
Dasaraden Mauree

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1894609/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities. Renewable and Sustainable Energy Reviews, 2019, 112, 733-746.	16.4	128
2	Electrical hubs: An effective way to integrate non-dispatchable renewable energy sources with minimum impact to the grid. Applied Energy, 2017, 190, 232-248.	10.1	110
3	Quantifying the impact of urban climate by extending the boundaries of urban energy system modeling. Applied Energy, 2018, 222, 847-860.	10.1	82
4	How building energy models take the local climate into account in an urban context – A review. Renewable and Sustainable Energy Reviews, 2019, 116, 109390.	16.4	64
5	Multi-scale modelling to evaluate building energy consumption at the neighbourhood scale. PLoS ONE, 2017, 12, e0183437.	2.5	63
6	An integrated approach to design site specific distributed electrical hubs combining optimization, multi-criterion assessment and decision making. Energy, 2017, 134, 103-120.	8.8	56
7	Cooling potential of greening in the urban environment, a step further towards practice. Sustainable Cities and Society, 2018, 38, 543-559.	10.4	42
8	A New Framework to Evaluate Urban Design Using Urban Microclimatic Modeling in Future Climatic Conditions. Sustainability, 2018, 10, 1134.	3.2	41
9	A new clustering and visualization method to evaluate urban heat energy planning scenarios. Cities, 2019, 88, 19-36.	5.6	34
10	On the Coherence in the Boundary Layer: Development of a Canopy Interface Model. Frontiers in Earth Science, 2017, 4, .	1.8	32
11	Multi-scale modeling of the urban meteorology: Integration of a new canopy model in the WRF model. Urban Climate, 2018, 26, 60-75.	5.7	27
12	Optimum dispatch of a multi-storage and multi-energy hub with demand response and restricted grid interactions. Energy Procedia, 2017, 142, 2864-2869.	1.8	18
13	Eco-Sim: A Parametric Tool to Evaluate the Environmental and Economic Feasibility of Decentralized Energy Systems. Energies, 2019, 12, 776.	3.1	18
14	Solar cooking potential in Switzerland: Nodal modelling and optimization. Solar Energy, 2019, 194, 788-803.	6.1	15
15	Evaluating Error Propagation in Coupled Land–Atmosphere Models. Earth Interactions, 2011, 15, 1-25.	1.5	14
16	Spatio-Temporal Relationship between Land Cover and Land Surface Temperature in Urban Areas: A Case Study in Geneva and Paris. ISPRS International Journal of Geo-Information, 2020, 9, 593.	2.9	13
17	Optimum design and control of grid integrated electrical hubs considering lifecycle cost and emission. , 2016, , .		12
18	On the impact of the wind speed on the outdoor human comfort: a sensitivity analysis. Energy Procedia, 2017, 122, 481-486.	1.8	11

DASARADEN MAUREE

#	Article	IF	CITATIONS
19	Localized meteorological variables influence at the early design stage. Energy Procedia, 2017, 122, 325-330.	1.8	11
20	Fisher–Shannon Complexity Analysis of High-Frequency Urban Wind Speed Time Series. Entropy, 2019, 21, 47.	2.2	8
21	Locating Multi Energy Systems for A Neighborhood In Geneva Using K-Means Clustering. Energy Procedia, 2017, 122, 169-174.	1.8	6
22	Influence of Buildings Configuration on the Energy Demand and Sizing of Energy Systems in an Urban Context. Energy Procedia, 2017, 142, 2648-2654.	1.8	6
23	The role of distributed energy systems in European energy transition. Energy Procedia, 2019, 159, 286-291.	1.8	6
24	Mobile Urban Micrometeorological Monitoring (MUMiM). Journal of Physics: Conference Series, 2019, 1343, 012014.	0.4	6
25	Evaluating the need for energy storage to enhance autonomy of neighborhoods. Energy Procedia, 2017, 122, 253-258.	1.8	4
26	The energy hub concept applied to a case study of mixed residential and administrative buildings in Switzerland. Energy Procedia, 2017, 122, 181-186.	1.8	3
27	Climate Impact and Energy Sustainability of Future European Neighborhoods. , 2018, , .		3
28	Sensitivity of the dispatch strategy in designing grid integrated hybrid energy systems. , 2016, , .		2
29	Design Optimization of Electrical Hubs Using Hybrid Evolutionary Algorithm. , 2016, , .		2
30	Wavelet variance scale-dependence as a dynamics discriminating tool in high-frequency urban wind speed time series. Physica A: Statistical Mechanics and Its Applications, 2019, 525, 771-777.	2.6	2
31	Urban Microclimate and Building Energy Simulation Coupling Techniques. , 2021, , 317-337.		2
32	Impact of evapotranspiration on the local microclimate. Journal of Physics: Conference Series, 2019, 1343, 012009.	0.4	1
33	Modeling of mesoscale phenomena using WRF-BEP-BEM-CIM in a complex region. Journal of Physics: Conference Series, 2019, 1343, 012012.	0.4	1
34	Bioclimatic building design considering urban microclimate. Journal of Physics: Conference Series, 2019, 1343, 012021.	0.4	1
35	Urban greening archetypes at the European scale. Journal of Physics: Conference Series, 2019, 1343, 012024.	0.4	1
36	Wind profile prediction in an urban canyon: a machine learning approach. Journal of Physics: Conference Series, 2019, 1343, 012047.	0.4	1

#	Article	IF	CITATIONS
37	Linking Neighborhoods into Sustainable Energy Systems. Energy, Environment, and Sustainability, 2019, , 93-110.	1.0	1
38	Linearity versus non-linearity in high frequency multilevel wind time series measured in urban areas. Chaos, Solitons and Fractals, 2019, 120, 234-244.	5.1	0
39	Local climate impact on the energy demand: an analysis at the European scale. Journal of Physics: Conference Series, 2019, 1343, 012013.	0.4	0
40	The impact of urban texture on energy system design process. Journal of Physics: Conference Series, 2019, 1343, 012075.	0.4	0
41	Strategies to maximise the autonomy of neighbourhoods with the integration of renewable energies. Journal of Physics: Conference Series, 2019, 1343, 012109.	0.4	0