
Sahar El Aidy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1892800/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gut microbiota-motility interregulation: insights from <i>in vivo, ex vivo</i> and <i>in silico</i> studies. Gut Microbes, 2022, 14, 1997296.	9.8	34
2	Parkinson's Disease Medication Alters Small Intestinal Motility and Microbiota Composition in Healthy Rats. MSystems, 2022, 7, e0119121.	3.8	13
3	Catestatin selects for colonization of antimicrobial-resistant gut bacterial communities. ISME Journal, 2022, 16, 1873-1882.	9.8	3
4	Metabolic phenotyping reveals a potential link between elevated faecal amino acids, diet and symptom severity in individuals with severe mental illness. Journal of Psychiatric Research, 2022, 151, 507-515.	3.1	1
5	Gut microbiota transplantation drives the adoptive transfer of colonic genotype-phenotype characteristics between mice lacking catestatin and their wild type counterparts. Gut Microbes, 2022, 14, .	9.8	2
6	Targeting the endocannabinoid system with microbial interventions to improve gut integrity. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 106, 110169.	4.8	19
7	Understanding the host-microbe interactions using metabolic modeling. Microbiome, 2021, 9, 16.	11.1	41
8	Flexibility of Gut Microbiota in Ageing Individuals during Dietary Fiber Longâ€Chain Inulin Intake. Molecular Nutrition and Food Research, 2021, 65, e2000390.	3.3	42
9	Gut bacteria-derived 5-hydroxyindole is a potent stimulant of intestinal motility via its action on L-type calcium channels. PLoS Biology, 2021, 19, e3001070.	5.6	21
10	Chromogranin A regulates gut permeability <i>via</i> the antagonistic actions of its proteolytic peptides. Acta Physiologica, 2021, 232, e13655.	3.8	20
11	Potential Modulatory Microbiome Therapies for Prevention or Treatment of Inflammatory Bowel Diseases. Pharmaceuticals, 2021, 14, 506.	3.8	8
12	Stability of Methylphenidate under Various pH Conditions in the Presence or Absence of Gut Microbiota. Pharmaceuticals, 2021, 14, 733.	3.8	1
13	Gut bacterial tyrosine decarboxylase associates with clinical variables in a longitudinal cohort study of Parkinsons disease. Npj Parkinson's Disease, 2021, 7, 115.	5.3	17
14	A brief period of sleep deprivation leads to subtle changes in mouse gut microbiota. Journal of Sleep Research, 2020, 29, e12920.	3.2	28
15	Actions of Trace Amines in the Brain-Gut-Microbiome Axis via Trace Amine-Associated Receptor-1 (TAAR1). Cellular and Molecular Neurobiology, 2020, 40, 191-201.	3.3	28
16	Gut bacterial deamination of residual levodopa medication for Parkinson's disease. BMC Biology, 2020, 18, 137.	3.8	32
17	Enduring Behavioral Effects Induced by Birth by Caesarean Section in the Mouse. Current Biology, 2020, 30, 3761-3774.e6.	3.9	65
18	Bacterial Metabolites Mirror Altered Gut Microbiota Composition in Patients with Parkinson's Disease. Journal of Parkinson's Disease, 2019, 9, S359-S370.	2.8	31

