.	0.4	0

#	Article	IF	CITATIONS
19	Strategies to maximise the autonomy of neighbourhoods with the integration of renewable energies. Journal of Physics: Conference Series, 2019, 1343, 012109.	0.4	0
20	Solar cooking potential in Switzerland: Nodal modelling and optimization. Solar Energy, 2019, 194, 788-803.	6.1	15
21	Linking Neighborhoods into Sustainable Energy Systems. Energy, Environment, and Sustainability, 2019, , 93-110.	1.0	1
22	Cooling potential of greening in the urban environment, a step further towards practice. Sustainable Cities and Society, 2018, 38, 543-559.	10.4	42
23	Quantifying the impact of urban climate by extending the boundaries of urban energy system modeling. Applied Energy, 2018, 222, 847-860.	10.1	82
24	Climate Impact and Energy Sustainability of Future European Neighborhoods., 2018,,.		3
25	A New Framework to Evaluate Urban Design Using Urban Microclimatic Modeling in Future Climatic Conditions. Sustainability, 2018, 10, 1134.	3.2	41
26	Multi-scale modeling of the urban meteorology: Integration of a new canopy model in the WRF model. Urban Climate, 2018, 26, 60-75.	5.7	27
27	Electrical hubs: An effective way to integrate non-dispatchable renewable energy sources with minimum impact to the grid. Applied Energy, 2017, 190, 232-248.	10.1	110
28	Locating Multi Energy Systems for A Neighborhood In Geneva Using K-Means Clustering. Energy Procedia, 2017, 122, 169-174.	1.8	6
29	On the impact of the wind speed on the outdoor human comfort: a sensitivity analysis. Energy Procedia, 2017, 122, 481-486.	1.8	11
30	Localized meteorological variables influence at the early design stage. Energy Procedia, 2017, 122, 325-330.	1.8	11
31	The energy hub concept applied to a case study of mixed residential and administrative buildings in Switzerland. Energy Procedia, 2017, 122, 181-186.	1.8	3
32	Evaluating the need for energy storage to enhance autonomy of neighborhoods. Energy Procedia, 2017, 122, 253-258.	1.8	4
33	Optimum dispatch of a multi-storage and multi-energy hub with demand response and restricted grid interactions. Energy Procedia, 2017, 142, 2864-2869.	1.8	18
34	Influence of Buildings Configuration on the Energy Demand and Sizing of Energy Systems in an Urban Context. Energy Procedia, 2017, 142, 2648-2654.	1.8	6
35	On the Coherence in the Boundary Layer: Development of a Canopy Interface Model. Frontiers in Earth Science, 2017, 4, .	1.8	32
36	An integrated approach to design site specific distributed electrical hubs combining optimization, multi-criterion assessment and decision making. Energy, 2017, 134, 103-120.	8.8	56

3

#	Article	IF	CITATIONS
37	Multi-scale modelling to evaluate building energy consumption at the neighbourhood scale. PLoS ONE, 2017, 12, e0183437.	2.5	63
38	Sensitivity of the dispatch strategy in designing grid integrated hybrid energy systems. , 2016, , .		2
39	Optimum design and control of grid integrated electrical hubs considering lifecycle cost and emission. , $2016, , .$		12
40	Design Optimization of Electrical Hubs Using Hybrid Evolutionary Algorithm. , 2016, , .		2
41	Evaluating Error Propagation in Coupled Land–Atmosphere Models. Earth Interactions, 2011, 15, 1-25.	1.5	14