SAHAR EL AIDY

#	Article	IF	CITATIONS
19	Contributions of Gut Bacteria and Diet to Drug Pharmacokinetics in the Treatment of Parkinson's Disease. Frontiers in Neurology, 2019, 10, 1087.	2.4	29
20	Short hain fatty acids and microbiota metabolites attenuate ghrelin receptor signaling. FASEB Journal, 2019, 33, 13546-13559.	0.5	93
21	Microbiota and gut neuropeptides: a dual action of antimicrobial activity and neuroimmune response. Psychopharmacology, 2019, 236, 1597-1609.	3.1	43
22	Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson's disease. Nature Communications, 2019, 10, 310.	12.8	325
23	Increasing reproducibility and interpretability of microbiota-gut-brain studies on human neurocognition and intermediary microbial metabolites. Behavioral and Brain Sciences, 2019, 42, .	0.7	1
24	Sex differences in lipid metabolism are affected by presence of the gut microbiota. Scientific Reports, 2018, 8, 13426.	3.3	68
25	Role of Microbiota and Tryptophan Metabolites in the Remote Effect of Intestinal Inflammation on Brain and Depression. Pharmaceuticals, 2018, 11, 63.	3.8	113
26	Depressed gut? The microbiota-diet-inflammation trialogue in depression. Current Opinion in Psychiatry, 2017, 30, 369-377.	6.3	94
27	β2→1-Fructans Modulate the Immune System In Vivo in a Microbiota-Dependent and -Independent Fashion. Frontiers in Immunology, 2017, 8, 154.	4.8	59
28	The Impact of Gut Microbiota on Gender-Specific Differences in Immunity. Frontiers in Immunology, 2017, 8, 754.	4.8	180
29	Aged Gut Microbiota Contributes to Systemical Inflammaging after Transfer to Germ-Free Mice. Frontiers in Immunology, 2017, 8, 1385.	4.8	252
30	Serotonin Transporter Genotype Modulates the Gut Microbiota Composition in Young Rats, an Effect Augmented by Early Life Stress. Frontiers in Cellular Neuroscience, 2017, 11, 222.	3.7	65
31	The Role of Supplemental Complex Dietary Carbohydrates and Gut Microbiota in Promoting Cardiometabolic and Immunological Health in Obesity: Lessons from Healthy Non-Obese Individuals. Frontiers in Nutrition, 2017, 4, 34.	3.7	31
32	Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. Journal of Psychiatric Research, 2016, 82, 109-118.	3.1	1,130
33	Oral Phage Therapy of Acute Bacterial Diarrhea With Two Coliphage Preparations: A Randomized Trial in Children From Bangladesh. EBioMedicine, 2016, 4, 124-137.	6.1	370
34	Microbiome to Brain: Unravelling the Multidirectional Axes of Communication. Advances in Experimental Medicine and Biology, 2016, 874, 301-336.	1.6	50
35	N-3 Polyunsaturated Fatty Acids (PUFAs) Reverse the Impact of Early-Life Stress on the Gut Microbiota. PLoS ONE, 2015, 10, e0139721.	2.5	143
36	Human buccal epithelium acquires microbial hyporesponsiveness at birth, a role for secretory leukocyte protease inhibitor. Gut, 2015, 64, 884-893.	12.1	17

SAHAR EL AIDY

#	Article	IF	CITATIONS
37	Gut Microbiota: The Conductor in the Orchestra of Immune–Neuroendocrine Communication. Clinical Therapeutics, 2015, 37, 954-967.	2.5	163
38	BALB/c and C57BL/6 Mice Differ in Polyreactive IgA Abundance, which Impacts the Generation of Antigen-Specific IgA and Microbiota Diversity. Immunity, 2015, 43, 527-540.	14.3	247
39	The small intestine microbiota, nutritional modulation and relevance for health. Current Opinion in Biotechnology, 2015, 32, 14-20.	6.6	182
40	Immune modulation of the brain-gut-microbe axis. Frontiers in Microbiology, 2014, 5, 146.	3.5	125
41	Transient inflammatory-like state and microbial dysbiosis are pivotal in establishment of mucosal homeostasis during colonisation of germ-free mice. Beneficial Microbes, 2014, 5, 67-77.	2.4	64
42	The gut microbiota elicits a profound metabolic reorientation in the mouse jejunal mucosa during conventionalisation. Gut, 2013, 62, 1306-1314.	12.1	118
43	Intestinal colonization: How key microbial players become established in this dynamic process. BioEssays, 2013, 35, 913-923.	2.5	61
44	Gut bacteria–host metabolic interplay during conventionalisation of the mouse germfree colon. ISME Journal, 2013, 7, 743-755.	9.8	84
45	The gut microbiota and mucosal homeostasis. Gut Microbes, 2013, 4, 118-124.	9.8	111
46	Molecular signatures for the dynamic process of establishing intestinal host–microbial homeostasis. Current Opinion in Gastroenterology, 2013, 29, 621-627.	2.3	10
47	Prebiotics, faecal transplants and microbial network units to stimulate biodiversity of the human gut microbiome. Microbial Biotechnology, 2013, 6, 335-340.	4.2	39
48	The microbiota and the gut-brain axis: insights from the temporal and spatial mucosal alterations during colonisation of the germfree mouse intestine. Beneficial Microbes, 2012, 3, 251-259.	2.4	59
49	Epidemiological and virological characteristics of symptomatic acute hepatitis E in Greater Cairo, Egypt. Clinical Microbiology and Infection, 2012, 18, 982-988.	6.0	26
50	Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice. Mucosal Immunology, 2012, 5, 567-579.	6.0	201
51	Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucinâ€degradation in humanized rats. Environmental Microbiology, 2011, 13, 2667-2680.	3.8	215
52	High temporal and interâ€individual variation detected in the human ileal microbiota. Environmental Microbiology, 2010, 12, 3213-3227.	3.8	254
53	Microbial Community Development in a Dynamic Gut Model Is Reproducible, Colon Region Specific, and Selective for <i>Bacteroidetes</i> and <i>Clostridium</i> Cluster IX. Applied and Environmental Microbiology, 2010, 76, 5237-5246.	3.1	272
54	Surveillance of acute hepatitis C in Cairo, Egypt. Journal of Medical Virology, 2005, 76, 520-525.	5.0	41